CHAPTER 2 2

Object-Based Databases

Traditional database applications consist of data-processing tasks, such as bank-
ing and payroll management, with relatively simple data types that are well
suited to the relational data model. As database systems were applied to a wider
range of applications, such as computer-aided design and geographical informa-
tion systems, limitations imposed by the relational model emerged as an obstacle.
The solution was the introduction of object-based databases, which allow one to
deal with complex data types.

22.1 Overview

The first obstacle faced by programmers using the relational data model was
the limited type system supported by the relational model. Complex applica-
tion domains require correspondingly complex data types, such as nested record
structures, multivalued attributes, and inheritance, which are supported by tradi-
tional programming languages. Such features are in fact supported in the E-R and
extended E-R notations, but had to be translated to simpler SQL data types. The
object-relational data model extends the relational data model by providing a
richer type system including complex data types and object orientation. Relational
query languages, in particular SQL, need to be correspondingly extended to deal
with the richer type system. Such extensions attempt to preserve the relational
foundations—in particular, the declarative access to data—while extending the
modeling power. Object-relational database systems, that is, database systems
based on the object-relation model, provide a convenient migration path for users
of relational databases who wish to use object-oriented features.

The second obstacle was the difficulty in accessing database data from pro-
grams written in programming languages such as C++ or Java. Merely extending
the type system supported by the database was not enough to solve this problem
completely. Differences between the type system of the database and the type
system of the programming language make data storage and retrieval more com-
plicated, and need to be minimized. Having to express database access using a
language (SQL) that is different from the programming language again makes
the job of the programmer harder. It is desirable, for many applications, to have

945

946

22.2

Chapter 22 Object-Based Databases

programming language constructs or extensions that permit direct access to data
in the database, without having to go through an intermediate language such as
SQL.

In this chapter, we first explain the motivation for the development of complex
data types. We then study object-relational database systems, specifically using
features that were introduced in SQL:1999 and SQL:2003. Note that most database
products support only a subset of the SQL features described here and for sup-
ported features, the syntax often differs slightly from the standard. This is the
result of commercial systems introducing object-relational features to the market
before the standards were finalized. Refer to the user manual of the database
system you use to find out what features it supports.

We then address the issue of supporting persistence for data that is in the
native type system of an object-oriented programming language. Two approaches
are used in practice:

1. Build an object-oriented database system, that is, a database system that
natively supports an object-oriented type system, and allows direct access to
data from an object-oriented programming language using the native type
system of the language.

2. Automatically convert data from the native type system of the programming
language to a relational representation, and vice versa. Data conversion is
specified using an object-relational mapping.

We provide a brief introduction to both these approaches.

Finally, we outline situations in which the object-relational approach is bet-
ter than the object-oriented approach, and vice versa, and mention criteria for
choosing between them.

Complex Data Types

Traditional database applications have conceptually simple data types. The basic
data items are records that are fairly small and whose fields are atomic—that
is, they are not further structured, and first normal form holds (see Chapter 8).
Further, there are only a few record types.

In recent years, demand has grown for ways to deal with more complex
data types. Consider, for example, addresses. While an entire address could be
viewed as an atomic data item of type string, this view would hide details such
as the street address, city, state, and postal code, which could be of interest
to queries. On the other hand, if an address were represented by breaking it
into the components (street address, city, state, and postal code), writing queries
would be more complicated since they would have to mention each field. A better
alternativeis to allow structured data types that allow a type address with subparts
street_address, city, state, and postal_code.

As another example, consider multivalued attributes from the E-R model. Such
attributes are natural, for example, for representing phone numbers, since people

22.2 Complex Data Types 947

title author_array publisher keyword_set
(name, branch)

Compilers | [Smith, Jones] | (McGraw-Hill, NewYork) | {parsing, analysis}
Networks | [Jones, Frick] (Oxford, London) {Internet, Web}

Figure 22.1 Non-1NF books relation, books.

may have more than one phone. The alternative of normalization by creating a
new relation is expensive and artificial for this example.

With complex type systems we can represent E-R model concepts, such as
composite attributes, multivalued attributes, generalization, and specialization
directly, without a complex translation to the relational model.

In Chapter 8, we defined first normal form (1INF), which requires that all at-
tributes have atomic domains. Recall that a domain is atomic if elements of the
domain are considered to be indivisible units.

The assumption of INF is a natural one in the database application examples
we have considered. However, not all applications are best modeled by 1NF
relations. For example, rather than view a database as a set of records, users of
certain applications view it as a set of objects (or entities). These objects may
require several records for their representation. A simple, easy-to-use interface
requires a one-to-one correspondence between the user’s intuitive notion of an
object and the database system’s notion of a data item.

Consider, for example, a library application, and suppose we wish to store
the following information for each book:

Book title.

List of authors.
Publisher.
Set of keywords.

We can see that, if we define a relation for the preceding information, several
domains will be nonatomic.

¢ Authors. A book may have a list of authors, which we can represent as an
array. Nevertheless, we may want to find all books of which Jones was one
of the authors. Thus, we are interested in a subpart of the domain element
“authors.”

e Keywords. If we store a set of keywords for a book, we expect to be able to
retrieve all books whose keywords include one or more specified keywords.
Thus, we view the domain of the set of keywords as nonatomic.

e Publisher. Unlike keywords and authors, publisher does not have a set-valued
domain. However, we may view publisher as consisting of the subfields name
and branch. This view makes the domain of publisher nonatomic.

Figure 22.1 shows an example relation, books.

948

Chapter 22 Object-Based Databases

| title | author | position |
Compilers | Smith 1
Compilers | Jones 2
Networks | Jones 1
Networks | Frick 2
authors

| title | keyword |

Compilers | parsing
Compilers | analysis
Networks | Internet
Networks | Web

keywords
| title | pub_name | pub_branch|
Compilers | McGraw-Hill | New York
Networks Oxford London
books4

Figure 22.2 4NF version of the relation books.

For simplicity, we assume that the title of a book uniquely identifies the book.!
We can then represent the same information using the following schema, where
the primary key attributes are underlined:

® qauthors(title, author, position)
e keywords(title, keyword)
® books4(title, pub_name, pub_branch)

The above schema satisfies 4NF. Figure 22.2 shows the normalized representation
of the data from Figure 22.1.

Although our example book database can be adequately expressed without
using nested relations, the use of nested relations leads to an easier-to-understand
model. The typical user or programmer of an information-retrieval system thinks
of the database in terms of books having sets of authors, as the non-1NF design
models. The 4NF design requires queries to join multiple relations, whereas the
non-1NF design makes many types of queries easier.

On the other hand, it may be better to use a first normal form representation
in other situations. For instance, consider the takes relationship in our university
example. The relationship is many-to-many between student and section. We could

I This assumption does not hold in the real world. Books are usually identified by a 10-digit ISBN number that uniquely
identifies each published book.

22.3

22.3 Structured Types and Inheritance in SQL 949

conceivably store a set of sections with each student, or a set of students with
each section, or both. If we store both, we would have data redundancy (the
relationship of a particular student to a particular section would be stored twice).

The ability to use complex data types such as sets and arrays can be useful in
many applications but should be used with care.

Structured Types and Inheritance in SQL

Before SQL:1999, the SQL type system consisted of a fairly simple set of predefined
types. SQL:1999 added an extensive type system to SQL, allowing structured types
and type inheritance.

22.3.1 Structured Types

Structured types allow composite attributes of E-R designs to be represented
directly. For instance, we can define the following structured type to represent a
composite attribute name with component attribute firstname and lastname:

create type Name as
(firstname varchar(20),
lastname varchar(20))
final;

Similarly, the following structured type can be used to represent a composite
attribute address:

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(9))
not final;

Such types are called user-defined types in SQL?. The above definition corre-
sponds to the E-R diagram in Figure 7.4. The final and not final specifications are
related to subtyping, which we describe later, in Section 22.3.2.3

We can now use these types to create composite attributes in a relation, by
simply declaring an attribute to be of one of these types. For example, we could
create a table person as follows:

2To illustrate our earlier note about commercial implementations defining their syntax before the standards were
developed, we point out that Oracle requires the keyword object following as.

3The final specification for Name indicates that we cannot create subtypes for nane, whereas the not final specification
for Address indicates that we can create subtypes of address.

950

Chapter 22 Object-Based Databases

create table person (
name Name,
address Address,
dateOfBirth date);

The components of a composite attribute can be accessed using a “dot” no-
tation; for instance name.firstname returns the firstname component of the name
attribute. An access to attribute name would return a value of the structured type
Name.

We can also create a table whose rows are of a user-defined type. For example,
we could define a type PersonType and create the table person as follows:*

create type PersonType as (
name Name,
address Address,
dateOfBirth date)
not final
create table person of PersonType;

An alternative way of defining composite attributes in SQL is to use unnamed
row types. For instance, the relation representing person information could have
been created using row types as follows:

create table person_r (
name row (firstname varchar(20),
lastname varchar(20)),
address row (street varchar(20),
city varchar(20),
zipcode varchar(9)),
dateOfBirth date);

This definition is equivalent to the preceding table definition, except that the
attributes name and address have unnamed types, and the rows of the table also
have an unnamed type.

The following query illustrates how to access component attributes of a com-
posite attribute. The query finds the last name and city of each person.

select name.lastname, address.city
from person;

A structured type can have methods defined on it. We declare methods as
part of the type definition of a structured type:

4“Most actual systems, being case insensitive, would not permit name to be used both as an attribute name and a data

type.

22.3 Structured Types and Inheritance in SQL 951

create type PersonType as (
name Name,
address Address,
dateOfBirth date)
not final
method ageOnDate(onDate date)
returns interval year;

We create the method body separately:

create instance method ageOnDate (onDate date)
returns interval year
for PersonType

begin
return onDate — self.dateOfBirth;

end

Note that the for clause indicates which type this method is for, while the
keyword instance indicates that this method executes on an instance of the Person
type. The variable self refers to the Person instance on which the method is
invoked. The body of the method can contain procedural statements, which we
saw earlier in Section 5.2. Methods can update the attributes of the instance on
which they are executed.

Methods can be invoked on instances of a type. If we had created a table
person of type PersonType, we could invoke the method ageOnDate() as illustrated
below, to find the age of each person.

select name.lastname, ageOnDate(current_date)
from person;

In SQL:1999, constructor functions are used to create values of structured
types. A function with the same name as a structured type is a constructor function
for the structured type. For instance, we could declare a constructor for the type
Name like this:

create function Name (firstname varchar(20), lastname varchar(20))
returns Name
begin
set self.firstname = firstname;
set self.lastname = lastname;
end

We can then use new Name(’John’, "Smith’) to create a value of the type Name.
We can construct a row value by listing its attributes within parentheses. For
instance, if we declare an attribute name as a row type with components firstname

952

Chapter 22 Object-Based Databases

and lastname we can construct this value for it: ("Ted’, "Codd’) without using a
constructor.

By default every structured type has a constructor with no arguments, which
sets the attributes to their default values. Any other constructors have to be created
explicitly. There can be more than one constructor for the same structured type;
although they have the same name, they must be distinguishable by the number
of arguments and types of their arguments.

The following statement illustrates how we can create a new tuple in the
Person relation. We assume that a constructor has been defined for Address, just
like the constructor we defined for Name.

insert into Person
values
(new Name('John’, "Smith’),
new Address("20 Main St’, 'New York’, "11001"),
date "1960-8-22");

22.3.2 Type Inheritance
Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20));

We may want to store extra information in the database about people who are
students, and about people who are teachers. Since students and teachers are also
people, we can use inheritance to define the student and teacher types in SQL:

create type Student
under Person
(degree varchar(20),
department varchar(20));

create type Teacher
under Person
(salary integer,
department varchar(20));

Both Student and Teacher inherit the attributes of Person—namely, name and
address. Student and Teacher are said to be subtypes of Person, and Person is a
supertype of Student, as well as of Teacher.

Methods of a structured type are inherited by its subtypes, just as attributes
are. However, a subtype can redefine the effect of a method by declaring the
method again, using overriding method in place of method in the method dec-
laration.

22.3 Structured Types and Inheritance in SQL 953

The SQL standard requires an extra field at the end of the type definition,
whose value is either final or not final. The keyword final says that subtypes may
not be created from the given type, while not final says that subtypes may be
created.

Now suppose that we want to store information about teaching assistants,
who are simultaneously students and teachers, perhaps even in different depart-
ments. We can do this if the type system supports multiple inheritance, where a
type is declared as a subtype of multiple types. Note that the SQL standard does
not support multiple inheritance, although future versions of the SQL standard
may support it, so we discuss the concept here.

For instance, if our type system supports multiple inheritance, we can define
a type for teaching assistant as follows:

create type TeachingAssistant
under Student, Teacher;

TeachingAssistant inherits all the attributes of Student and Teacher. There is a
problem, however, since the attributes name, address, and department are present
in Student, as well as in Teacher.

The attributes name and address are actually inherited from a common source,
Person. So there is no conflict caused by inheriting them from Student as well as
Teacher. However, the attribute department is defined separately in Student and
Teacher. In fact, a teaching assistant may be a student of one department and a
teacher in another department. To avoid a conflict between the two occurrences
of department, we can rename them by using an as clause, as in this definition of
the type TeachingAssistant:

create type TeachingAssistant
under Student with (department as student_dept),
Teacher with (department as teacher_dept);

In SQL, as in most other languages, a value of a structured type must have ex-
actly one most-specific type. That is, each value must be associated with one specific
type, called its most-specific type, when it is created. By means of inheritance, it is
also associated with each of the supertypes of its most-specific type. For example,
suppose that an entity has the type Person, as well as the type Student. Then, the
most-specific type of the entity is Student, since Student is a subtype of Person.
However, an entity cannot have the type Student as well as the type Teacher unless
it has a type, such as TeachingAssistant, that is a subtype of Teacher, as well as of
Student (which is not possible in SQL since multiple inheritance is not supported
by SQL).

954

22.4

Chapter 22 Object-Based Databases

Table Inheritance

Subtables in SQL correspond to the E-R notion of specialization/generalization.
For instance, suppose we define the people table as follows:

create table people of Person;

We can then define tables students and teachers as subtables of people, as
follows:

create table students of Student
under people;

create table teachers of Teacher
under people;

The types of the subtables (Student and Teacher in the above example) are subtypes
of the type of the parent table (Person in the above example). As a result, every
attribute present in the table people is also present in the subtables students and
teachers.

Further, when we declare students and teachers as subtables of people, every
tuple present in students or teachers becomes implicitly present in people. Thus,
if a query uses the table people, it will find not only tuples directly inserted into
that table, but also tuples inserted into its subtables, namely students and teachers.
However, only those attributes that are present in people can be accessed by that
query.

SQL permits us to find tuples that are in people but not in its subtables by using
“only people” in place of people in a query. The only keyword can also be used in
delete and update statements. Without the only keyword, a delete statement on
a supertable, such as people, also deletes tuples that were originally inserted in
subtables (such as students); for example, a statement:

delete from people where P;

would delete all tuples from the table people, as well as its subtables students
and teachers, that satisfy P. If the only keyword is added to the above statement,
tuples that were inserted in subtables are not affected, even if they satisfy the
where clause conditions. Subsequent queries on the supertable would continue
to find these tuples.

Conceptually, multiple inheritance is possible with tables, just as it is possible
with types. For example, we can create a table of type TeachingAssistant:

create table teaching assistants
of TeachingAssistant
under students, teachers;

22.4 Table Inheritance 955

As a result of the declaration, every tuple present in the teaching_assistants
table is also implicitly present in the teachers and in the students table, and in turn
in the people table. We note, however, that multiple inheritance of tables is not
supported by SQL.

There are some consistency requirements for subtables. Before we state the
constraints, we need a definition: we say that tuples in a subtable and parent
table correspond if they have the same values for all inherited attributes. Thus,
corresponding tuples represent the same entity.

The consistency requirements for subtables are:

1. Each tuple of the supertable can correspond to at most one tuple in each of
its immediate subtables.

2. SQL has an additional constraint that all the tuples corresponding to each
other must be derived from one tuple (inserted into one table).

For example, without the first condition, we could have two tuples in students (or
teachers) that correspond to the same person.

The second condition rules out a tuple in people corresponding to both a tuple
in students and a tuple in teachers, unless all these tuples are implicitly present
because a tuple was inserted in a table teaching assistants, which is a subtable of
both teachers and students.

Since SQL does not support multiple inheritance, the second condition actu-
ally prevents a person from being both a teacher and a student. Even if multiple
inheritance were supported, the same problem would arise if the subtable teaching
_assistants were absent. Obviously it would be useful to model a situation where
a person can be a teacher and a student, even if a common subtable teaching
_assistants is not present. Thus, it can be useful to remove the second consis-
tency constraint. Doing so would allow an object to have multiple types, without
requiring it to have a most-specific type.

For example, suppose we again have the type Person, with subtypes Student
and Teacher, and the corresponding table people, with subtables teachers and stu-
dents. We can then have a tuple in teachers and a tuple in students corresponding to
the same tuple in people. There is no need to have a type TeachingAssistant that is a
subtype of both Student and Teacher. We need not create a type TeachingAssistant
unless we wish to store extra attributes or redefine methods in a manner specific
to people who are both students and teachers.

We note, however, that SQL unfortunately prohibits such a situation, because
of consistency requirement 2. Since SQL also does not support multiple inheri-
tance, we cannot use inheritance to model a situation where a person can be both
a student and a teacher. As a result, SQL subtables cannot be used to represent
overlapping specializations from the E-R model.

We can of course create separate tables to represent the overlapping special-
izations/generalizations without using inheritance. The process was described
earlier, in Section 7.8.6.1. In the above example, we would create tables people, stu-
dents, and teachers, with the students and teachers tables containing the primary-key

956

22.5

Chapter 22 Object-Based Databases

attribute of Person and other attributes specific to Student and Teacher, respectively.
The people table would contain information about all persons, including students
and teachers. We would then have to add appropriate referential-integrity con-
straints to ensure that students and teachers are also represented in the people
table.

In other words, we can create our own improved implementation of the
subtable mechanism using existing features of SQL, with some extra effort in
defining the table, as well as some extra effort at query time to specify joins to
access required attributes.

We note that SQL defines a privilege called under, which is required in order
to create a subtype or subtable under another type or table. The motivation for
this privilege is similar to that for the references privilege.

Array and Multiset Types in SQL

SQL supports two collection types: arrays and multisets; array types were added
in SQL:1999, while multiset types were added in SQL:2003. Recall that a multiset is
an unordered collection, where an element may occur multiple times. Multisets
are like sets, except that a set allows each element to occur at most once.

Suppose we wish to record information about books, including a set of key-
words for each book. Suppose also that we wished to store the names of authors
of a book as an array; unlike elements in a multiset, the elements of an array are
ordered, so we can distinguish the first author from the second author, and so on.
The following example illustrates how these array and multiset-valued attributes
can be defined in SQL:

create type Publisher as
(name varchar(20),
branch varchar(20));

create type Book as
(title varchar(20),
author_array varchar(20) array [10],
pub_date date,
publisher Publisher,
keyword_set varchar(20) multiset);

create table books of Book;

The first statement defines a type called Publisher with two components: a name
and a branch. The second statement defines a structured type Book that contains
a title, an author_array, which is an array of up to 10 author names, a publication
date, a publisher (of type Publisher), and a multiset of keywords. Finally, a table
books containing tuples of type Book is created.

22.5 Array and Multiset Types in SQL 957

Note that we used an array, instead of a multiset, to store the names of authors,
since the ordering of authors generally has some significance, whereas we believe
that the ordering of keywords associated with a book is not significant.

In general, multivalued attributes from an E-R schema can be mapped to
multiset-valued attributes in SQL; if ordering is important, SQL arrays can be used
instead of multisets.

22.5.1 Creating and Accessing Collection Values

An array of values can be created in SQL:1999 in this way:
array['Silberschatz’, "Korth’, ‘Sudarshan’]
Similarly, a multiset of keywords can be constructed as follows:
multiset[’computer’, ‘database’, "SQL’]
Thus, we can create a tuple of the type defined by the books relation as:

('Compilers’, array[’Smith’, ‘Jones’], new Publisher('McGraw-Hill’, 'New York’),
multiset[parsing’, ‘analysis’])

Here we have created a value for the attribute Publisher by invoking a constructor
function for Publisher with appropriate arguments. Note that this constructor
for Publisher must be created explicitly, and is not present by default; it can be
declared just like the constructor for Name, which we saw earlier in Section 22.3.

If we want to insert the preceding tuple into the relation books, we could
execute the statement:

insert into books

values ('Compilers’, array['Smith’, ‘Jones'],
new Publisher('McGraw-Hill’, 'New York’),
multiset[parsing’, “analysis’]);

We can access or update elements of an array by specifying the array index,
for example author_array[1].

22.5.2 AQuerying Collection-Valued Attributes

We now consider how to handle collection-valued attributes in queries. An ex-
pression evaluating to a collection can appear anywhere that a relation name may
appear, such as in a from clause, as the following paragraphs illustrate. We use
the table books that we defined earlier.

If we want to find all books that have the word “database” as one of their
keywords, we can use this query:

958 Chapter22 Object-Based Databases

select title
from books
where ‘database’ in (unnest(keyword_set));

Note that we have used unnest(keyword_set) in a position where SQL without
nested relations would have required a select-from-where subexpression.
If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = ‘Database System Concepts’;

Now, suppose that we want a relation containing pairs of the form “title,
author_name” for each book and each author of the book. We can use this query:

select B.title, A.author
from books as B, unnest(B.author_array) as A(author);

Since the author_array attribute of books is a collection-valued field, unnest(B.author
_array) can be used in a from clause, where a relation is expected. Note that the
tuple variable B is visible to this expression since it is defined earlier in the from
clause.

When unnesting an array, the previous query loses information about the
ordering of elements in the array. The unnest with ordinality clause can be used
to get this information, as illustrated by the following query. This query can be
used to generate the authors relation, which we saw earlier, from the books relation.

select title, A.author, A.position
from books as B,
unnest(B.author_array) with ordinality as A(author, position);

The with ordinality clause generates an extra attribute which records the po-
sition of the element in the array. A similar query, but without the with ordinality
clause, can be used to generate the keyword relation.

22.5.3 Nesting and Unnesting

The transformation of a nested relation into a form with fewer (or no) relation-
valued attributes is called unnesting. The books relation has two attributes, author
_array and keyword_set, that are collections, and two attributes, title and publisher,
that are not. Suppose that we want to convert the relation into a single flat relation,
with no nested relations or structured types as attributes. We can use the following
query to carry out the task:

22,5 Array and Multiset Types in SQL

959

| title | author | pub_name | pub_branch | keyword
Compilers | Smith McGraw-Hill | New York parsing
Compilers Jones McGraw-Hill New York parsing
Compilers Smith McGraw-Hill New York analysis
Compilers Jones McGraw-Hill New York analysis
Networks Jones Oxford London Internet
Networks Frick Oxford London Internet
Networks Jones Oxford London Web
Networks Frick Oxford London Web

Figure 22.3 flat_books: result of unnesting attributes author_array and keyword_set of relation
books.

select title, A.author, publisher.name as pub_name, publisher.branch
as pub_branch, K keyword

from books as B, unnest(B.author_array) as A(author),
unnest (B.keyword_set) as K(keyword);

The variable B in the from clause is declared to range over books. The variable
A is declared to range over the authors in author_array for the book B, and K is
declared to range over the keywords in the keyword_set of the book B. Figure 22.1
shows an instance books relation, and Figure 22.3 shows the relation, which we
call flat_books, that is the result of the preceding query. Note that the relation flat
_books is in INF, since all its attributes are atomic valued.

The reverse process of transforming a INF relation into a nested relation
is called nesting. Nesting can be carried out by an extension of grouping in
SQL. In the normal use of grouping in SQL, a temporary multiset relation is
(logically) created for each group, and an aggregate function is applied on the
temporary relation to get a single (atomic) value. The collect function returns the
multiset of values, so instead of creating a single value, we can create a nested
relation. Suppose that we are given the 1NF relation flat_books, as in Figure 22.3.
The following query nests the relation on the attribute keyword:

select title, author, Publisher(pub_name, pub_branch) as publisher,
collect(keyword) as keyword_set

from flat_books

group by title, author, publisher;

The result of the query on the flat_books relation from Figure 22.3 appears in
Figure 22.4.
If we want to nest the author attribute also into a multiset, we can use the

query:

960

Chapter 22 Object-Based Databases

title author publisher keyword_set
(pub_name,pub_branch)

Compilers | Smith (McGraw-Hill, New York) | {parsing, analysis}
Compilers | Jones (McGraw-Hill, New York) | {parsing, analysis}
Networks Jones (Oxford, London) {Internet, Web}
Networks Frick (Oxford, London) {Internet, Web}

Figure 22.4 A partially nested version of the flat_books relation.

select title, collect(author) as author set,
Publisher(pub_name, pub_branch) as publisher,
collect(keyword) as keyword_set
from flat_books
group by title, publisher;

Another approach to creating nested relations is to use subqueries in the select
clause. An advantage of the subquery approach is that an order by clause can be
used in the subquery to generate results in the order desired for the creation of
an array. The following query illustrates this approach; the keywords array and
multiset specify that an array and multiset (respectively) are to be created from
the results of the subqueries.

select title,
array(select author
from authors as A
where A.title = B.title
order by A.position) as author_array,
Publisher(pub_name, pub_branch) as publisher,
multiset(select keyword
from keywords as K
where K.title = B.title) as keyword_set,
from books4 as B;

The system executes the nested subqueries in the select clause for each tuple
generated by the from and where clauses of the outer query. Observe that the
attribute B.title from the outer query is used in the nested queries, to ensure that
only the correct sets of authors and keywords are generated for each title.

SQL:2003 provides a variety of operators on multisets, including a function
set(M) that returns a duplicate-free version of a multiset M, an intersection
aggregate operation, which returns the intersection of all the multisets in a group,
a fusion aggregate operation, which returns the union of all multisets in a group,
and a submultiset predicate, which checks if a multiset is contained in another
multiset.

22.6

22.6 Object-Identity and Reference Types in SQL 961

The SQL standard does not provide any way to update multiset attributes
except by assigning a new value. For example, to delete a value v from a multiset
attribute A, we would have to set it to (A except all multiset[v]).

Object-ldentity and Reference Types in SQL

Object-oriented languages provide the ability to refer to objects. An attribute of
a type can be a reference to an object of a specified type. For example, in SQL we
can define a type Department with a field name and a field head that is a reference
to the type Person, and a table departments of type Department, as follows:

create type Department (
name varchar(20),
head ref(Person) scope people);

create table departments of Department;

Here, the reference is restricted to tuples of the table people. The restriction of
the scope of a reference to tuples of a table is mandatory in SQL, and it makes
references behave like foreign keys.

We can omit the declaration scope people from the type declaration and instead
make an addition to the create table statement:

create table departments of Department
(head with options scope people);

The referenced table must have an attribute that stores the identifier of the
tuple. We declare this attribute, called the self-referential attribute, by adding a
ref is clause to the create table statement:

create table people of Person
ref is person_id system generated;

Here, person_id is an attribute name, not a keyword, and the create table
statement specifies that the identifier is generated automatically by the database.

In order to initialize a reference attribute, we need to get the identifier of the
tuple that is to be referenced. We can get the identifier value of a tuple by means
of a query. Thus, to create a tuple with the reference value, we may first create the
tuple with a null reference and then set the reference separately:

962 Chapter22 Object-Based Databases

insert into departments
values ('CS’, null);

update departments
set head = (select p.person_id
from people as p
where name = John’)
where name = 'CS’;

An alternative to system-generated identifiers is to allow users to generate
identifiers. The type of the self-referential attribute must be specified as part of
the type definition of the referenced table, and the table definition must specify
that the reference is user generated:

create type Person
(name varchar(20),
address varchar(20))
ref using varchar(20);

create table people of Person
ref is person_id user generated;

When inserting a tuple in people, we must then provide a value for the iden-
tifier:

insert into people (person_id, name, address) values
('01284567’, 'John’, 23 Coyote Run’);

No other tuple for people or its supertables or subtables can have the same
identifier. We can then use the identifier value when inserting a tuple into depart-
ments, without the need for a separate query to retrieve the identifier:

insert into departments
values ('CS’, '01284567’);

It is even possible to use an existing primary-key value as the identifier, by
including the ref from clause in the type definition:

create type Person
(name varchar(20) primary key,
address varchar(20))
ref from(name);

create table people of Person
ref is person_id derived;

22.7

22.7 Implementing O-R Features 963

Note that the table definition must specify that the reference is derived, and
must still specify a self-referential attribute name. When inserting a tuple for
departments, we can then use:

insert into departments
values ('CS’, ‘John’);

References are dereferenced in SQL:1999 by the —> symbol. Consider the
departments table defined earlier. We can use this query to find the names and
addresses of the heads of all departments:

select head—>name, head—>address
from departments;

An expression such as “head—>name” is called a path expression.

Since head is a reference to a tuple in the people table, the attribute name
in the preceding query is the name attribute of the tuple from the people table.
References can be used to hide join operations; in the preceding example, without
the references, the head field of department would be declared a foreign key of the
table people. To find the name and address of the head of a department, we would
require an explicitjoin of the relations departments and people. The use of references
simplifies the query considerably.

We can use the operation deref to return the tuple pointed to by a reference,
and then access its attributes, as shown below:

select deref(head).name
from departments;

Implementing O-R Features

Object-relational database systems are basically extensions of existing relational
database systems. Changes are clearly required at many levels of the database
system. However, to minimize changes to the storage-system code (relation stor-
age, indices, etc.), the complex data types supported by object-relational systems
can be translated to the simpler type system of relational databases.

To understand how to do this translation, we need look only at how some
features of the E-R model are translated into relations. For instance, multivalued
attributes in the E-R model correspond to multiset-valued attributes in the object-
relational model. Composite attributes roughly correspond to structured types.
ISA hierarchies in the E-R model correspond to table inheritance in the object-
relational model.

The techniques for converting E-R model features to tables, which we saw in
Section 7.6, can be used, with some extensions, to translate object-relational data
to relational data at the storage level.

964

22.8

Chapter 22 Object-Based Databases

Subtables can be stored in an efficient manner, without replication of all
inherited fields, in one of two ways:

e Each table stores the primary key (which may be inherited from a parent
table) and the attributes that are defined locally. Inherited attributes (other
than the primary key) do not need to be stored, and can be derived by means
of a join with the supertable, based on the primary key.

e Each table stores all inherited and locally defined attributes. When a tuple is
inserted, it is stored only in the table in which it is inserted, and its presence is
inferred in each of the supertables. Access to all attributes of a tuple is faster,
since a join is not required.

However, in case the type system allows an entity to be represented
in two subtables without being present in a common subtable of both, this
representation can result in replication of information. Further, it is hard
to translate foreign keys referring to a supertable into constraints on the
subtables; to implement such foreign keys efficiently, the supertable has to be
defined as a view, and the database system would have to support foreign
keys on views.

Implementations may choose to represent array and multiset types directly,
or may choose to use a normalized representation internally. Normalized repre-
sentations tend to take up more space and require an extra join/grouping cost to
collect data in an array or multiset. However, normalized representations may be
easier to implement.

The ODBC and JDBC application program interfaces have been extended to
retrieve and store structured types. JDBC provides a method getObject () that
is similar to getString() but returns a Java Struct object, from which the
components of the structured type can be extracted. It is also possible to associate
a Java class with an SQL structured type, and JDBC will then convert between the
types. See the ODBC or JDBC reference manuals for details.

Persistent Programming Languages

Database languages differ from traditional programming languages in that they
directly manipulate data that are persistent—that is, data that continue to exist
even after the program that created it has terminated. A relation in a database and
tuples in a relation are examples of persistent data. In contrast, the only persistent
data that traditional programming languages directly manipulate are files.

Access to a database is only one component of any real-world application.
While a data-manipulation language like SQL is quite effective for accessing data,
a programming language is required for implementing other components of the
application such as user interfaces or communication with other computers. The
traditional way of interfacing database languages to programming languages is
by embedding SQL within the programming language.

22.8 Persistent Programming Languages 965

A persistent programming language is a programming language extended
with constructs to handle persistent data. Persistent programming languages can
be distinguished from languages with embedded SQL in at least two ways:

1. With an embedded language, the type system of the host language usually
differs from the type system of the data-manipulation language. The pro-
grammer is responsible for any type conversions between the host language
and SQL. Having the programmer carry out this task has several drawbacks:

¢ The code to convert between objects and tuples operates outside the
object-oriented type system, and hence has a higher chance of having
undetected errors.

¢ Conversion between the object-oriented format and the relational for-
mat of tuples in the database takes a substantial amount of code. The
format translation code, along with the code for loading and unloading
data from a database, can form a significant percentage of the total code
required for an application.

In contrast, in a persistent programming language, the query language is
fully integrated with the host language, and both share the same type sys-
tem. Objects can be created and stored in the database without any explicit
type or format changes; any format changes required are carried out trans-
parently.

2. The programmer using an embedded query language is responsible for
writing explicit code to fetch data from the database into memory. If any
updates are performed, the programmer must write code explicitly to store
the updated data back in the database.

In contrast, in a persistent programming language, the programmer can
manipulate persistent data without writing code explicitly to fetch it into
memory or store it back to disk.

In this section, we describe how object-oriented programming languages,
such as C++ and Java, can be extended to make them persistent programming
languages. These language features allow programmers to manipulate data di-
rectly from the programming language, without having to go through a data-
manipulation language such as SQL. They thereby provide tighter integration of
the programming languages with the database than, for example, embedded SQL.

There are certain drawbacks to persistent programming languages, how-
ever, that we must keep in mind when deciding whether to use them. Since the
programming language is usually a powerful one, it is relatively easy to make
programming errors that damage the database. The complexity of the language
makes automatic high-level optimization, such as to reduce disk I/ O, harder. Sup-
port for declarative querying is important for many applications, but persistent
programming languages currently do not support declarative querying well.

In this section, we describe a number of conceptual issues that must be ad-
dressed when adding persistence to an existing programming language. We first

966

Chapter 22 Object-Based Databases

address language-independent issues, and in subsequent sections we discuss is-
sues that are specific to the C++ language and to the Java language. However,
we do not cover details of language extensions; although several standards have
been proposed, none has met universal acceptance. See the references in the bib-
liographical notes to learn more about specific language extensions and further
details of implementations.

22.8.1 Persistence of Objects

Object-oriented programming languages already have a concept of objects, a
type system to define object types, and constructs to create objects. However,
these objects are transient—they vanish when the program terminates, just as
variables in a Java or C program vanish when the program terminates. If we
wish to turn such a language into a database programming language, the first
step is to provide a way to make objects persistent. Several approaches have been
proposed.

¢ Persistence by class. The simplest, but least convenient, way is to declare
that a class is persistent. All objects of the class are then persistent objects by
default. Objects of nonpersistent classes are all transient.

This approach is not flexible, since it is often useful to have both transient
and persistent objects in a single class. Many object-oriented database systems
interpret declaring a class to be persistent as saying that objects in the class
potentially can be made persistent, rather than that all objects in the class
are persistent. Such classes might more appropriately be called “persistable”
classes.

¢ Persistence by creation. In this approach, new syntax is introduced to create
persistent objects, by extending the syntax for creating transient objects. Thus,
an object is either persistent or transient, depending on how it was created.
Several object-oriented database systems follow this approach.

¢ Persistence by marking. A variant of the preceding approach is to mark
objects as persistent after they are created. All objects are created as transient
objects, but, if an object is to persist beyond the execution of the program, it
must be marked explicitly as persistent before the program terminates. This
approach, unlike the previous one, postpones the decision on persistence or
transience until after the object is created.

¢ Persistence by reachability. One or more objects are explicitly declared as

(root) persistent objects. All other objects are persistent if (and only if) they are

reachable from the root object through a sequence of one or more references.

Thus, all objects referenced by (that is, whose object identifiers are stored

in) the root persistent objects are persistent. But also, all objects referenced

from these objects are persistent, and objects to which they refer are in turn
persistent, and so on.

A benefit of this scheme is that it is easy to make entire data structures

persistent by merely declaring the root of such structures as persistent. How-

22.8 Persistent Programming Languages 967

ever, the database system has the burden of following chains of references to
detect which objects are persistent, and that can be expensive.

22.8.2 Object Identity and Pointers

In an object-oriented programming language that has not been extended to han-
dle persistence, when an object is created, the system returns a transient object
identifier. Transient object identifiers are valid only when the program that cre-
ated them is executing; after that program terminates, the objects are deleted, and
the identifier is meaningless. When a persistent object is created, it is assigned a
persistent object identifier.

The notion of object identity has an interesting relationship to pointers in
programming languages. A simple way to achieve built-in identity is through
pointers to physical locations in storage. In particular, in many object-oriented
languages such as C++, a transient object identifier is actually an in-memory
pointer.

However, the association of an object with a physical location in storage may
change over time. There are several degrees of permanence of identity:

¢ Intraprocedure. Identity persists only during the execution of a single pro-
cedure. Examples of intraprogram identity are local variables within proce-
dures.

¢ Intraprogram. Identity persists only during the execution of a single pro-
gram or query. Examples of intraprogram identity are global variables in
programming languages. Main-memory or virtual-memory pointers offer
only intraprogram identity.

¢ Interprogram. Identity persists from one program execution to another.
Pointers to file-system data on disk offer interprogram identity, but they
may change if the way data is stored in the file system is changed.

e Persistent. Identity persists not only among program executions, but also
among structural reorganizations of the data. It is the persistent form of
identity that is required for object-oriented systems.

In persistent extensions of languages such as C++, object identifiers for per-
sistent objects are implemented as “persistent pointers.” A persistent pointer is
a type of pointer that, unlike in-memory pointers, remains valid even after the
end of a program execution, and across some forms of data reorganization. A
programmer may use a persistent pointer in the same ways that she may use an
in-memory pointer in a programming language. Conceptually, we may think of
a persistent pointer as a pointer to an object in the database.

22.8.3 Storage and Access of Persistent Objects

What does it mean to store an object in a database? Clearly, the data part of
an object has to be stored individually for each object. Logically, the code that

968

Chapter 22 Object-Based Databases

implements methods of a class should be stored in the database as part of the
database schema, along with the type definitions of the classes. However, many
implementations simply store the code in files outside the database, to avoid
having to integrate system software such as compilers with the database system.

There are several ways to find objects in the database. One way is to give
names to objects, just as we give names to files. This approach works for a rela-
tively small number of objects, but does not scale to millions of objects. A second
way is to expose object identifiers or persistent pointers to the objects, which can
be stored externally. Unlike names, these pointers do not have to be mnemonic,
and they can even be physical pointers into a database.

A third way is to store collections of objects, and to allow programs to iterate
over the collections to find required objects. Collections of objects can themselves
be modeled as objects of a collection type. Collection types include sets, multisets
(that is, sets with possibly many occurrences of a value), lists, and so on. A special
case of a collection is a class extent, which is the collection of all objects belonging
to the class. If a class extent is present for a class, then, whenever an object of
the class is created, that object is inserted in the class extent automatically, and,
whenever an object is deleted, that object is removed from the class extent. Class
extents allow classes to be treated like relations in that we can examine all objects
in the class, just as we can examine all tuples in a relation.

Most object-oriented database systems support all three ways of accessing
persistent objects. They give identifiers to all objects. They usually give names
only to class extents and other collection objects, and perhaps to other selected
objects, but not to most objects. They usually maintain class extents for all classes
that can have persistent objects, but, in many of the implementations, the class
extents contain only persistent objects of the class.

22.8.4 Persistent C++ Systems

There are several object-oriented databases based on persistent extensions to C++
(see the bibliographical notes). There are differences among them in terms of
the system architecture, yet they have many common features in terms of the
programming language.

Several of the object-oriented features of the C++ language provide support
for persistence without changing the language itself. For example, we can de-
clare a class called Persistent_Object with attributes and methods to support
persistence; any other class that should be persistent can be made a subclass of
this class, and thereby inherit the support for persistence. The C++ language (like
some other modern programming languages) also lets us redefine standard func-
tion names and operators—such as +, —, the pointer dereference operator —>,
and so on—according to the types of the operands on which they are applied.
This ability is called overloading; it is used to redefine operators to behave in the
required manner when they are operating on persistent objects.

Providing persistence support via class libraries has the benefit of making only
minimal changes to C++ necessary; moreover, it is relatively easy to implement.
However, it has the drawback that the programmer has to spend much more

22.8 Persistent Programming Languages 969

time to write a program that handles persistent objects, and it is not easy for
the programmer to specify integrity constraints on the schema or to provide
support for declarative querying. Some persistent C++ implementations support
extensions to the C++ syntax to make these tasks easier.

The following aspects need to be addressed when adding persistence support
to C++ (and other languages):

e Persistent pointers: A new data type has to be defined to represent persistent
pointers. For example, the ODMG C++ standard defines a template class
d_Ref< T > to represent persistent pointers to a class T. The dereference
operator on this class is redefined to fetch the object from disk (if not already
present in memory), and it returns an in-memory pointer to the buffer where
the object has been fetched. Thus if p is a persistent pointer to a class T, one
can use standard syntax such as p—>A or p—>f£(v) to access attribute A of
class T or invoke method f of class T.

The ObjectStore database system uses a different approach to persistent
pointers. It uses normal pointer types to store persistent pointers. This poses
two problems: (1) in-memory pointer sizes may be only 4 bytes, which is
too small to use with databases larger than 4 gigabytes, and (2) when an
object is moved on disk, in-memory pointers to its old physical location are
meaningless. ObjectStore uses a technique called “hardware swizzling” to
address both problems; it prefetches objects from the database into memory,
and replaces persistent pointers with in-memory pointers, and when data are
stored back on disk, in-memory pointers are replaced by persistent pointers.
When on disk, the value stored in the in-memory pointer field is not the actual
persistent pointer; instead, the value is looked up in a table that contains the
full persistent pointer value.

¢ Creation of persistent objects: The C++ new operator is used to create per-
sistent objects by defining an “overloaded” version of the operator that takes
extra arguments specifying that it should be created in the database. Thus in-
stead of new T(), one would callnew (db) T() to create a persistent object,
where db identifies the database.

¢ Class extents: Class extents are created and maintained automatically for
each class. The ODMG C++ standard requires the name of the class to be
passed as an additional parameter to the new operation. This also allows
multiple extents to be maintained for a class, by passing different names.

¢ Relationships: Relationships between classes are often represented by stor-
ing pointers from each object to the objects to which it is related. Objects
related to multiple objects of a given class store a set of pointers. Thus if a
pair of objects is in a relationship, each should store a pointer to the other.
Persistent C++ systems provide a way to specify such integrity constraints
and to enforce them by automatically creating and deleting pointers: For ex-
ample, if a pointer is created from an object a to an object b, a pointer to a is
added automatically to object b.

970

Chapter 22 Object-Based Databases

¢ Iterator interface: Since programs need to iterate over class members, an
interface is required to iterate over members of a class extent. The iterator
interface also allows selections to be specified, so that only objects satisfying
the selection predicate need to be fetched.

¢ Transactions: Persistent C++ systems provide support for starting a transac-
tion, and for committing it or rolling it back.

e Updates: One of the goals of providing persistence support in a programming
language is to allow transparent persistence. That is, a function that operates
on an object should not need to know that the object is persistent; the same
functions can thus be used on objects regardless of whether they are persistent
or not.

However, one resultant problem is that it is difficult to detect when
an object has been updated. Some persistent extensions to C++ require the
programmer to specify explicitly that an object has been modified by calling a
function mark modified (). In addition to increasing programmer effort, this
approachincreases the chance that programming errors can resultin a corrupt
database. If a programmer omits a call tomark_modified (), itis possible that
one update made by a transaction may never be propagated to the database,
while another update made by the same transaction is propagated, violating
atomicity of transactions.

Other systems, such as ObjectStore, use memory-protection support
provided by the operating system/hardware to detect writes to a block of
memory and mark the block as a dirty block that should be written later to
disk.

® Query language: Iterators provide support for simple selection queries. To
support more complex queries, persistent C++ systems define a query lan-

guage.

A large number of object-oriented database systems based on C++ were de-
veloped in the late 1980s and early 1990s. However, the market for such databases
turned out to be much smaller than anticipated, since most application require-
ments are more than met by using SQL through interfaces such as ODBC or JDBC.
As a result, most of the object-oriented database systems developed in that pe-
riod do not exist any longer. In the 1990s, the Object Data Management Group
(ODMG) defined standards for adding persistence to C++ and Java. However, the
group wound up its activities around 2002. ObjectStore and Versant are among
the original object-oriented database systems that are still in existence.

Although object-oriented database systems did not find the commercial suc-
cess that they had hoped for, the motivation for adding persistence to program-
ming language remains. There are several applications with high performance
requirements that run on object-oriented database systems; using SQL would
impose too high a performance overhead for many such systems. With object-
relational database systems now providing support for complex data types, in-
cluding references, it is easier to store programming language objects in an SQL

22.8 Persistent Programming Languages 971

database. A new generation of object-oriented database systems using object-
relational databases as a backend may yet emerge.

22.8.5 Persistent Java Systems

The Javalanguage has seen an enormous growth in usage in recent years. Demand
for support for persistence of data in Java programs has grown correspondingly.
Initial attempts at creating a standard for persistence in Java were led by the
ODMG consortium; the consortium wound up its efforts later, but transferred its
design to the Java Database Objects (JDO) effort, which is coordinated by Sun
Microsystems.

The JDO model for object persistence in Java programs differs from the model
for persistence support in C++ programs. Among its features are:

e Persistence by reachability: Objects are not explicitly created in a database.
Explicitly registering an object as persistent (using the makePersistent ()
method of the PersistenceManager class) makes the object persistent. In
addition, any object reachable from a persistent object becomes persistent.

¢ Byte code enhancement: Instead of declaring a class to be persistent in the
Java code, classes whose objects may be made persistent are specified in
a configuration file (with suffix . jdo). An implementation-specific enhancer
program is executed that reads the configuration file and carries out two
tasks. First, it may create structures in a database to store objects of the class.
Second, it modifies the byte code (generated by compiling the Java program)
to handle tasks related to persistence. Below are some examples of such
modifications:

o Any code that accesses an object could be changed to check first if the
object is in memory, and if not, take steps to bring it into memory.

o Any code that modifies an object is modified to record additionally that
the object has been modified, and perhaps to save a pre-updated value

used in case the update needs to be undone (that is, if the transaction is
rolled back).

Other modifications to the byte code may also be carried out. Such byte code
modification is possible since the byte code is standard across all platforms,
and includes much more information than compiled object code.

¢ Database mapping: JDO does not define how data are stored in the back-end
database. For example, a common scenario is to store objects in a relational
database. The enhancer program may create an appropriate schema in the
database to store class objects. How exactly it does this is implementation
dependent and not defined by JDO. Some attributes could be mapped to
relational attributes, while others may be stored in a serialized form, treated
as a binary object by the database. JDO implementations may allow existing
relational data to be viewed as objects by defining an appropriate mapping.

972

Chapter 22 Object-Based Databases

¢ Class extents: Class extents are created and maintained automatically for

each class declared to be persistent. All objects made persistent are added
automatically to the class extent corresponding to their class. JDO programs
may access a class extent, and iterate over selected members. The Iterator
interface provided by Java can be used to create iterators on class extents, and
to step through the members of the class extent. JDO also allows selections
to be specified when an iterator is created on a class extent, and only objects
satisfying the selection are fetched.

Single reference type: There is no difference in type between a reference to
a transient object and a reference to a persistent object.

One approach to achieving such a unification of pointer types would
be to load the entire database into memory, replacing all persistent pointers
with in-memory pointers. After updates were done, the process would be
reversed, storing updated objects back on disk. Such an approach would be
very inefficient for large databases.

We now describe an alternative approach that allows persistent objects
to be fetched automatically into memory when required, while allowing all
references contained in in-memory objects to be in-memory references. When
an object A is fetched, a hollow object is created for each object B; that it
references, and the in-memory copy of Ahas references to the corresponding
hollow object for each B;. Of course the system has to ensure that if an object
B; was fetched already, the reference points to the already fetched object
instead of creating a new hollow object. Similarly, if an object B; has not been
fetched, but is referenced by another object fetched earlier, it would already
have a hollow object created for it; the reference to the existing hollow object
is reused, instead of creating a new hollow object.

Thus, for every object O; that has been fetched, every reference from O;
is either to an already fetched object or to a hollow object. The hollow objects
form a fringe surrounding fetched objects.

Whenever the program actually accesses a hollow object O, the enhanced
byte code detects this and fetches the object from the database. When this
object is fetched, the same process of creating hollow objects is carried out
for all objects referenced by O. After this the access to the object is allowed to
proceed.”

An in-memory index structure mapping persistent pointers to in-memory
references is required to implement this scheme. In writing objects back to
disk, this index would be used to replace in-memory references with persis-
tent pointers in the copy written to disk.

5The technique using hollow objects described above is closely related to the hardware swizzling technique (mentioned
earlier in Section 22.8.4). Hardware swizzling is used by some persistent C++ implementations to provide a single pointer
type for persistent and in-memory pointers. Hardware swizzling uses virtual-memory protection techniques provided
by the operating system to detect accesses to pages, and fetches the pages from the database when required. In contrast,
the Java version modifies byte code to check for hollow objects, instead of using memory protection, and fetches objects
when required, instead of fetching whole pages from the database.

22.9

22.10

22.10 Object-Oriented versus Object-Relational 973

Object-Relational Mapping

So far we have seen two approaches to integrating object-oriented data models
and programming languages with database systems. Object-relational mapping
systems provide a third approach to integration of object-oriented programming
languages and databases.

Object-relational mapping systems are built on top of a traditional rela-
tional database, and allow a programmer to define a mapping between tuples
in database relations and objects in the programming language. Unlike in per-
sistent programming languages, objects are transient, and there is no permanent
object identity.

An object, or a set of objects, can be retrieved based on a selection condition
on its attributes; relevant data are retrieved from the underlying database based
on the selection conditions, and one or more objects are created from the retrieved
data, based on the prespecified mapping between objects and relations. The pro-
gram can optionally update such objects, create new objects, or specify that an
object is to be deleted, and then issue a save command; the mapping from objects
to relations is then used to correspondingly update, insert or delete tuples in the
database.

Object-relational mapping systems in general, and in particular the widely
used Hibernate system which provides an object-relational mapping to Java, are
described in more detail in Section 9.4.2.

The primary goal of object-relational mapping systems is to ease the job of
programmers who build applications, by providing them an object-model, while
retaining the benefits of using a robust relational database underneath. As an
added benefit, when operating on objects cached in memory, object-relational
systems can provide significant performance gains over direct access to the un-
derlying database.

Object-relational mapping systems also provide query languages that allow
programmers to write queries directly on the object model; such queries are
translated into SQL queries on the underlying relational database, and result
objects created from the SQL query results.

On the negative side, object-relational mapping systems can suffer from sig-
nificant overheads for bulk database updates, and may provide only limited
querying capabilities. However, it is possible to directly update the database,
bypassing the object-relational mapping system, and to write complex queries
directly in SQL. The benefits or object-relational models exceed the drawbacks for
many applications, and object-relational mapping systems have seen widespread
adoption in recent years.

Object-Oriented versus Object-Relational

We have now studied object-relational databases, which are object-oriented data-
bases built on top of the relation model, as well as object-oriented databases,
which are built around persistent programming languages, and object-relational

974

Chapter 22 Object-Based Databases

mapping systems, which build an object layer on top of a traditional relational
database.

Each of these approaches targets a different market. The declarative nature
and limited power (compared to a programming language) of the SQL language
provides good protection of data from programming errors, and makes high-level
optimizations, such as reducing I/0O, relatively easy. (We covered optimization
of relational expressions in Chapter 13.) Object-relational systems aim at making
data modeling and querying easier by using complex data types. Typical ap-
plications include storage and querying of complex data, including multimedia
data.

A declarative language such as SQL, however, imposes a significant perfor-
mance penalty for certain kinds of applications that run primarily in main mem-
ory, and that perform a large number of accesses to the database. Persistent
programming languages target such applications that have high performance re-
quirements. They provide low-overhead access to persistent data and eliminate
the need for data translation if the data are to be manipulated by a programming
language. However, they are more susceptible to data corruption by program-
ming errors, and they usually do not have a powerful querying capability. Typical
applications include CAD databases.

Object-relational mapping systems allow programmers to build applications
using an object model, while using a traditional database system to store the data.
Thus, they combine the robustness of widely used relational database systems,
with the power of object models for writing applications. However, they suffer
from overheads of data conversion between the object model and the relational
model used to store data.

We can summarize the strengths of the various kinds of database systems in
this way:

® Relational systems: Simple data types, powerful query languages, high pro-
tection.

¢ Persistent programming language—based OODBs: Complex data types, in-
tegration with programming language, high performance.

¢ Object-relational systems: Complex data types, powerful query languages,
high protection.

¢ Object-relational mapping systems: Complex data types integrated with
programming languages, designed as a layer on top of a relational database
system.

These descriptions hold in general, but keep in mind that some database systems
blur the boundaries. For example, object-oriented database systems built around
a persistent programming language can be implemented on top of a relational or
object-relational database system. Such systems may provide lower performance
than object-oriented database systems built directly on a storage system, but
provide some of the stronger protection guarantees of relational systems.

Review Terms 975

22.11 Summary

The object-relational data model extends the relational data model by pro-
viding a richer type system including collection types and object orientation.

Collection types include nested relations, sets, multisets, and arrays, and the
object-relational model permits attributes of a table to be collections.

Object orientation provides inheritance with subtypes and subtables, as well
as object (tuple) references.

The SQL standard includes extensions of the SQL data-definition and query
language to deal with new data types and with object orientation. These
include support for collection-valued attributes, inheritance, and tuple ref-
erences. Such extensions attempt to preserve the relational foundations—
in particular, the declarative access to data—while extending the modeling
power.

Object-relational database systems (that is, database systems based on the
object-relation model) provide a convenient migration path for users of rela-
tional databases who wish to use object-oriented features.

Persistent extensions to C++ and Java integrate persistence seamlessly and
orthogonally with existing programming language constructs and so are easy
to use.

The ODMG standard defines classes and other constructs for creating and ac-
cessing persistent objects from C++, while the JDO standard provides equiv-
alent functionality for Java.

Object-relational mapping systems provide an object view of data that is
stored in a relational database. Objects are transient, and there is no notion
of persistent object identity. Objects are created on-demand from relational
data, and updates to objects are implemented by updating the relational
data. Object-relational mapping systems have been widely adopted, unlike
the more limited adoption of persistent programming languages.

We discussed differences between persistent programming languages and
object-relational systems, and we mention criteria for choosing between them.

Review Terms

Nested relations ® Sets

Nested relational model ® Arrays
Complex types e Multisets
Collection types e Structured types
Large object types ¢ Methods

