
13
C H A P T E R

Object-Oriented Databases

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: class, object, state, behavior, class
diagram, object diagram, operation, encapsulation, constructor operation, query
operation, update operation, class-scope operation, association, association role,
multiplicity, association class, abstract class, concrete class, class-scope attribute,
abstract operation, method, polymorphism, overriding, multiple classification,
aggregation, and composition.

� Describe the activities in the different phases of the object-oriented development
life cycle.

� State the advantages of object-oriented modeling vis-à-vis structured approaches.
� Compare the object-oriented model with the E-R and EER models.
� Model a real-world domain by using a Unified Modeling Language (UML) class

diagram
� Provide a snapshot of the detailed state of a system at a point in time, using a UML

object diagram.
� Recognize when to use generalization, aggregation, and composition relationships.
� Specify different types of business rules in a class diagram.

INTRODUCTION

In Chapters 2 and 3, you learned about data modeling using the E-R and
EER models. In those chapters, you discovered how to model the data needs of an
organization using entities, attributes, and a wide variety of relationships. In this
chapter, you will be introduced to the object-oriented model, which is becoming
increasingly popular because of its ability to thoroughly represent complex
relationships, as well as to represent data and system behavior in a consistent,
integrated notation. Fortunately, most of the concepts you learned in those
chapters correspond to concepts in object-oriented modeling, but the object-
oriented model has even more expressive power than the EER model.

As you learned in Chapters 2 and 3, a data model is an abstraction of the real
world. It allows you to deal with the complexity inherent in a real-world problem by
focusing on the essential and interesting features of the data an organization
needs. An object-oriented model is built around objects, just as the E-R model is
built around entities. However, an object encapsulates both data and behavior,
implying that we can use the object-oriented approach not only for data modeling,

13-1

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-1

13-2 Part V • Advanced Database Topics

- system architecture
- subsystems

Implementation

Object Design

System Design

- data structures
- algorithms
- controls

- programming
- database access

Analysis

- application
- what

FIGURE 13-1 Phases of the
object-oriented systems
development cycle

but also for modeling system behavior. To thoroughly model any real-world system,
you need to model both the data and the processes and behavior that act on the
data (recall the discussion in Chapter 1 about information planning objects). By
allowing you to capture them together within a common representation, and by
offering benefits such as inheritance and code reuse, the object-oriented modeling
approach provides a powerful environment for developing complex systems.

The object-oriented systems development cycle, depicted in Figure 13-1,
consists of progressively and iteratively developing object representation through
three phases—analysis, design, and implementation—similar to the heart of the
systems development life cycle explained in Chapter 1. In an iterative development
model, the focus shifts from more abstract aspects of the development process
(Analysis) to the more concrete ones over the lifetime of a project. Thus, in the
early stages of development, the model you develop is abstract, focusing on
external qualities of the system. As the model evolves, it becomes more and more
detailed, the focus shifting to how the system will be built and how it should
function. The emphasis in modeling should be on analysis and design, focusing on
front-end conceptual issues rather than back-end implementation issues that
unnecessarily restrict design choices (Larman, 2004).

In the analysis phase, you develop a model of a real-world application, showing
its important properties. The model abstracts concepts from the application domain
and describes what the intended system must do, rather than how it will be done. It
specifies the functional behavior of the system independent of concerns relating to
the environment in which it is to be finally implemented. You need to devote
sufficient time to clearly understand the requirements of the problem, while
remembering that in the iterative development models, analysis activities will
be revisited multiple times during a development project so that you can apply the
lessons learned from the early stage design and implementation activities to
analysis. Please note that during the analysis activities, your focus should be on
analyzing and modeling the real world domain of interest, not the internal
characteristics of the software system.

In the object-oriented design phase, you define how the application-oriented
analysis model will be realized in the implementation environment. Therefore, your
focus will move to modeling the software system, which will be very strongly
informed by the models that you created during the analysis activities. Jacobson et al.
(1992) cite three reasons for using object-oriented design:

1. The analysis model is not formal enough to be implemented directly in a pro-
gramming language. Moving seamlessly into the source code requires refin-
ing the objects by making decisions about what operations an object will
provide, what the communication between objects should look like, what
messages are to be passed, and so forth.

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-2

Chapter 13 • Object-Oriented Databases 13-3

2. The system must be adapted to the environment in which the system will
actually be implemented. To accomplish that, the analysis model has to be
transformed into a design model, considering different factors such as per-
formance requirements, real-time requirements and concurrency, the target
hardware and systems software, the DBMS and programming language to be
adopted, and so forth.

3. The analysis results can be validated using object-oriented design. At this
stage, you can verify whether the results from the analysis are appropriate for
building the system and make any necessary changes to the analysis model
during the next iteration of the development cycle.

To develop the design model, you must identify and investigate the consequences
that the implementation environment will have on the design. All strategic design
decisions, such as how the DBMS is to be incorporated, how process communications
and error handling are to be achieved, what component libraries are to be reused,
are made. Next, you incorporate those decisions into a first-cut design model that
adapts to the implementation environment. Finally, you formalize the design model
to describe how the objects interact with one another for each conceivable scenario.

Within each iteration, the design activities are followed by implementation
activities (i.e., implementing the design using a programming language and/or a
database management system). If the design was done well, translating it into
program code is a relatively straightforward process, given that the design model
already incorporates the nuances of the programming language and the DBMS.

Coad and Yourdon (1991) identify several motivations and benefits of object-
oriented modeling:

• The ability to tackle more challenging problem domains
• Improved communication between the users, analysts, designers, and programmers
• Increased consistency among analysis, design, and programming activities
• Explicit representation of commonality among system components
• Robustness of systems
• Reusability of analysis, design, and programming results
• Increased consistency among all the models developed during object-oriented

analysis, design, and programming

The last point needs further elaboration. In other modeling approaches, such as
structured analysis and design (described in Chapter 1), the models that are
developed lack a common underlying representation and, therefore, are very weakly
connected. For example, there is no well-defined underlying conceptual structure
linking data flow diagrams used for analysis and structure charts used for design in
traditional structured analysis and design. In contrast to the abrupt and disjoint
transitions that the earlier approaches suffer from, the object-oriented approach
provides a continuum of representation from analysis to design to implementation,
engendering a seamless transition from one model to another. For instance, the
object-oriented analysis model is typically used almost directly as a foundation for the
object-oriented design model instead of developing a whole new representation.

In this chapter, we present object-oriented data modeling as a high-level
conceptual activity. As you will learn in Chapter 14, a good conceptual model is
invaluable for designing and implementing an object-oriented application that uses
a relational database for providing persistence for the objects.

UNIFIED MODELING LANGUAGE

Unified Modeling Language (UML) is a set of graphical notations backed by a common
metamodel that is widely used both for business modeling and for specifying, designing,
and implementing software systems artifacts. It culminated from the efforts of three leading
experts, Grady Booch, Ivar Jacobson, and James Rumbaugh, who defined this object-
oriented modeling language that has become an industry standard. UML builds upon and
unifies the semantics and notations of the Booch (Booch, 1994), OOSE (Jacobson et al., 1992),

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-3

13-4 Part V • Advanced Database Topics

and OMT (Rumbaugh et al., 1991) methods, as well as those of other leading methods.
UML has recently been updated to UML 2.2, maintained by the Object Management Group.
UML notation is useful for graphically depicting an object-oriented analysis or design
model. It not only allows you to specify the requirements of a system and capture the
design decisions, it also promotes communication among key persons involved in the
development effort. A developer can use an analysis or design model expressed in the UML
notation as a means to communicate with domain experts, users, and other stakeholders.

For representing a complex system effectively, the model you develop must consist
of a set of independent views or perspectives. UML allows you to represent multiple
perspectives of a system by providing different types of graphical diagrams, such as the
use-case diagram, class diagram, state diagram, sequence diagram, component diagram,
and deployment diagram. If these diagrams are used correctly together in the context of
a well-defined modeling process, UML allows you to analyze, design, and implement a
system based on one consistent conceptual model.

Because this text is about databases, we will describe only the class diagram, which
is one of the static diagrams in UML, addressing primarily structural characteristics
of the domain of interest. The class diagram allows us also to capture the responsibili-
ties that classes can perform, without any specifics of the behaviors. We will not
describe the other diagram types because they provide perspectives that are not directly
related to a database system. Keep in mind that a database system is usually part of an
overall system, whose underlying model should encompass all the different perspec-
tives. For a discussion of other UML diagrams, see Hoffer et al. (2010) and George et al.
(2007). It is important to note that the UML class diagrams can be used for multiple
purposes at various stages of the life cycle model.

OBJECT-ORIENTED DATA MODELING

In this section, we introduce you to object-oriented data modeling. We describe the
main concepts and techniques involved in object-oriented modeling, including objects
and classes; encapsulation of attributes and operations; association, generalization, and
aggregation relationships; cardinalities and other types of constraints; polymorphism;
and inheritance. We show how you can develop class diagrams, using the UML nota-
tion, to provide a conceptual view of the system being modeled.

Representing Objects and Classes

In the object-oriented approach, we model the world in objects. Before applying the
approach to a real-world problem, therefore, we need to understand what an object
really is. A class is an entity type that has a well-defined role in the application domain
about which the organization wishes to maintain state, behavior, and identity. A class is
a concept, an abstraction, or a thing that makes sense in an application context (Blaha
and Rumbaugh, 2005). A class could represent a tangible or visible entity type (e.g., a
person, place, or thing); it could be a concept or an event (e.g., Department, Performance,
Marriage, Registration, etc.); or it could be an artifact of the design process (e.g., User
Interface, Controller, Scheduler, etc.). An object is an instance of a class (e.g., a particular
person, place, or thing) that encapsulates the data and behavior we need to maintain
about that object. A class of objects shares a common set of attributes and behaviors.

You might be wondering how classes and objects are different from entity types
and entity instances in the E-R and EER models you studied in Chapters 2 and 3.
Clearly, entity types in the E-R model can be represented as classes and entity instances
as objects in the object model. But, in addition to storing a state (information), an object
also exhibits behavior, through operations that can examine or affect its state.

The state of an object encompasses its properties (attributes and relationships) and
the values those properties have, and its behavior represents how an object acts
and reacts (Booch, 1994). Thus, an object’s state is determined by its attribute values and
links to other objects. An object’s behavior depends on its state and the operation being
performed. An operation is simply an action that one object performs in order to give a
response to a request. You can think of an operation as a service provided by an object
(supplier) to its clients. A client sends a message to a supplier, which delivers the
desired service by executing the corresponding operation.

Class
An entity type that has a well-
defined role in the application
domain about which the
organization wishes to maintain
state, behavior, and identity.

Object
An instance of a class that
encapsulates data and behavior.

State
An object’s properties (attributes
and relationships) and the values
those properties have.

Behavior
The way in which an object
acts and reacts.

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-4

name = Mary Jones
dateOfBirth = 4/15/88
year = junior

Mary Jones: Student

crseCode = MIS385
crseTitle = Database Mgmt
creditHrs = 3

:Course

. . .

Chapter 13 • Object-Oriented Databases 13-5

Consider an example of the Student class and a particular object in this class, Mary
Jones. The state of this object is characterized by its attributes, say, name, date of birth, year,
address, and phone, and the values these attributes currently have. For example, name is
“Mary Jones,” year is “junior,” and so on. The object’s behavior is expressed through
operations such as calcGpa, which is used to calculate a student’s current grade point aver-
age. The Mary Jones object, therefore, packages its state and its behavior together.

Every object has a persistent identity; that is, no two objects are the same. For
example, if there are two Student instances with the same value of an identifier attribute,
they are still two different objects. Even if those two instances have identical values for
all the identifying attributes of the object, the objects maintain their separate identities.
At the same time, an object maintains its own identity over its life. For example, if Mary
Jones gets married and, thus, the values of the attributes name, address, and phone
change for her, she will still be represented by the same object.

You can depict the classes graphically in a class diagram as in Figure 13-2a. A class
diagram shows the static structure of an object-oriented model: the classes, their internal
structure, and the relationships in which they participate. In UML, a class is represented
by a rectangle with three compartments separated by horizontal lines. The class name
appears in the top compartment, the list of attributes in the middle compartment, and
the list of operations in the bottom compartment of a box. The figure shows two classes,
Student and Course, along with their attributes and operations.

The Student class is a group of Student objects that share a common structure and a
common behavior. All students have in common the properties of name, dateOfBirth, year,
address, and phone. They also exhibit common behavior by sharing the calcAge, calcGpa,
and registerFor(course) operations. A class, therefore, provides a template or schema for its
instances. Each object knows to which class it belongs; for example, the Mary Jones object
knows that it belongs to the Student class. Objects belonging to the same class may also par-
ticipate in similar relationships with other objects; for example, all students register for
courses and, therefore, the Student class can participate in a relationship called Registers For
with another class called Course (see the later section on association).

An object diagram, also known as an instance diagram, is a graph of instances that
are compatible with a given class diagram. In Figure 13-2b, we have shown an object
diagram with two instances, one for each of the two classes that appear in Figure 13-2a.

Class diagram
A diagram that shows the static
structure of an object-oriented
model: the object classes, their
internal structure, and the
relationships in which they
participate.

crseCode
crseTitle
creditHrs

enrollment()

CourseStudent

name
dateOfBirth
year
address
phone

calcAge()
calcGpa()
registerFor(course)

Class name

List of
attributes

List of
operations

FIGURE 13-2 UML class and
object diagrams
(a) Class diagram showing
two classes

(b) Object diagram with
two instances

Object diagram
A graph of objects that are
compatible with a given
class diagram.

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-5

13-6 Part V • Advanced Database Topics

A static object diagram, such as the one shown in the figure, is an instance of a class
diagram, providing a snapshot of the detailed state of a system at a point in time.

In an object diagram, an object is represented as a rectangle with two compartments.
The names of the object and its class are underlined and shown in the top compartment
using the following syntax:

objectname : classname

The object’s attributes and their values are shown in the second compartment. For
example, we have an object called Mary Jones that belongs to the Student class. The values
of the name, dateOfBirth, and year attributes are also shown. Attributes whose values are
not of interest to you may be suppressed; for example, we have not shown the address and
phone attributes for Mary Jones. If none of the attributes are of interest, the entire second
compartment may be suppressed. The name of the object may also be omitted, in which case
the colon should be kept with the class name as we have done with the instance of Course. If
the name of the object is shown, the class name, together with the colon, may be suppressed.

The object model permits multivalued, composite, derived, and other types of
attributes. The typical notation is to preface the attribute name with a stereotype symbol
that indicates its property (e.g., <<Multivalued>> for a multivalued attribute). For com-
posite attributes, the composite is defined as a separate class and then any attribute with
that composite structure is defined as a data type of the composite class. For example,
just as we define the Student class, we could define a class called Address that is com-
posed of street, city, state, and zip attributes. Then, in Figure 13-2a, if the address attrib-
ute were such a composite attribute, we would replace the address attribute line in the
Student class with, for example,

stuAddress : Address

which indicates that the stuAddress attribute is of type Address. This is a powerful
feature of the object model, in which we can reuse previously defined structures.

An operation, such as calcGpa in Student (see Figure 13-2a), is a function or a
service that is provided by all the instances of a class. Typically, other objects can access
or manipulate the information stored in an object only through such operations.
The operations, therefore, provide an external interface to a class; the interface presents the
outside view of the class without showing its internal structure or how its operations are
implemented. This technique of hiding the internal implementation details of an object
from its external view is known as encapsulation, or information hiding. So although we
provide the abstraction of the behavior common to all instances of a class in its interface,
we encapsulate within the class its structure and the secrets of the desired behavior.

Types of Operations

Operations can be classified into four types, depending on the kind of service requested
by clients: (1) constructor, (2) query, (3) update, and (4) class-scope (UML Notation
Guide, 2003). A constructor operation creates a new instance of a class. For example, you
can have an operation called Student within Student that creates a new student and ini-
tializes its state. Such constructor operations are available to all classes and are therefore
not explicitly shown in the class diagram.

A query operation is an operation without any side effects; it accesses the state of
an object but does not alter the state (Fowler, 2003). For example, the Student class can
have an operation called getYear (not shown), which simply retrieves the year (fresh-
man, sophomore, junior, or senior) of the Student object specified in the query. Note
that there is no need to explicitly show a query such as getYear in the class diagram
because it retrieves the value of an independent base attribute. Consider, however, the
calcAge operation within Student. This is also a query operation because it does not
have any side effects. Note that the only argument for this query is the target Student
object. Such a query can be represented as a derived attribute (Blaha and Rumbaugh,
2005); for example, we can represent “age” as a derived attribute of Student. Because

Operation
A function or a service that is
provided by all the instances
of a class.

Encapsulation
The technique of hiding the
internal implementation details of
an object from its external view.

Constructor operation
An operation that creates a
new instance of a class.

Query operation
An operation that accesses the
state of an object but does not
alter the state.

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-6

Chapter 13 • Object-Oriented Databases 13-7

the target object is always an implicit argument of an operation, there is no need
to show it explicitly in the operation declaration. In standard object-oriented
programming terminology, the methods that are used to gain read access to a value of
an object’s internal attribute are called getter methods, and they belong to the category
of accessor methods.

An update operation alters the state of an object. For example, consider an operation
of Student called promoteStudent (not shown). The operation promotes a student to a new
year, say, from junior to senior, thereby changing the Student object’s state (value of the
attribute year). Another example of an update operation is registerFor(course), which,
when invoked, has the effect of establishing a connection from a Student object to a specific
Course object. Note that, in addition to having the target Student object as an implicit argu-
ment, the operation has an explicit argument called “course,” which specifies the course
for which the student wants to register. Explicit arguments are shown within parentheses.
Again, in standard object-oriented programming terminology, the methods that are used
to changes the value of an object’s internal attribute are called setter, or mutator, methods.

A class-scope operation is an operation that applies to a class rather than an object
instance. For example, avgGpa for the Student class (not shown with the other operations
for this class in Figure 13-2a) calculates the average grade point average across all students.
(The operation name is underlined to indicate that it is a scope operation.) In object-ori-
ented programming, class-scope operations are implemented with class methods.

Representing Associations

Parallel to the definition of a relationship for the E-R model, an association is a named rela-
tionship between or among instances of object classes. As in the E-R model, the degree of
an association relationship may be one (unary), two (binary), three (ternary), or higher
(n-ary). In Figure 13-3, we use examples from Figure 2-12 to illustrate how the object-
oriented model can be used to represent association relationships of different degrees. An
association is shown as a solid line between the participating classes. The end of an associ-
ation where it connects to a class is called an association role (Rumbaugh et al., 2004). Each
association has two or more roles. A role may be explicitly named with a label near the end
of an association (see the “manager” role in Figure 13-3a). The role name indicates the role
played by the class attached to the end near which the name appears. Use of role names is
optional. You can specify role names in place of, or in addition to, an association name.

Figure 13-3a shows two unary relationships, Is Married To and Manages. At one end
of the Manages relationship, we have named the role “manager,” implying that an
employee can play the role of a manager. We have not named the other roles, but we have
named the associations. When the role name does not appear, you may think of the role
name as being that of the class attached to that end (Fowler, 2003). For example, the role for
the right end of the Is Assigned relationship in Figure 13-3b could be called parking place.

Each role has a multiplicity, which indicates the number of objects that partici-
pate in a given relationship. In a class diagram, a multiplicity specification is shown as
a text string representing an interval (or intervals) of integers in the following format:

lower-bound..upper-bound

The interval is considered to be closed, which means that the range includes both the
lower and upper bounds. For example, a multiplicity of 2..5 denotes that a minimum
of two and a maximum of five objects can participate in a given relationship.
Multiplicities, therefore, are simply cardinality constraints (discussed in Chapter 2). In
addition to integer values, the upper bound of a multiplicity can be a star character (*),
which denotes an infinite upper bound. If a single integer value is specified, it means
that the range includes only that value.

The most common multiplicities, in practice, are 0..1, *, and 1. The 0..1 multiplicity
indicates a minimum of zero and a maximum of one (optional one), whereas *
(or equivalently, 0..*) represents the range from zero to infinity (optional many).
A single 1 stands for 1..1, implying that exactly one object participates in the relation-
ship (mandatory one).

Update operation
An operation that alters the
state of an object.

Class-scope operation
An operation that applies to a class
rather than to an object instance.

Association
A named relationship between
or among object classes.

Association role
The end of an association, where
it connects to a class.

Multiplicity
A specification that indicates
how many objects participate
in a given relationship.

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-7

13-8 Part V • Advanced Database Topics

The multiplicities for both roles in the Is Married To relationship are 0..1, indicating
that a person may be single or married to one person. The multiplicity for the manager
role in the Manages relationship is 0..1 and that for the other role is *, implying that an
employee may be managed by only one manager, but a manager may manage many
employees.

Figure 13-3b shows three binary relationships: Is Assigned (one-to-one), Contains
(one-to-many), and Registers For (many-to-many). A binary association is inherently
bidirectional, though in a class diagram, the association name can be read in only one
direction. For example, the Contains association is read from Product Line to Product.
(Note: As in this example, you may show the direction explicitly by using a solid trian-
gle next to the association name.) Implicit, however, is an inverse traversal of Contains,
say, Belongs To, which denotes that a product belongs to a particular product line. Both
directions of traversal refer to the same underlying association; the name simply
establishes a direction. The diagram for the Is Assigned relationship shows that an
employee is assigned a parking place or not assigned one at all (optional one). Reading
in the other direction, we say that a parking place has either been allocated for a single
employee or not allocated at all (optional one again). Similarly, we say that a product

Person

0..1

Is Married To

0..1

ManagesEmployee

manager

*

0..1

FIGURE 13-3 Examples of
association relationships of
different degrees
(a) Unary relationships

One-to-one

One-to-many

Employee Parking
Place

Student Course

Product
Line

Product

Many-to-many

Is Assigned

Contains

Registers For

0..1

1

*

0..1

1..*

*

Part

WarehouseSupplies

*

* *Vendor

(b) Binary relationships

(c) Ternary relationship

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-8

Chapter 13 • Object-Oriented Databases 13-9

Teaches

advisor

instructor

advisees

Registers For Scheduled For

0..10

1

1,2

* * *

*

0..1
Faculty

Course
Offering

CourseStudent

FIGURE 13-4 Examples
of binary association
relationships
(a) University example

line contains many products, but at least one, whereas a given product belongs to
exactly one product line (mandatory one). The diagram for the third binary association
states that a student registers for multiple courses, but it is possible that he or she does
not register at all, and a course has zero, one, or multiple students enrolled in it
(optional many in both directions).

In Figure 13-3c, we show a ternary relationship called Supplies among Vendor,
Part, and Warehouse. As in the E-R diagram, we represent a ternary relationship using
a diamond symbol and place the name of the relationship there. The relationship is
many-to-many-to-many, and, as discussed in Chapter 2, it cannot be replaced by three
binary relationships without loss of information.

The class diagram in Figure 13-4a shows binary associations between Student and
Faculty, between Course and Course Offering, between Student and Course Offering,
and between Faculty and Course Offering. The diagram shows that a student may have
an advisor, whereas a faculty member may advise up to a maximum of 10 students.
Also, although a course may have multiple offerings, a given course offering is sched-
uled for exactly one course.

Figure 13-4a also shows that a faculty member plays the role of an instructor, as
well as the role of an advisor. Whereas the advisor role identifies the Faculty object
associated with a Student object, the advisee role identifies the set of Student objects
associated with a Faculty object. We could have named the association, say, Advises,
but, in this case, the role names are sufficiently meaningful to convey the semantics of
the relationship.

Figure 13-4b shows another class diagram for a customer order. The correspon-
ding object diagram is presented in Figure 13-5; it shows some of the instances of the
classes and the links among them. (Note: Just as an instance corresponds to a class, a
link corresponds to a relationship.) In this example, we see the orders placed by two
customers, Joe and Jane. Joe has placed two orders, Ord20 and Ord56. In Ord20, Joe has
ordered product P93 from the sports product line. In Ord56, he has ordered the same

(b) Customer order example

Places

Requests

1..*

*

*

1 1

1..*

Includes

Product

Product
Line

Customer

Order

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-9

13-10 Part V • Advanced Database Topics

sports product again, as well as product P50 from the hardware product line. Notice
that Jane has ordered the same hardware product as Joe has, in addition to two other
products (P9 and P10) from the cosmetics product line.

Representing Association Classes

When an association itself has attributes or operations of its own, or when it participates
in relationships with other classes, it is useful to model the association as an association
class (just as we used an “associative entity” in Chapter 2). For example, in Figure 13-6a,
the attributes term and grade really belong to the many-to-many association between
Student and Course. The grade of a student for a course cannot be determined unless
both the student and the course are known. Similarly, to find the term(s) in which the
student took the course, both student and course must be known. The checkEligibility

Association class
An association that has attributes
or operations of its own or that
participates in relationships with
other classes.

Requests

Includes

Places

Places

Places

Requests

Requests

Requests

Requests

Includes
Includes

Includes

Requests

Hardware:
Product Line

Cosmetics:
Product Line

P10: ProductP9: ProductP50: Product

Ord56: Order

Sports:
Product LineJoe: Customer

Ord45: Order

Jane: Customer

Ord20: Order P93: Product

FIGURE 13-5 Object diagram for the customer order example

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-10

Chapter 13 • Object-Oriented Databases 13-11

tutor

Issues
0..1

* *

*

*pupil
Tutors

Student
*

Course

acctID
password
serverSpace

Computer Account

checkEligibility()

term
grade

Registration

beginDate
numberOfHrs

FIGURE 13-6 Association
class and link object
(a) Class diagram showing
association classes

operation, which determines whether a student is eligible to register for a given course,
also belongs to the association, rather than to any of the two participating classes. We
have also captured the fact that, for some course registrations, a computer account is
issued to a student. For these reasons, we model Registration as an association class,
having its own set of features and an association with another class (Computer Account).
Similarly, for the unary Tutors association, beginDate and numberOfHrs (number of
hours tutored) really belong to the association, and, therefore, appear in a separate
association class.

You have the option of showing the name of an association class on the association
path, or the class symbol, or both. When an association has only attributes, but does not
have any operations or does not participate in other associations, the recommended
option is to show the name on the association path, but to omit it from the association
class symbol, to emphasize its “association nature” (UML Notation Guide, 2003). That is
how we have shown the Tutors association. On the other hand, we have displayed the
name of the Registration association—which has two attributes and one operation of its
own, as well as an association called Issues with Computer Account—within the class
rectangle to emphasize its “class nature.”

Figure 13-6b shows a part of the object diagram representing a student, Mary
Jones, and the courses she has registered for in the Fall 2010 term: MKT350 and MIS385.
Corresponding to an association class in a class diagram, link objects are present in an
object diagram. In this example, there are two link objects (shown as :Registration) for
the Registration association class, capturing the two course registrations. The diagram
also shows that for the MIS385 course, Mary Jones has been issued a computer account

term = Fall2010
grade = W

:Registration

acctID = jones385
password = 12345
serverSpace = 10

:Computer Account

term = Fall2010

:Registration

Mary Jones

MKT350

MIS385

(b) Object diagram showing
link objects

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-11

13-12 Part V • Advanced Database Topics

with an ID, a password, and a designated amount of space on the server. She still has
not received a grade for this course, but, for the MKT350 course, she received the grade
W because she withdrew from the course.

Figure 13-7 shows a ternary relationship among the Student, Software, and Course
classes. It captures the fact that students use various software tools for different courses.
For example, we could store the information that Mary Jones used Microsoft Access and
Oracle for the Database Management course, Microsoft Visio for the Object-Oriented
Modeling course, and Eclipse for the Application Development course. Now suppose
we want to estimate the number of hours per week Mary will spend using Oracle for the
Database Management course. This process really belongs to the ternary association, and
not to any of the individual classes. Hence, we have created an association class called
Log, within which we have declared an operation called estimateUsage. In addition
to this operation, we have specified three attributes that belong to the association:
beginDate, expiryDate, and hoursLogged.

Representing Derived Attributes, Derived
Associations, and Derived Roles

A derived attribute, association, or role is one that can be computed or derived from
other attributes, associations, and roles, respectively. (The concept of a derived attribute
was introduced in Chapter 2.) A derived element (attribute, association, or role) is
typically shown by placing either a slash (/) or a stereotype of <<Derived>> before the
name of the element. For instance, in Figure 13-8, age is a derived attribute of Student,
because it can be calculated from the date of birth and the current date. Because the calcu-
lation is a constraint on the class, the calculation is shown on this diagram within {} above
the Student class. Also, the Takes relationship between Student and Course is derived,
because it can be inferred from the Registers For and Scheduled For relationships. By the
same token, participants is a derived role because it can be derived from other roles.

Representing Generalization

You were introduced to generalization and specialization in Chapter 3. Using the enhanced
E-R model, you learned how to abstract the common attributes of two or more entities,
as well as the common relationships in which they participate, into a more general entity
supertype, while keeping the attributes and relationships that are not common in the
entities (subtypes) themselves. In the object-oriented model, we apply the same notion,

*
forum

*
user

*tool

Log

estimateUsage()

beginDate
expiryDate
hoursLogged

Software

CourseStudent

FIGURE 13-7 Ternary
relationship with an
association class

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-12

Chapter 13 • Object-Oriented Databases 13-13

but with one difference. In generalizing a set of object classes into a more general class,
we abstract not only the common attributes and relationships, but the common opera-
tions as well. The attributes and operations of a class are collectively known as the
features of the class. The classes that are generalized are called subclasses, and the class
they are generalized into is called a superclass, in perfect correspondence to subtypes and
supertypes for EER diagramming.

Consider the example shown in Figure 13-9a. (See Figure 3-8 for the corresponding
EER diagram.) There are three types of employees: hourly employees, salaried employ-
ees, and consultants. The features that are shared by all employees—empName,
empNumber, address, dateHired, and printLabel—are stored in the Employee super-
class, whereas the features that are peculiar to a particular employee type are stored in
the corresponding subclass (e.g., hourlyRate and computeWages of Hourly Employee).
A generalization path is shown as a solid line from the subclass to the superclass, with a
hollow triangle at the end of, and pointing toward, the superclass. You can show a group
of generalization paths for a given superclass as a tree with multiple branches connect-
ing the individual subclasses, and a shared segment with a hollow triangle pointing
toward the superclass. In Figure 13-9b (corresponding to Figure 3-3), for instance, we
have combined the generalization paths from Outpatient to Patient, and from Resident
Patient to Patient, into a shared segment with a triangle pointing toward Patient. We also
specify that this generalization is dynamic, meaning that an object may change subtypes.

You can indicate the basis of a generalization by specifying a discriminator next to
the path. A discriminator (corresponding to the subtype discriminator defined in
Chapter 3) shows which property of an object class is being abstracted by a particular
generalization relationship. You can discriminate on only one property at a time. For
example, in Figure 13-9a, we discriminate the Employee class on the basis of employ-
ment type (hourly, salaried, consultant). To disseminate a group of generalization rela-
tionships as in Figure 13-9b, we need to specify the discriminator only once. Although
we discriminate the Patient class into two subclasses, Outpatient and Resident Patient,
based on residency, we show the discriminator label only once next to the shared line.

An instance of a subclass is also an instance of its superclass. For example in
Figure 13-9b, an Outpatient instance is also a Patient instance. For that reason, a gener-
alization is also referred to as an is-a relationship. Also, a subclass inherits all the
features from its superclass. For example, in Figure 13-9a, in addition to its own special
features—hourlyRate and computeWages—the Hourly Employee subclass inherits
empName, empNumber, address, dateHired, and printLabel from Employee. An
instance of Hourly Employee will store values for the attributes of Employee and
Hourly Employee, and, when requested, will apply the printLabel and computeWages
operations.

Generalization and inheritance are transitive across any number of levels of a
superclass/subclass hierarchy. For instance, we could have a subclass of Consultant
called Computer Consultant that would inherit the features of Employee and
Consultant. An instance of Computer Consultant would be an instance of Consultant

registrants

*
*

*** 1

/participants

{age = currentDate – dateOfBirth}

/Takes

Scheduled ForRegisters For

Student

name
ssn
dateOfBirth
/age

Course

crseCode
crseTitle
creditHrs

term
section

Course
Offering

FIGURE 13-8 Derived
attribute, association,
and role

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-13

13-14 Part V • Advanced Database Topics

and, therefore, an instance of Employee, too. Employee is an ancestor of Computer
Consultant, while Computer Consultant is a descendant of Employee; these terms are
used to refer to generalization of classes across multiple levels.

Inheritance is one of the major advantages of using the object-oriented model. It
allows code reuse: There is no need for a developer to design or write code that has
already been written for a superclass. The developer only creates code that is unique to
the new, refined subclass of an existing class. In actual practice, object-oriented develop-
ers typically have access to large collections of class libraries in their respective domains.
They identify those classes that may be reused and refined to meet the demands of new
applications. Proponents of the object-oriented approach claim that code reuse results in
productivity gains of several orders of magnitude.

Notice that in Figure 13-9b, the Patient class is in italics, implying that it is an
abstract class. An abstract class is a class that has no direct instances but whose descen-
dants may have direct instances (Booch, 1994; Rumbaugh et al., 1991). (Note: You can
additionally write the word abstract within braces just below or right next to the class
name. This is especially useful when you generate a class diagram by hand.) A class that
can have direct instances (e.g., Outpatient or Resident Patient) is called a concrete class.
In this example, therefore, Outpatient and Resident Patient can have direct instances, but
Patient cannot have any direct instances of its own.

employee
type

employee
type

employee
type

{disjoint, incomplete}

computeFees()

contractNumber
billingRate

Consultant

contributePension()

annualSalary
stockOption

Salaried
Employee

computeWages()

hourlyRate

Hourly
Employee

Employee

empName
empNumber
address
dateHired

printLabel()

Treated By* 1

{complete, disjoint}
residency
<<dynamic>>

Assigned To0..1 1

Physician

physicianID

Patient
{abstract}

patientID
patientName
admitDate

Outpatient

checkbackDate

Resident Patient

dateDischarged

Bed

bedNumber

Abstract class
A class that has no direct instances
but whose descendants may have
direct instances.

Concrete class
A class that can have direct
instances.

FIGURE 13-9 Examples of
generalization, inheritance,
and constraints
(a) Employee superclass with
three subclasses

(b) Abstract Patient class with
two concrete subclasses

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-14

Chapter 13 • Object-Oriented Databases 13-15

The Patient abstract class participates in a relationship called Treated By with
Physician, implying that all patients—outpatients and resident patients alike—are
treated by physicians. In addition to this inherited relationship, the Resident Patient class
has its own special relationship called Assigned To with Bed, implying that only resident
patients may be assigned to beds. So, in addition to refining the attributes and operations
of a class, a subclass can also specialize the relationships in which it participates.

In Figures 13-9a and 13-9b, the words “complete,” “incomplete,” and “disjoint” have
been placed within braces, next to the generalization. They indicate semantic constraints
among the subclasses. (In the EER notation, complete corresponds to total specialization,
and incomplete corresponds to partial specialization.) In UML, a comma-separated list of
keywords is placed either near the shared triangle, as in Figure 13-9b, or near a dashed line
that crosses all of the generalization lines involved, as in Figure 13-9a (UML Superstructure
Specification, 2009). Any of the following UML keywords may be used: overlapping, dis-
joint, complete, and incomplete. These terms have the following meanings:

• Overlapping A descendant may be descended from more than one of the
subclasses. (This is the same as the overlapping rule in EER diagramming.)

• Disjoint A descendant may not be descended from more than one of the
subclasses. (This is the same as the disjoint rule in EER diagramming.)

• Complete All subclasses have been specified (whether or not shown). No addi-
tional subclasses are expected. (This is the same as the total specialization rule in
EER diagramming.)

• Incomplete Some subclasses have been specified, but the list is known to be
incomplete. There are additional subclasses that are not yet in the model. (This is
the same as the partial specialization rule in EER diagramming.)

Overlapping and disjoint are mutually exclusive, as are complete and incomplete.
Thus, the following combinations are possible: {complete, disjoint}, {incomplete,
disjoint}, {complete, overlapping}, {incomplete, overlapping} (UML Superstructure
Specification, 2009).

The generalizations in both Figures 13-9a and 13-9b are disjoint. An employee can
be an hourly employee, a salaried employee, or a consultant, but cannot, say, be both a
salaried employee and a consultant at the same time. Similarly, a patient can be an outpa-
tient or a resident patient, but not both. The generalization in Figure 13-9a is incomplete
(a departure from what was shown in Figure 3-8), specifying that an employee might not
belong to any of the three types. In such a case, an employee will be stored as an instance
of Employee, a concrete class. In contrast, the generalization in Figure 13-9b is complete,
implying that a patient has to be either an outpatient or a resident patient, and nothing
else. For that reason, Patient has been specified as an abstract class.

In Figure 13-10, we show an example of an overlapping constraint. The dia-
gram shows that research assistants and teaching assistants are graduate students.
The overlapping constraint indicates that it is possible for a graduate student to
serve as both a research assistant and a teaching assistant. For example, Sean
Bailey, a graduate student, has a research assistantship of 12 hours per week and a
teaching assistantship of 8 hours per week. Also notice that Graduate Student has
been specified as a concrete class so that graduate students without an assistant-
ship can be represented. The ellipsis (. . .) under the generalization line based on
the “level” discriminator does not represent an incomplete constraint. It simply
indicates that there are other subclasses in the model that have not been shown in
the diagram. For example, although Undergrad Student is in the model, we have
opted not to show it in the diagram since the focus is on assistantships. You may
also use an ellipsis when there are space limitations.

In Figure 13-11, we represent both graduate and undergraduate students in a
model developed for student billing. The calcTuition operation computes the tuition a
student has to pay; this sum depends on the tuition per credit hour (tuitionPerCred),
the courses taken, and the number of credit hours (creditHrs) for each of those courses.
The tuition per credit hour, in turn, depends on whether the student is a graduate or an
undergraduate student. In this example, that amount is $900 for all graduate students
and $750 for all undergraduate students. To denote that, we have underlined the

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-15

13-16 Part V • Advanced Database Topics

tuitionPerCred attribute in each of the two subclasses, along with its value. Such an
attribute is called a class-scope attribute because it specifies a value common to an
entire class rather than a specific value for an instance (Rumbaugh et al., 1991).

You can also specify an initial default value of an attribute by using an = sign after
the attribute name. This is the initial attribute value of a newly created object instance.
For example, in Figure 13-11, the creditHrs attribute has an initial value of 3, implying
that when a new instance of Course is created, the value of creditHrs is set to 3 by
default. You can write an explicit constructor operation to modify the initial default

Class-scope attribute
An attribute of a class that specifies
a value common to an entire class
rather than a specific value for an
instance.

Registers For Scheduled For*** 1Course
Offering

term
section

enrollment()

Course

crseCode
crseTitle
creditHrs = 3

enrollment()

Student

name
ssn
dateOfBirth
address
phone

registerFor(class)
calcTuition()

{abstract}

undergradMajor
greScore
gmatScore
tuitionPerCred = 900

calc-tuition()

Graduate
Student

satScore
actScore
tuitionPerCred = 750

calc-tuition()

Undergrad
Student

{ordered}

FIGURE 13-11 Polymorphism,
abstract operation, class-
scope attribute, and ordering

level level

…

assistantship type

{overlapping, incomplete}

assistantship type

Graduate
Student

Research
Assistant

Teaching
Assistant

Student

FIGURE 13-10 Example of an
overlapping constraint

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-16

Chapter 13 • Object-Oriented Databases 13-17

value. The value may also be modified later, through other operations. The difference
between an initial value specification and a class-scope attribute is that while the former
allows the possibility of different attribute values for the instances of a class, the latter
forces all the instances to share a common value.

In addition to specifying the multiplicity of an association role, you can also specify
other properties, for example, whether the objects playing the role are ordered. In the fig-
ure, we placed the keyword constraint “{ordered}” next to the Course Offering end of the
Scheduled For association to denote the fact that the offerings for a given course are
ordered into a list—say, according to term and section. It is obvious that it makes sense to
specify an ordering only when the multiplicity of the role is greater than one. The default
constraint on a role is “{unordered}”; that is, if you do not specify the keyword
“{ordered}” next to the role, it is assumed that the related elements form an unordered
set. For example, the course offerings are not related to a student who registers for those
offerings in any specific order.

The Graduate Student subclass specializes the abstract Student class by adding
four attributes—undergradMajor, greScore, gmatScore, and tuitionPerCred—and by
refining the inherited calcTuition operation. Notice that the operation is shown in italics
within the Student class, indicating that it is an abstract operation. An abstract operation
has a defined form or protocol, but its implementation is not defined (Rumbaugh et al.,
1991). In this example, the Student class defines the protocol of the calcTuition operation,
without providing the corresponding method (the actual implementation of the opera-
tion). The protocol includes the number and types of the arguments, the result type, and
the intended semantics of the operation. The two concrete subclasses, Graduate Student
and Undergrad Student, supply their own implementations of the calcTuition operation.
Note that because these classes are concrete, they cannot store abstract operations.

It is important to note that although the Graduate Student and Undergraduate
Student classes share the same calcTuition operation, they might implement the operation
in quite different ways. For example, the method that implements the operation for a
graduate student might add a special graduate fee for each course the student takes. The
fact that an operation with the same name may respond in different ways depending on
the class context is known as polymorphism, a key concept in object-oriented systems.
The enrollment operation in Figure 13-11 illustrates another example of polymorphism.
While the enrollment operation within Course Offering computes the enrollment for a
particular course offering or section, an operation with the same name within Course
computes the combined enrollment for all sections of a given course.

Interpreting Inheritance and Overriding

We have seen how a subclass can augment the features inherited from its ancestors. In
such cases, the subclass is said to use inheritance for extension. On the other hand, if a
subclass constrains some of the ancestor attributes or operations, it is said to use
inheritance for restriction (Booch, 1994; Rumbaugh et al., 1991). For example, a subclass
called Tax Exempt Company may suppress or block the inheritance of an operation
called compute-tax from its superclass, Company.

The implementation of an operation can also be overridden. Overriding is the
process of replacing a method inherited from a superclass by a more specific implementa-
tion of that method in a subclass. The reasons for overriding include extension, restriction,
and optimization (Rumbaugh et al., 1991). The name of the new operation remains the
same as the inherited one, but it has to be explicitly shown within the subclass to indicate
that the operation is overridden.

In overriding for extension, an operation inherited by a subclass from its super-
class is extended by adding some behavior (code). For example, a subclass of
Company called Foreign Company inherits an operation called compute-tax but
extends the inherited behavior by adding a foreign surcharge to compute the total
tax amount.

In overriding for restriction, the protocol of the new operation in the subclass is
restricted. For example, an operation called placeStudent(job) in Student may be restricted
in the International Student subclass by tightening the argument job (see Figure 13-12).
While students in general may be placed in all types of jobs during the summer,

Abstract operation
An operation whose form or
protocol is defined but whose
implementation is not defined.

Method
The implementation of an
operation.

Polymorphism
The ability of an operation
with the same name to respond
in different ways depending
on the class context.

Overriding
The process of replacing a method
inherited from a superclass by a
more specific implementation of
that method in a subclass.

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-17

13-18 Part V • Advanced Database Topics

international students may be limited to only on-campus jobs because of visa restrictions.
The new operation overrides the inherited operation by tightening the job argument,
restricting its values to only a small subset of all possible jobs. This example also illus-
trates the use of multiple discriminators. While the basis for one set of generalizations is a
student’s “level” (graduate or undergraduate), that for the other set is his or her “resi-
dency” status (U.S. or international).

In overriding for optimization, the new operation is implemented with improved
code by exploiting the restrictions imposed by a subclass. Consider, for example, a
subclass of Student called Dean’s List Student, which represents all those students who
are on the dean’s list. To qualify for the dean’s list, a student must have a grade point
average greater than or equal to 3.50. Suppose Student has an operation called
mailScholApps, which mails applications for merit- and means-tested scholarships to
students who have a GPA greater than or equal to 3.00, and whose family’s total gross
income is less than $30,000. The method for the operation in Student will have to check
the conditions, whereas the method for the same operation in the Dean’s List Student
subclass can improve upon the speed of execution by removing the first condition from
its code. Consider another operation called findMinGpa, which finds the minimum GPA
among the students. Suppose the Dean’s List Student class is sorted in ascending order
of the GPA, but the Student class is not. The method for findMinGpa in Student must
perform a sequential search through all the students. In contrast, the same operation in
Dean’s List Student can be implemented with a method that simply retrieves the GPA of
the first student in the list, thereby obviating the need for a time-consuming search.

Representing Multiple Inheritance

So far you have been exposed to single inheritance, where a class inherits from only one
superclass. But sometimes, as we saw in the example with research and teaching assis-
tants, an object may be an instance of more than one class. This is known as multiple
classification (Fowler, 2003; UML Notation Guide, 2003). For instance, Sean Bailey, who
has both types of assistantships, has two classifications: one as an instance of Research
Assistant, and the other as an instance of Teaching Assistant. Experts, however, discour-
age multiple classification, and the ordinary UML semantics and many object-oriented
languages do not support it.

To get around the problem, we can use multiple inheritance, which allows a class
to inherit features from more than one superclass. For example, in Figure 13-13, we have
created Research Teaching Assistant, which is a subclass of both Research Assistant and
Teaching Assistant. All students who have both research and teaching assistantships
may be stored under the new class. We may now represent Sean Bailey as an object
belonging to only the Research Teaching Assistant class, which inherits features from

level residency

gmatScore
undergradMajor
desiredMajor

reviewAppln()

Graduate
Student

name
address

reviewAppln()
placeStudent(job)

Student

satScore

reviewAppln()

Undergrad
Student

ssn

U.S. Student

toeflScore

englishProficiency()
placeStudent(job)

International
Student

FIGURE 13-12 Overriding
inheritance

Multiple classification
A situation in which an object
is an instance of more than
one class.

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-18

Chapter 13 • Object-Oriented Databases 13-19

both its parents, such as researchHrs and assignProject(proj) from Research Assistant
and teachingHrs and assignCourse(crse) from Teaching Assistant (and provides no
unique features of its own).

Representing Aggregation

An aggregation expresses a part-of relationship between a component object and an
aggregate object. It is a stronger form of association relationship (with the added
“part-of” semantics) and is represented with a hollow diamond at the aggregate end. For
example, Figure 13-14 shows a personal computer as an aggregate of CPU (up to four
for multiprocessors), hard disks, monitor, keyboard, and other objects (a typical
bill-of-materials structure). Note that aggregation involves a set of distinct object instances,
one of which contains or is composed of the others. For example, an object in the Personal
Computer class is related to (consists of) one to four CPU objects, one of its parts. As shown
in Figure 13-14, it is also possible for component objects to exist without being part of a

Graduate
Student

Research Teaching
Assistant

Research
Assistant

researchHrs

assignProject(proj)

Teaching
Assistant

teachingHrs

assignCourse(crse)

FIGURE 13-13 Multiple
inheritance

Aggregation
A part-of relationship between
a component object and an
aggregate object.

. . .CPU Hard Disk Monitor Keyboard

Personal
Computer

0..1

1..4 1 11..*

FIGURE 13-14 Example of
aggregation

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-19

13-20 Part V • Advanced Database Topics

whole (e.g., there can be a Monitor that is not part of any PC). Further, it is possible that the
Personal Computer class has operations that apply to its parts; for example, calculating the
extended warranty cost for the PC involved an analysis of its component parts. In contrast,
generalization relates object classes: an object (e.g., Mary Jones) is simultaneously an
instance of its class (e.g., Undergrad Student) and its superclass (e.g., Student). Only one
object (e.g., Mary Jones) is involved in a generalization relationship. This is why multiplic-
ities are indicated at the ends of aggregation lines, whereas there are no multiplicities for
generalization relationships.

Figure 13-15a shows an aggregation structure of a university. The object diagram in
Figure 13-15b shows how Riverside University, a University object instance, is related to
its component objects, which represent administrative units (e.g., Admissions, Human
Resources, etc.) and schools (e.g., Arts and Science, Business, etc.). A school object (e.g.,
Business), in turn, comprises several department objects (e.g., Accounting, Finance, etc.).

Notice that the diamond at one end of the relationship between Building and Room
is not hollow, but solid. A solid diamond represents a stronger form of aggregation, known
as composition (Fowler, 2003). In composition, a part object belongs to one and only one
whole object; for example, a room is part of only one building and cannot exist by itself.
Therefore, the multiplicity on the aggregate end is exactly one. Parts may be created after
the creation of the whole object; for example, rooms may be added to an existing building.
However, once a part of a composition is created, it lives and dies with the whole; deletion

University

Administrative
Unit

BuildingSchool

RoomDepartment

Housed In

Part Of
Consists Of

20..**

11

1..*1..*

1 1

1

. . .

. . .

Riverside
University

Admissions:
Administrative
Unit

Human Resources:
Administrative
Unit

Accounting:
Department

Finance:
Department

Business:
School

FIGURE 13-15 Aggregation
and composition
(a) Class diagram

Composition
A part-of relationship in which
parts belong to only one whole
object and live and die with the
whole object.

(b) Object diagram

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-20

Chapter 13 • Object-Oriented Databases 13-21

of the aggregate object cascades to its components. If a building is demolished, for exam-
ple, so are all its rooms. However, it is possible to delete a part before its aggregate dies, just
as it is possible to demolish a room without bringing down a building.

Consider another example of aggregation: the bill-of-materials structure presented
earlier in Chapter 2. Many manufactured products are made up of assemblies, which in
turn are composed of subassemblies and parts, and so on. We saw how we could represent
this type of structure as a many-to-many unary relationship (called Has Components) in
an E-R diagram (see Figure 2-13a). When the relationship has an attribute of its own, such
as Quantity, the relationship can be converted to an associative entity. Note that although
the bill-of-materials structure is essentially an aggregation, we had to represent it as an
association because the E-R model does not support the semantically stronger concept of
aggregation. In the object-oriented model, we can explicitly show the aggregation.

In Figure 13-16, we have represented the bill-of-materials structure. To distinguish
between an assembly and a primitive part (one without components), we have created
two classes, Assembly and Simple Part, both of which are subclasses of a class called
Part. The diagram captures the fact that a product consists of many parts, which them-
selves can be assemblies of other parts, and so on; this is an example of recursive aggre-
gation. Because Part is represented as an abstract class, a part is either an assembly or a
primitive part. An Assembly object is an aggregate of instances of the Part superclass,
implying that it is composed of other assemblies (optional) and primitive parts. Note
that we can easily capture an attribute, such as the quantity of parts in an assembly,
inside an association class attached to the aggregation relationship.

When you are unsure whether a relationship between two objects is an association or
an aggregation, try to figure out if one object is really part of the other object. That is, is there
a whole-part relationship? Note that an aggregation does not necessarily have to imply
physical containment, such as that between Personal Computer and CPU. The whole-part
relationship may be conceptual, for example, the one between a mutual fund and a certain
stock that is part of the fund. In an aggregation, an object may or may not exist independ-
ently of an aggregate object. For example, a stock exists whether it is part of a mutual fund
or not, while a department does not exist independently of an organization. Also, an object
may be part of several aggregate objects (e.g., many mutual funds may contain IBM stocks
in their portfolios). Remember, however, that while this is possible in aggregation, compo-
sition does not allow an object to be part of more than one aggregate object.

Another characteristic of aggregation is that some of the operations on the whole
automatically apply to its parts. For example, an operation called ship() in the Personal
Computer object class applies to CPU, Hard Disk, Monitor, and so on because whenever
a computer is shipped, so are its parts. The ship operation on Personal Computer is said
to propagate to its parts (Rumbaugh et al., 1991).

1..*

1..*

*

*

Product

Part
{abstract}

Assembly Simple
Part

FIGURE 13-16 Recursive
aggregation

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-21

13-22 Part V • Advanced Database Topics

Finally, it is useful to know that some authors, such as Fowler (2003), advise
against the use of regular (non-composition) aggregation as a model structure because
it is often not clear what impact the difference between association and aggregation
would, in practice, have in the design model. This point is not without its merits, but we
would encourage you to follow your organization’s practices.

BUSINESS RULES

Business rules were discussed in detail in Chapters 2 and 3. You saw how to express dif-
ferent types of rules in an E-R diagram. In the examples provided in this chapter, we
have captured many business rules as constraints—implicitly as well as explicitly—on
classes, instances, attributes, operations, relationships, and so on. For example, you saw
how to specify cardinality constraints and ordering constraints on association roles. You
also saw how to represent semantic constraints (e.g., overlapping, disjoint, etc.) among
subclasses. Many of the constraints that have been discussed so far in this chapter were
imposed by including a set of UML keywords within braces—for example, {disjoint,
complete} and {ordered}—and placing them close to the elements to which the con-
straints apply. For example, in Figure 13-11, we expressed a business rule that offerings
for a given course are ordered. But if you cannot represent a business rule using such a
predefined UML constraint, you can define the rule in plain English or in some other
language such as formal logic.

When you have to specify a business rule involving two graphical symbols (e.g.,
those representing two classes or two associations), you can show the constraint as a
dashed arrow from one element to the other, labeled by the constraint name in braces
(UML Notation Guide, 2003). In Figure 13-17, for example, we have stated the business

* 1

* 1..*

1,2 *

* 1

1 0..1

{subset}

Chair Of

Member Of

qualified instructorsinstructors

Is Assigned Is Qualified

Is Scheduled

Each faculty member assigned
to teach a section of a course
must be qualified to teach
that course.

Section Course

Faculty Department

FIGURE 13-17 Representing
business rules

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-22

Chapter 13 • Object-Oriented Databases 13-23

rule that the chair of a department must be a member of the department by specifying
the Chair Of association as a subset of the Member Of association.

When a business rule involves three or more graphical symbols, you can show
the constraint as a note and attach the note to each of the symbols by a dashed
line (UML Notation Guide, 2003). In Figure 13-16, we have captured the business rule
that “each faculty member assigned to teach a section of a course must be qualified
to teach that course” within a note symbol. Because this constraint involves all three
association relationships, we have attached the note to each of the three association
paths.

OBJECT MODELING EXAMPLE: PINE VALLEY
FURNITURE COMPANY

In Chapters 2 and 3, you saw how to develop a high-level E-R diagram for the Pine
Valley Furniture Company (see Figures 2-22 and 3-12). We identified the entity types,
as well as their keys and other important attributes, based on a study of the business
processes at the company. We will now show you how to develop a class diagram for
the same application using the object-oriented approach. The class diagram is shown
in Figure 13-18. We discuss the commonalities, as well as the differences, between this
diagram and the E-R diagrams in the prior figures. Figure 13-18 is based primarily on
Figure 3-12, but the attributes from Figure 2-22 are now also included. Figure 13-18 is
developed using the UML drawing tool in Microsoft Visio. Dozens of other tools exist
for creating and maintaining UML diagrams, ranging from simple drawing tools to
comprehensive model-driven software development packages.

As you would expect, the entity types are represented as object classes, and all the
attributes are shown within the classes. Note, however, that you do not need to show
explicit identifiers in the form of primary keys, because, by definition, each object has
its own identity. The E-R model, as well as the relational data model (see Chapter 4),
requires you to specify explicit identifiers because there is no other way of supporting
the notion of identity. In the object-oriented model, the only identifiers you should
represent are attributes that make sense in the real world, such as salespersonID,
customerID, orderID, and productID. Notice that we have not shown an identifier for
Product Line, based on the assumption that Product Line ID was merely included in the
E-R diagram as an internal identifier, not as a real-world attribute, such as orderID or
productID. If Pine Valley Furniture Company does not actually use vendorID or, for
that matter, any other attribute, to support its business processes, you should not
include that attribute in the class diagram. For that reason, we have not shown identi-
fiers for classes such as Vendor, Order Line, and Skill.

Role names are applied to some relationships. For example, Product plays
the role of output and Work Center plays the role of facility in the Produced-in
relationship.

The class diagram in Figure 13-18 includes several operations that could not
have been captured in an E-R diagram and often are not included in class diagrams
used for business domain modeling during the analysis activities in various object-
oriented life cycle models. In this case, we have included them to demonstrate how
the object-oriented approach integrates data and behavior. For example, Customer
has an operation called mailInvoice that, when executed, mails an invoice to a
customer who has placed an order, specifying the total order amount in dollars, and
increases the customer’s outstanding balance by that amount. On receipt of payment
from the customer, the receivePaymt operation adjusts the balance by the amount
received. The orderlineTotal operation of Order Line computes the total dollar
amount for a given order line of an order, whereas the orderTotal operation of Order
computes the total amount for an entire order (i.e., the sum total of the amounts on all
the order lines).

Figure 13-18 also illustrates polymorphism. The totalSales operation appears
within both the Product and Product Line classes, but is implemented as two different

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-23

13-24 Part V • Advanced Database Topics

-customerID
-customerName
-customerAddress
-postalCode
-balance
-customerType
-national
-regular

+mailInvoice(in amount)
+receivePaymt(in amount)

Customer

-accountManager

National Customer

-productLineName

+totalSales()

Product Line

-productID
-productDescription
-productFinish
-standardPrice

+totalSales()
+assignProd(in line)

Product

-territoryID
-territoryName

Sales Territory

-workCenterID
-workCenterLocation

Work Center

-orderID
-orderDate

+orderTotal()

Order

-orderedQuantity

+orderlineTotal()

Order Line

Regular Customer
Does Business In

Submits

Includes

Uses

Produced In

Supervises

-output

-facility

customerType

{complete, overlapping
<<dynamic>>}

{incomplete}

1..* 1..*

1..*

1..* 1..*

0..*

-contractNumber

Supplier

-vendorName

-vendorAddress

Vendor

-supplyUnitPrice

Supplies

-skillName

Skill

1..* 1..*

1

1

1..*

0..*

1..*

1..*

1..*

0..*

-salespersonID
-salespersonName
-salespersonTelephone
-salespersonFax

+totalCommission()

Salesperson

-materialID
-materialName
-unitOfMeasure
-standardCost

Raw Material

-employeeID
-employeeName
-employeeAddress
-employeeType

+checkSkills(in product)

Employee

Serves

1..* 1

Has

Works In

employeeType

0..* 0..*

-supervisor
-supervisee

1 1..*

Union EmployeeManagement Employee

{incomplete, disjoint
<<dynamic>>}

FIGURE 13-18 Class diagram for Pine Valley Furniture Company

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-24

Chapter 13 • Object-Oriented Databases 13-25

methods. While the method in Product computes the total sales for a given product, the
one in Product Line computes the total sales of all products belonging to a given
product line.

Some of the operations represented in the diagram (totalSales, totalCommission,
orderTotal, orderlineTotal, and checkSkills) are query operations, which do not alter
the state of any object. In contrast, mailInvoice, receivePaymt, and assignProd are all
update operations because they modify the state of some object(s). For example, the
assignProd operation assigns a new product to the product line specified in the “line”
argument, thereby changing the state of both the product, which becomes assigned,
and the product line, which includes one more product.

Specifications for the generalizations are shown in constraint boxes. So, for exam-
ple, there are no other Customer types than Regular Customer and National Customer
(complete constraint), a customer can be simultaneously of both types (overlapping
constraint), and a customer can switch between subtypes (<<dynamic>> stereotype).
Customers are distinguished by the value of customerType. Customer is an abstract
class because of the complete constraint.

In this chapter, we introduced the object-oriented model-
ing approach, which is becoming increasingly popular
because it supports effective representation of a real-world
application—in terms of both its data and processes—
using a common underlying representation. We described
the activities involved in the different phases of the object-
oriented development life cycle and emphasized the seam-
less nature of the transitions that an object-oriented model
undergoes as it evolves through the different phases, from
analysis to design to implementation. This is in sharp con-
trast to other modeling approaches, such as structured
analysis and design, which lack a common underlying
representation and, therefore, suffer from abrupt and dis-
joint model transitions. We also discussed the iterative
nature of most object-oriented life cycle models.

We presented object-oriented modeling as a
high-level conceptual activity, especially as it pertains to
data analysis. We introduced the concept of objects and
classes and discussed object identity and encapsulation.
Throughout the chapter, we developed several class dia-
grams, using the UML notation, to show you how to
model various types of situations. You also learned how
to draw an object diagram that corresponds to a given
class diagram. The object diagram provides a snapshot of
the actual objects and links present in a system at some
point in time.

We showed how to model the behaviors and
responsibilities within an application using operations.
We discussed four types of operations: constructor, query,
update, and class-scope. The E-R model (as well as the
EER model) does not allow you to capture behaviors; it
allows you only to model the data needs of an organiza-
tion. In this chapter, we emphasized several similarities
between the E-R model and the object-oriented model,
but, at the same time, highlighted those features that
make the latter more powerful than the former.

We showed how to represent association relation-
ships of different degrees—unary, binary, and ternary—
in a class diagram. An association has two or more roles;
each role has a multiplicity, which indicates the number

of objects that participate in the relationship. Other types
of constraints can be specified on association roles, such
as forming an ordered set of objects. When an association
itself has attributes or operations of its own, or when it
participates in other associations, the association is mod-
eled as a class; such a class is called an association class.
Links and link objects in an object diagram correspond to
associations and association classes, respectively, in a
class diagram. Derived attributes, derived relationships,
and derived roles can also be represented in a class
diagram.

The object-oriented model expresses generalization
relationships using superclasses and subclasses, similar
to supertypes and subtypes in the EER model. The basis
of a generalization path can be denoted using a discrimi-
nator label next to the generalization path. Semantic con-
straints among subclasses can be specified using UML
keywords such as overlapping, disjoint, complete, and
incomplete. When a class does not have any direct
instances, it is modeled as an abstract class. An abstract
class may have an abstract operation, whose form, but
not method, is provided.

In a generalization relationship, a subclass inherits
features from its superclass, and by transitivity, from all its
ancestors. Inheritance is a very powerful mechanism
because it supports code reuse in object-oriented systems.
We discussed ways of applying inheritance of features, as
well as reasons for overriding inheritance of operations
in subclasses. We also introduced another key concept
in object-oriented modeling, that of polymorphism,
which means that an operation can apply in different
ways across different classes. The concepts of encapsula-
tion, inheritance, and polymorphism in object-oriented
modeling provide systems developers with powerful
mechanisms for developing complex, robust, flexible, and
maintainable business systems.

The object-oriented model supports aggregation,
whereas the E-R or the EER model does not. Aggregation
is a semantically stronger form of association, expressing
the Part-of relationship between a component object and

Summary

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-25

13-26 Part V • Advanced Database Topics

Chapter Review

Key Terms

Abstract class 13-14
Abstract operation 13-17
Aggregation 13-19
Association 13-7
Association class 13-10
Association role 13-7
Behavior 13-4

Class 13-4
Class diagram 13-5
Class-scope

attribute 13-16
Class-scope operation 13-7
Composition 13-20
Concrete class 13-14

Constructor operation 13-6
Encapsulation 13-6
Method 13-17
Multiple classification

13-18
Multiplicity 13-7
Object 13-4

Object diagram 13-5
Operation 13-6
Overriding 13-17
Polymorphism 13-17
Query operation 13-6
State 13-4
Update operation 13-7

Review Questions

1. Define each of the following terms:
a. class
b. state
c. behavior
d. encapsulation
e. operation
f. method
g. constructor operation
h. query operation
i. update operation
j. abstract class
k. concrete class
l. abstract operation
m. multiplicity
n. class-scope attribute
o. association class
p. polymorphism
q. overriding
r. multiple classification
s. composition
t. recursive aggregation

2. Match the following terms to the appropriate definitions:
concrete class
abstract
operation
aggregation
overriding
polymorphism
association
class
composition
class

3. Contrast the following terms:
a. class; object
b. attribute; operation
c. state; behavior
d. operation; method
e. query operation; update operation
f. abstract class; concrete class
g. class diagram; object diagram
h. association; aggregation
i. generalization; aggregation
j. aggregation; composition
k. overriding for extension; overriding for restriction

4. State the activities involved in each of the following phases
of the object-oriented development life cycle: object-ori-
ented analysis, object-oriented design, and object-oriented
implementation.

5. Compare the object-oriented model with the EER model.
6. State the conditions under which a designer should model

an association relationship as an association class. In what
way is the expressive power of an association class stronger
than that of an ordinary association relationship?

7. Using a class diagram, give an example for each of the
following types of relationships: unary, binary, and ternary.
Specify the multiplicities for all the relationships.

8. Explain the difference between the name of the association
relationship and the role names linked to an association.

9. Add role names to the association relationships you identi-
fied in Review Question 7.

10. Add operations to some of the classes you identified in
Review Question 7.

11. Give an example of generalization. Your example should
include at least one superclass and three subclasses and a

an aggregate object. We distinguished between aggrega-
tion and generalization and provided you with tips for
choosing between association and aggregation in repre-
senting a relationship. We discussed a stronger form of
aggregation, known as composition, in which a part
object belongs to only one whole object, living and dying
together with it.

In this chapter, you also learned how to state busi-
ness rules implicitly, as well as explicitly, in a class dia-
gram. UML provides several keywords that can be used

as constraints on classes, attributes, relationships, and so
on. In addition, user-defined constraints may be used to
express business rules. When a business rule involves
two or more elements, you saw how to express the rule
in a class diagram, such as by using a note symbol. We
concluded the chapter by developing a class diagram for
Pine Valley Furniture Company, illustrating how to
apply the object-oriented approach to model both the
data and the processes underlying real-world business
problems.

a. operation applied in different
ways

b. form, not implementation
c. direct instances
d. belongs to only one whole

object
e. method replacement
f. part-of relationship
g. a set of objects
h. equivalent to associative entity

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-26

Chapter 13 • Object-Oriented Databases 13-27

minimum of one attribute and one operation for each of the
classes. Indicate the discriminator and specify the semantic
constraints among the subclasses. What is the purpose of the
discriminator?

12. If the diagram you developed for Review Question 11 does
not contain an abstract class, extend the diagram by
adding an abstract class that contains at least one abstract
operation. Also, indicate which features of a class other
classes inherit.

13. Using (and, if necessary, extending) the diagram from
your solution to Review Question 11, give an example of
polymorphism.

14. Give an example of aggregation. Your example should
include at least one aggregate object and three component
objects. Specify the multiplicities at each end of all of the
aggregation relationships.

15. What makes the object-oriented modeling approach a
powerful tool for developing complex systems?

16. Given the class diagram shown in Figure 13-19, can we have
an instance of Vehicle? Why or why not?

17. Why does UML specify several different types of
diagrams?

18. In the diagram shown in Figure 13-20, what do we call the
Assignment class?

(complete, disjoint)
vehicleType

getPayload()

payLoad
numberofDoors

Truck

getPassengers()

numberOfDoors
driveType
maxPassengers

Car

VIN
Make
Model
Year
EngineSize

lookupEngineSize()

{abstract}
Vehicle

FIGURE 13-19 Class diagram
for Review Question 16

1,3*

chkAvailability()

startDate
endDate
pctEffort

Assignment

Employee Project

FIGURE 13-20 Class diagram
for Review Question 18

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-27

13-28 Part V • Advanced Database Topics

19. When would a unary relationship need to be represented as
an association class?

20. In the class diagram shown in Figure 13-21, what do we
call/availBalance? What do we call/purchases? Why are
these used in this diagram?

21. In the class diagram shown in Figure 13-22, checkFee and
monthlyFee are examples of attributes. What type of
an operation is calcFee?

22. The class diagram shown in Figure 13-23 is an example of
.

23. The class diagram shown in Figure 13-24 is an example of
. Is the relationship between faculty and their depart-

ment represented properly in this diagram? Why or why not?

*

*

*

* * *places

/purchases

calcTotal()

orderID
orderDate
shipDate

Order

getPrice()

itemNumber
description
price

Item

Customer

customerID
name
address
city
state
zipCode
telephone
creditLine
balance
/availBalance

checkCredit()

calcCost()

quantity

OrderLine

FIGURE 13-21 Class diagram
for Review Question 20

calcFee()

address
city
state
zipCode
telphone

calcFee()

businessName
contact
checkFee = 0.05
monthlyFee = 12.00

Business

calcFee()

name
monthlyFee = 8.00

Individual

Customer
{abstract}

FIGURE 13-22 Class diagram
for Review Question 21

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-28

Chapter 13 • Object-Oriented Databases 13-29

Person

Student Employee

StudentAndEmployee

FIGURE 13-23 Class diagram
for Review Question 22

Department

Faculty

1

5..*

FIGURE 13-24 Class diagram
for Review Question 23

1. Draw a class diagram for some organization that you are
familiar with—Boy Scouts/Girl Scouts, a sports team, and
so on. In your diagram, indicate names for at least four
association roles.

2. A student, whose attributes include studentName, address,
phone, and age, may engage in multiple campus-based
activities. The university keeps track of the number of years
a given student has participated in a specific activity and, at
the end of each academic year, mails an activity report to the
student showing his participation in various activities.
Draw a class diagram for this situation.

3. Refer to Figure 4-36 (originally presented in the context of
Problem and Exercise 4-19), which uses an E-R diagram to
describe the essential business constructs of a middle-sized
software vendor.
a. Present the same situation with a class diagram.
b. Based on what you have learned about class diagrams in

this chapter, are there any areas where you could use the
expressive power of the class diagram notation to tell a
clearer or more comprehensive story about the problem
domain than was possible with the E-R notation?

4. Draw a class diagram, showing the relevant classes, attributes,
operations, and relationships for each of the following situa-
tions (if you believe that you need to make additional assump-
tions, clearly state them for each situation):
a. A company has a number of employees. The attributes

of Employee include employeeID (primary key),
name, address, and birthDate. The company also
has several projects. Attributes of Project include
projectName and startDate. Each employee may
be assigned to one or more projects or may not be
assigned to a project. A project must have at least one
employee assigned and may have any number of
employees assigned. An employee’s billing rate may
vary by project, and the company wishes to record the
applicable billing rate for each employee when
assigned to a particular project. At the end of each
month, the company mails a check to each employee
who has worked on a project during that month. The
amount of the check is based on the billing rate and
the hours logged for each project assigned to the
employee.

Problems and Exercises

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-29

13-30 Part V • Advanced Database Topics

b. A university has a large number of courses in its
catalog. Attributes of Course include courseNumber
(primary key), courseName, and units. Each course
may have one or more different courses as prerequisites
or may have no prerequisites. Similarly, a particular
course may be a prerequisite for any number of courses
or may not be prerequisite for any other course. The
university adds or drops a prerequisite for a course
only when the director for the course makes a formal
request to that effect.

c. A laboratory has several chemists who work on one or
more projects. Chemists also may use certain kinds of
equipment on each project. Attributes of Chemist
include name and phoneNo. Attributes of Project
include projectName and startDate. Attributes of
Equipment include serialNo and cost. The organization
wishes to record assignDate—that is, the date when a
given equipment item was assigned to a particular
chemist working on a specified project—as well as
totalHours—that is, the total number of hours the
chemist has used the equipment for the project.
The organization also wants to track the usage of each
type of equipment by a chemist. It does so by comput-
ing the average number of hours the chemist has used
that equipment on all assigned projects. A chemist must
be assigned to at least one project and one equipment
item. A given equipment item need not be assigned, and
a given project need not be assigned either a chemist or
an equipment item.

d. A college course may have one or more scheduled sec-
tions, or may not have a scheduled section. Attributes of
Course include courseID, courseName, and units.
Attributes of Section include sectionNumber and semes-
ter. The value of sectionNumber is an integer (such as
“1” or “2”) that distinguishes one section from another
for the same course, but does not uniquely identify a sec-
tion. There is an operation called findNumSections that
finds the number of sections offered for a given course in
a given semester.

e. A hospital has a large number of registered physicians.
Attributes of Physician include physicianID (primary
key) and specialty. Patients are admitted to the hospital
by physicians. Attributes of Patient include patientID
(primary key) and patientName. Any patient who is
admitted must have exactly one admitting physician. A
physician may optionally admit any number of patients.
Once admitted, a given patient must be treated by at
least one physician. A particular physician may treat any
number of patients or may treat no patients. Whenever a
patient is treated by a physician, the hospital wishes to
record the details of the treatment, by including the date,
time, and results of the treatment.

5. Each semester, each student must be assigned an adviser
who counsels students about degree requirements and
helps students register for classes. Each student must regis-
ter for classes with the help of an adviser, but if a student’s
assigned adviser is not available, the student may register
with any adviser. We must keep track of students, the
assigned adviser for each, and the name of the adviser with
whom the student registered for the current term. Represent
this situation of students and advisers with a class diagram.
Also draw a data model for this situation using the tool you
have been told to use in your course.

6. Prepare a class diagram for a real estate firm that lists property
for sale. This organization is described as follows:
• The firm has a number of sales offices in several states;

location is an attribute of sales office.
• Each sales office is assigned one or more employees.

Attributes of employee include employeeID and
employeeName. An employee must be assigned to only
one sales office.

• For each sales office, there is always one employee
assigned to manage that office. An employee may man-
age only the sales office to which he or she is assigned.

• The firm lists property for sale. Attributes of property
include propertyName and location.

• Each unit of property must be listed with one (and only
one) of the sales offices. A sales office may have any num-
ber of properties listed or may have no properties listed.

• Each unit of property has one or more owners. Attributes of
owner are ownerName and address. An owner may own
one or more units of property. For each property that an
owner owns, an attribute called percentOwned indicates
what percentage of the property is owned by the owner.

Add a subset constraint between two of the associations
you identified in your class diagram.

7. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

Stillwater Antiques buys and sells one-of-a-kind antiques
of all kinds (e.g., furniture, jewelry, china, and clothing).
Each item is uniquely identified by an item number and
is also characterized by a description, asking price, condi-
tion, and open-ended comments. Stillwater works with
many different individuals, called clients, who sell items
to and buy items from the store. Some clients only sell
items to Stillwater, some only buy items, and some others
both sell and buy. A client is identified by a client number
and is also described by a client name and client address.
When Stillwater sells an item in stock to a client, the own-
ers want to record the commission paid, the actual selling
price, sales tax (tax of zero indicates a tax exempt sale),
and date sold. When Stillwater buys an item from a
client, the owners want to record the purchase cost, date
purchased, and condition at time of purchase.

8. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A company bottles and distributes bottled water to both
private consumers and organizations. The firm wants to
develop an application to support the delivery activities.
Water can be delivered in three types of containers:
12-ounce bottles, 1-gallon bottles, or 5-gallon bottles.
Private customers are served once a week based on orders
they place at least 24 hours before the scheduled delivery
time, whereas the organizational customers have a
weekly delivery that replenishes the amount of water at
each of the organization’s locations to a pre-specified
level. If a specific location runs out of a specific type of
water container three weeks in a row, the system should
generate an e-mail to the organizational contact person to
suggest that the replenishment level should be increased.

9. Imagine two different types of airline frequent flyer pro-
grams: one that awards points based on flown miles and
gives free trips based on accumulated mileage according to

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-30

Chapter 13 • Object-Oriented Databases 13-31

a predefined awards schedule (e.g., domestic roundtrip in
economy requires 25,000 miles, a roundtrip between North
America and Europe in business requires 80,000 miles, a
first class roundtrip between North America and Africa
requires 200,000 miles, etc.) and another one that keeps
track of the number of flight segments and gives free trips
based on the number of flown segments (e.g., every 10th
domestic economy class flight is free). Assume that the sys-
tem needs to keep track of every customer’s status in the
program, based on the cumulative flight distance and
frequency either since the customer joined the program or
during the previous calendar year. Based on this limited
information, explore whether the data modeling solutions
for the two types of frequent flyer programs are different.
Justify your conclusions and draw the class diagrams for
both types of systems, making all necessary assumptions.

10. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A library has a large number of items that customers can
borrow. In addition to books, the collection includes
audio products (audio CDs, books on CD, and books on
tape) and video products (video tapes and DVDs).
There can be multiple copies of each of the products,
and it is important to know which specific copy a cus-
tomer checks out. Most items can be checked out, but
the length of time a customer can keep an item varies
depending on the item. A customer can have multiple
items checked out at the same time. When the customer
is checking out items, the system verifies whether the
customer has any overdue items. If the items are over-
due by less than the length of the original allowed
checkout time, the system produces a reminder that is
included in the receipt that is given at the time of each
checkout. If, however, the limit has been exceeded, the
system will prevent the customer from checking out any
additional items. When an overdue item is returned, the
system will calculate the fine amount based on the num-
ber of days the item is overdue and the length of the
original checkout period.

11. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A nonprofit organization depends on a number of dif-
ferent types of persons for its successful operation. The
organization is interested in the following attributes for
all of these persons: Social Security number, name,
address, and phone. There are three types of persons
who are of greatest interest: employees, volunteers, and
donors. In addition to the attributes for a person, an
employee has an attribute called dateHired, and a vol-
unteer has an attribute called skill. A donor is a person
who has donated one or more items to the organization.
An item, specified by a name, may have no donors, or
one or more donors. When an item is donated, the
organization records its price, so that at the end of the
year, it can identify the top ten donors.

There are persons other than employees, volunteers,
and donors who are of interest to the organization, so a
person need not belong to any of these three groups. On
the other hand, at a given time a person may belong to
two or more of these groups (e.g., employee and donor).

12. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A consulting firm is organized as a partnership with five
different types of employees: senior partners, junior part-
ners, senior associates, associates, and assistants. Each
employee has an annual salary; partners and associates
also have a billing rate specified for them. The firm needs
to also know the amount of money each of the partners
(both junior and senior) has invested in it. It is important
for the firm to keep track of the history of salaries and
billing rates. The firm works with a large number of
clients; at any point in time, the firm may have several
simultaneous engagements with any of the clients (or
none). For each engagement, there is a billing factor which
depends on the nature of the engagement; for final billing
purposes, each employee’s billing rate is multiplied by the
factor to determine the actual hourly rate charged for each
employee’s work. Employees are required to specify (with
an application running on their smart phones) every tran-
sition from one engagement to another so that billable
hours can be recorded with the highest level of accuracy
possible. In addition to the hours, the clients are charged
for project-related expenses, which can be categorized as
travel, lodging, supplies, information, and others. The
firm sends a biweekly invoice to each of its customers. The
system has to maintain a record of when a specific item
(labor cost or an expense item) was billed. Obviously, it is
essential to keep track of the payments that the clients
send to the firm.

13. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

SeeALeopard (SAL) is a company that organizes tours in
the Kruger National Park in South Africa. These tours
last several hours and sometimes an entire day. They do
not ever, however, include an overnight stay in the park.
The company serves both travel agents and other organ-
izers of multiday trips and individual customers who are
traveling on their own. Organizers of multiday trips can
get credit from SAL up to an approved credit limit as
long as they negotiate this with SAL in advance, and
they typically have a negotiated discount rate with SAL.
The credit limit and the discount rate are elements of a
contract; one trip organizer can have only one contract at
one point in time with SAL, but it is important that con-
tract history be maintained. Individual travelers can reg-
ister with SAL if they want to and ask SAL to store their
preferred mode of payment (typically a credit card) in
addition to typical contact information to save time with
future registrations. An individual traveler cannot be
simultaneously a trip organizer.

SAL is proud to offer a very smooth registration expe-
rience for its customers, and it has therefore decided to
develop an online registration system that allows the trip
organizers and individual customers to reserve seats on
prescheduled tours (defined based on the date, starting
time, planned duration, and the route) up to three
months in advance. Each individual reservation must be
paid in full at the time it is made, but the trip organizers
are allowed to reserve seats without making payment
(as long as they have sufficient credit remaining).

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-31

13-32 Part V • Advanced Database Topics

Cancellations are possible up to 60 days before the tour
date without a penalty and up to 30 days before the tour
date with a 50% penalty. Obviously, it is essential to
maintain all details of the reservation history.

SAL is also focused on maintaining a full record of
the sightings of the Big Five: leopards, lions, buffalo,
elephants, and rhino. The drivers of the tour vehicles have
handheld devices with which they can easily identify the
animal, the number of animals in three age groups (adult,
adolescent, and baby), the location of the sighting (from
the built-in GPS), and the time of the sighting; in addition,
the driver can easily send pictures, when appropriate. The
company can use these data for both demonstrating past
success and planning future routes and times of tours.

14. A bank has three types of accounts: checking, savings, and
loan. Following are the attributes for each type of account:

b. Each vehicle consists of a drive train, which, in turn,
consists of an engine and a transmission. (Ignore the fact
that a trailer doesn’t have an engine and a transmission.)
Suppose that, for each vehicle, the system has to main-
tain the following information: the size and number of
cylinders of its engine and the type and weight of its
transmission. Add classes, attributes, and relationships
to the class diagram to capture this new information.

c. Give a realistic example (you may create one) of an
operation that you override in a subclass or subclasses.
Add the operation at appropriate places in the class dia-
gram and discuss the reasons for overriding.

17. Draw a class diagram, showing the relevant classes, attrib-
utes, operations, and relationships for the following situation:

Emerging Electric wishes to create a database with the
following classes and attributes:

Customer with attributes customerID, name, address
(street, city, state, zipCode), telephone

Location with attributes locationID, address (street, city,
state, zipCode), type (business or residential)

Rate with attributes rateClass, ratePerKwh

CHECKING acctNo, dateOpened, balance, serviceCharge

SAVINGS acctNo, dateOpened, Balance, interestRate

LOAN acctNo, dateOpened, Balance, interestRate,
payment

Assume that each bank account must be a member of exactly
one of these subtypes. At the end of each month, the bank
computes the balance in each account and mails a statement
to the customer holding that account. The balance computa-
tion depends on the type of the account. For example, a
checking account balance may reflect a service charge,
whereas a savings account balance may include an interest
amount. Draw a class diagram to represent the situation.
Your diagram should include an abstract class, as well as an
abstract operation for computing the balance.

15. Refer to the class diagram for hospital relationships (Figure
13-9b). Add notation to express the following business rule:
A resident patient can be assigned a bed only if that patient
has been assigned a physician who will assume responsibil-
ity for the patient’s care.

16. An organization has been entrusted with developing a reg-
istration and title system that maintains information about
all vehicles registered in a particular state. For each vehicle
that is registered with the office, the system has to store
the name, address, and telephone number of the owner, the
start date and end date of the registration, plate information
(issuer, year, type, and number), sticker (year, type, and
number), and registration fee. In addition, the following
information is maintained about the vehicles themselves:
the number, year, make, model, body style, gross weight,
number of passengers, diesel-powered (yes/no), color, cost,
and mileage. If the vehicle is a trailer, the parameters diesel-
powered and number of passengers are not relevant. For
travel trailers, the body number and length must be known.
The system needs to maintain information on the luggage
capacity for a car, maximum cargo capacity and maximum
towing capacity for a truck, and horsepower for a motorcy-
cle. The system issues registration notices to owners of vehi-
cles whose registrations are due to expire after two months.
When the owner renews the registration, the system
updates the registration information on the vehicle.
a. Develop an object-oriented model by drawing a class

diagram that shows all the object classes, attributes,
operations, relationships, and multiplicities. For each
operation, show its argument list.

After interviews with the owners, you have come up
with the following business rules:
• Customers can have one or more locations.
• Each location can have one or more rates, depend-

ing upon the time of day.
18. Draw a class diagram, showing the relevant classes,

attributes, operations, and relationships for the following
situation:

Wally Los Gatos, owner of Wally’s Wonderful World of
Wallcoverings, has hired you as a consultant to design a
database management system for his chain of three stores
that sell wallpaper and accessories. He would like to track
sales, customers, and employees. After an initial meeting
with Wally, you have developed the following list of busi-
ness rules and specifications:
• Customers place orders through a branch.

• Wally would like to track the following about
customers: name, address, city, state, zip code,
telephone, date of birth, and primary language.

• A customer may place many orders.
• A customer does not always have to order

through the same branch all the time.
• Customers may have one or more accounts, and

they may also have no accounts.
• The following information needs to be recorded

about accounts: balance, last payment date, last
payment amount, and type.

• A branch may have many customers.
• The following information about each branch

needs to be recorded: branch number, location
(address, city, state, zip code), and square
footage.

• A branch may sell all items, or may only sell cer-
tain items.

• An order is composed of one or more items.
• The following information about each order

needs to be recorded: order date and credit
authorization status.

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-32

Chapter 13 • Object-Oriented Databases 13-33

• Items may be sold by one or more branches.
• Wally wants to record the following about each

item: description, color, size, pattern, and type.
• An item can be composed of multiple items; for exam-

ple, a dining room wallcovering set (item 20) may
consist of wallpaper (item 22) and borders (item 23).

• Wally employs 56 employees. He would like to track
the following information about employees: name,
address (street, city, state, zip code), telephone num-
ber, date of hire, title, salary, skill, and age.
• Each employee works in one and only one branch.
• Each employee may have one or more depend-

ents. Wally wants to record the name of the
dependent as well as the age and relationship.

• Employees can have one or more skills.
Indicate any assumptions that you have made.

19. Our friend Wally Los Gatos (see Problem and Exercise 18),
realizing that his wallcoverings business had a few wrinkles
in it, decided to pursue a law degree at night. Since graduat-
ing, he has teamed up with Lyla El Pàjaro to form Peck and
Paw, Attorneys at Law. Wally and Lyla have hired you to
design a database system based on the set of business rules
defined below. It is in your best interest to perform a thor-
ough analysis, in order to avoid needless litigation. Please
create a class diagram based upon the following set of rules:
• An attorney is retained by one or more clients for

each case.
• Attributes of an attorney are attorney ID, name, address,

city, state, zip code, specialty (may be more than one),
and bar (may be more than one).

• A client may have more than one attorney for each case.
• Attributes of a client are client ID, name, address, city,

state, zip code, telephone, and date of birth.
• A client may have more than one case.
• Attributes of a case are case ID, case description, and case

type.
• An attorney may have more than one case.
• Each case is assigned to one and only one court.
• Attributes of a court are court ID, court name, city, state,

and zip code.
• Each court has one or more judges assigned to it.
• Attributes of a judge are judge ID, name, and years

in practice.
• Each judge is assigned to exactly one court.

20. Draw a class diagram, showing the relevant classes, attrib-
utes, operations, and relationships for the following situa-
tion: An international school of technology has hired you to
create a database management system in order to assist in
scheduling classes. After several interviews with the presi-
dent, you have come up with the following list of classes,
attributes, and initial business rules:

Room
Attributes: buildingID, roomNo, capacity

Room is identified by buildingID and roomNo.
A room can be either a lab or a classroom. If it is a

classroom, it has an additional attribute called board
type.

Media Type
Attributes: mTypeID (identifying attribute),
typeDescription

Please note: We are tracking the type of media (such
as a VCR, projector, etc.), not individual pieces of

equipment. Tracking of equipment is outside of the
scope of this project.

Computer Type
Attributes: cTypeID (identifying attribute),
typeDescription, diskCapacity, processorSpeed

Please note: As with Media Type, we are tracking
only the type of computer, not individual computers.
You can think of this as a class of computers (e.g., those
based on a 3.0 GHZ Intel Core i7 processor).

Instructor
Attributes: empID (identifying attribute), name, rank,
officePhone

Time Slot
Attributes: tsID (identifying attribute), dayofWeek,
startTime, endTime

Course
Attributes: courseID (identifying attribute),
courseDescription, credits

Courses can have one, none, or many prerequisites.
Courses also have one or more sections. Section has

the following attributes: sectionID, enrollmentLimit

After some further discussions, you have come up with some
additional business rules to help create the initial design:
• An instructor teaches one, none, or many sections of a

course in a given semester.
• An instructor specifies preferred time slots.
• Scheduling data is kept for each semester, uniquely

identified by semester and year.
• A room can be scheduled for one section or no section

during one time slot in a given semester of a given year.
However, one room can participate in many schedules,
one schedule, or no schedules; one time slot can partici-
pate in many schedules, one schedule, or no schedules;
one section can participate in many schedules, one sched-
ule, or no schedules. Hint: Can you associate this with
anything you have seen before?

• A room can have one type of media, several types of
media, or no media.

• Instructors are trained to use one, no, or many types
of media.

• A lab has one or more computer types. However, a class-
room does not have any computers.

• A room cannot be both a classroom and a lab. There also
are no other room types to be incorporated in the system.

21. Draw a class diagram, showing the relevant classes, attrib-
utes, operations, and relationships, for the following situation:

Wally Los Gatos and his partner Henry Chordate have
formed a new limited partnership, Fin and Finicky
Security Consultants. Fin and Finicky consults with cor-
porations to determine their security needs. You have
been hired by Wally and Henry to design a database
management system to help them manage their business.

Due to a recent increase in business, Fin and Finicky
has decided to automate their client tracking system.
You and your team have done a preliminary analysis
and come up with the following set of classes, attributes,
and business rules:

Consultant
There are two types of consultants: business consultants
and technical consultants. Business consultants are

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-33

13-34 Part V • Advanced Database Topics

contacted by a business in order to first determine
security needs and provide an estimate for the actual
services to be performed.

Technical consultants perform services according to
the specifications developed by the business consultants.

Attributes of business consultant are the following:
employee ID (identifier), name, address (street, city, state,
zip code), telephone, date of birth, age, business experi-
ence (number of years, type of business [or businesses]),
degrees received

Attributes of technical consultant are the following:
employee ID (identifier), name, address (street, city,
state, zip code), telephone, date of birth, age, technical
skills, degrees received

Customer

Services performed: date, amount, technical consultant,
services, customer
In order to construct the class diagram, you may assume
the following: A customer can have many consultants
providing many services. We wish to track both actual
services performed and services offered. Therefore,
there should be two relationships between customer—
service and consultant—one to show services per-
formed and one to show services offered as part of the
estimate.

22. In Chapter 9, we presented a case study for the Fitchwood
Insurance Agency. As you may recall, we developed the
ER diagram shown in Figure 13-25 for this agency. Convert
this E-R diagram into a class diagram. State any assump-
tions that you make.

23. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A facilities management unit on a corporate campus is
responsible for a number of tasks associated with the
maintenance of the physical facilities of the company,
including emergency repairs, regular repairs, sched-
uled maintenance, cleaning of the offices and common
areas, and locking and unlocking of buildings and
rooms (using an automated system). Some of the tasks
are performed by the company’s own personnel and
others by outsourced resources. To manage the sched-
uling of the maintenance tasks, the company has a
small internal facilities help desk that receives
requests from the employees of the company by phone
and by e-mail. At the time when a request is received,
a help desk representative (HDR) interviews the
employee requesting first the employee’s identifica-
tion and the current location. In most cases, the
requests are related to regular repairs and cleaning. In
these cases, the HDR discusses the needs of the
requesting employee identifying the location and the
nature of the issue as accurately as possible; the sys-
tem has capabilities for helping the HDR to specify
every location on the campus. The system maintains a
comprehensive list of standard maintenance and

CUSTOMER

Sells_In

CustomerID
Customer Name
{Address
 (Street, City,
 State, Zipcode)}

AGENT
AgentID
AgentName
DateofHire

TERRITORY
TerritoryID
LastRedistrict
{Zipcode}

POLICY
PolicyNo
Type
FaceValue
InitCommission
InForce
Commission
EffectiveDate

FIGURE 13-25 Fitchwood
Insurance Company ERD

Customers are businesses that have asked for consulting
services. Attributes of customer are customer ID (identi-
fier), company name, address (street, city, state, zip
code), contact name, contact title, contact telephone,
business type, and number of employees.

Location
Customers can have multiple locations. Attributes of
location are customer ID, location ID (which is unique
only for each customer ID), address (street, city, state,
zip code), telephone, and building size.

Service
A security service is performed for a customer at one or
more locations. Before services are performed, an esti-
mate is prepared. Attributes of service are service ID
(identifier), description, cost, coverage, and clearance
required.

Additional Business Rules
In addition to the classes outlined above, the following
information will need to be stored and should be shown
in the model. These may be classes, but they also reflect
a relationship between more than one class:

Estimates: date, amount, business consultant, services,
customer

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-34

Chapter 13 • Object-Oriented Databases 13-35

cleaning tasks, but it should also be possible to specify
new ones. Once the details have been recorded, the
HDR gives the requesting employee an estimate of the
time the work will be performed. In the case of an
emergency request (such as flooding caused by a
broken pipe), the HDR verifies that it is a real emer-
gency and uses the system to identify the maintenance
person who is currently on call for emergencies and to
forward the request immediately to that person.
A request to unlock a specific door immediately
is considered a special case that requires its own
process because of the complex identity verification
requirements.

24. Assume that at Pine Valley Furniture Company each prod-
uct (described by product number, description, and cost)
comprises at least three components (described by compo-
nent number, description, and unit of measure), and com-
ponents are used to make one or many products. In
addition, assume that components are used to make other

components and that raw materials are also considered to
be components. In both cases of components, we need to
keep track of how many components go into making
something else. Draw a class diagram for this situation;
indicate the multiplicities for all the relationships you
identified in the diagram.

25. Pine Valley Furniture Company has implemented electronic
payment methods for some customers. These customers
will no longer require an invoice. The sendInvoice and
receivePayment methods will still be used for those cus-
tomers who always pay by cash or check. However, a new
method is needed to receive an electronic payment from
those customers who use the new payment method. How
will this change impact the Pine Valley Furniture class dia-
gram? Redraw the diagram to include any changes that you
feel are necessary.

26. In the Pine Valley Furniture class diagram, is there a need to
add any derived associations or derived relationships? If so,
please redraw the diagram to represent this.

Field Exercises

1. Interview a friend or family member to elicit from them
common examples of superclass/subclass relationships. You
will have to explain the meaning of this term and provide a
common example, such as PROPERTY: RESIDENTIAL,
COMMERCIAL; or BONDS: CORPORATE, MUNICIPAL.
Use the information your interviewee provides to construct
a class diagram segment and present it to this person.
Revise, if necessary, until it seems appropriate to you and
your friend or family member.

2. Visit two local small businesses, one in the service sector
and one in manufacturing. Interview employees from these
organizations to obtain examples of both superclass/
subclass relationships and operational business rules (such
as “A customer can return merchandise only if the customer

has a valid sales receipt”). In which of these environments is
it easier to find examples of these constructs? Why?

3. Ask a database administrator or database or systems ana-
lyst in a local company to show you an EER (or E-R) dia-
gram for one of the organization’s primary databases.
Translate this diagram into a class diagram.

4. Interview a systems analyst in a local company who uses
object-oriented programming and systems development
tools. Ask to see any analysis and design diagrams the ana-
lyst has drawn of the database and applications. Compare
these diagrams to the ones in this chapter. What differences
do you see? What additional features and notations are
used, and what is their purpose?

References
Blaha, M., and Rumbaugh, J. 2005. Object-Oriented Modeling

and Design with UML, 2nd ed. Upper Saddle River, NJ:
Prentice Hall.

Booch, G. 1994. Object-Oriented Analysis and Design with
Applications, 2nd ed. Redwood City, CA: Benjamin/
Cummings.

Coad, P., and E. Yourdon. 1991. Object-Oriented Design. Upper
Saddle River, NJ: Prentice Hall.

Fowler, M. 2003. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 3rd ed. Reading, MA:
Addison-Wesley-Longman.

George, J., D. Batra, J. Valacich, and J. Hoffer. 2007. Object-
Oriented Systems Analysis and Design, 2nd ed. Upper
Saddle River, NJ: Prentice Hall.

Hoffer, J., J. George, and J. Valacich. 2010. Modern Systems Analysis
and Design, 6th ed. Upper Saddle River, NJ: Prentice Hall.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. 1992.
Object-Oriented Software Engineering: A Use Case Driven
Approach. Reading, MA: Addison-Wesley.

Larman, C. 2004. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development,
3rd ed. Upper Saddle River, NJ: Prentice Hall.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
1991. Object-Oriented Modeling and Design. Upper Saddle
River, NJ: Prentice Hall.

Rumbaugh, J., I. Jacobson, and G. Booch. 2004. The Unified
Modeling Language Reference Manual. Reading, MA:
Addison-Wesley.

UML Notation Guide. 2003. Needham, MA: Object Management
Group, available at www.omg.org/cgi-bin/doc?formal/
03-03-10.pdf (accessed September 12, 2009).

UML Superstructure Specification. 2009. Needham, MA: Object
Management Group, available at www.omg.org/technology/
documents/formal/uml.htm (accessed September 12, 2009).

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-35

13-36 Part V • Advanced Database Topics

Arlow, J., and I. Neustadt. 2005. UML 2 and the Unified Process:
Practical Object-Oriented Analysis and Design, 2nd ed.
Reading, MA: Addison-Wesley.

Pilone, D., and N. Pitman. 2005. UML 2.0 in a Nutshell.
Sebastopol, CA: O’Reilly.

Web Resources

www.omg.org Web site of the Object Management Group, a
leading industry association concerned with object-oriented
analysis and design.

www.omg.org/technology/documents/formal/uml.htm
OMG’s official UML Web site.

Further Reading

M13_HOFF4317_10_SE_C13WEB.QXD 7/17/10 5:57 PM Page 13-36

