2 Object-Oriented Databases

2.1 Motivation

The relational model is the basis of many commercial relational DBMS products (e.g., DB2,
Informix, Oracle, Sybase) and the structured query language (SQL) is a widely accepted
standard for both retrieving and updating data.

The basic relational model is simple and mainly views data as tables of rows and columns.
The types of data that can be stored in a table are basic types such as integer, string, and
decimal.

Relational DBMSs have been extremely successful in the market. However, the traditional
RDBMSs are not suitable for applications with complex data structures or new data types for
large, unstructured objects, such as CAD/CAM, Geographic information systems, multimedia
databases, imaging and graphics. The RDBMSs typically do not allow users to extend the
type system by adding new data types. They also only support first-normal-form relations in
which the type of every column must be atomic, i.e., no sets, lists, or tables are allowed
inside a column.

Due to the new needs in database systems, a number of researches for OODBMS have
begun in the early 80’s.

2.2 Concept & Features

While a relational database system has a clear specification given by Codd, no such
specification existed for object-oriented database systems even when there were already
products in the market. A consideration of the features of both object-oriented systems and
database management systems has lead to a definition of an object-oriented database,
which was presented at the First International Conference on Deductive, and Object-oriented
Databases in the form of a manifesto in 1989. This 'manifesto’ distinguishes between the
mandatory, optional and open features of an object-oriented database.

The mandatory features, which must be present if the system is to be considered (in the

Object-Oriented Database
DBMS + Object-Oriented System
1 t e N e N
L persistence) complex objects types & classes
(\ (. J L J
storage r N N
management object identity class hierarchy
\) (. J . J
concurrency encapsulation extensibility
[) - N N
\ recovery) overriding & computational
- N overloading completeness
querying b A 4

4 Figure 1 OODB feathues

opinion of the manifesto authors) to be an object-oriented database, are defined in the
following two paragraphs. The first part describes features of object-oriented system, as the
second part features of database system.

2.2.1 Mandatory features of object-oriented systems

Support for complex objects

A complex object mechanism allows an object to contain attributes that can themselves be

objects. In other words, the schema of an object is not in first-normal-form. Examples of

attributes that can comprise a complex object include lists, bags, and embedded objects.

Object identity

Every instance in the database has a unique identifier (OID), which is a property of an object

that distinguishes it from all other objects and remains for the lifetime of the object. In

object-oriented systems, an object has an existence (identity) independent of its value.

Encapsulation

Object-oriented models enforce encapsulation and information hiding. This means, the state

of objects can be manipulated and read only by invoking operations that are specified within

the type definition and made visible through the public clause.

In an object-oriented database system encapsulation is achieved if only the operations are

visible to the programmer and both the data and the implementation are hidden.

Support for types or classes

= Type: in an object-oriented system, summarizes the common features of a set of objects
with the same characteristics. In programming languages types can be used at
compilation time to check the correctness of programs.

= (Class: The concept is similar to type but associated with run-time execution. The term
class refers to a collection of all objects with the same internal structure (attributes) and
methods. These objects are called instances of the class.

= Both of these two features can be used to group similar objects together, but it is normal
for a system to support either classes or types and not both.

Class or type hierarchies

Any subclass or subtype will inherit attributes and methods from its superclass or supertype.

Overriding, Overloading and Late Binding

= Qverloading: A class modifies an existing method, by using the same name, but with a
different list, or type, of parameters.

= Qverriding: The implementation of the operation will depend on the type of the object it is
applied to.

= [ate binding: The implementation code cannot be referenced until run-time.

Computational Completeness

SQL does not have the full power of a conventional programming language. Languages such

as Pascal or C are said to be computationally complete because they can exploit the full

capabilities of a computer. SQL is only relationally complete, that is, it has the full power of

relational algebra. Whilst any SQL code could be rewritten as a C++ program, not all C++

programs could be rewritten in SQL.

For this reason most relational database applications involve the use of SQL embedded
within a conventional programming language. The problem with this approach is that whilst
SQL deals with sets of records, programming languages tend to work on a record at a time
basis. This difficulty is known as the impedance mismatch. Object-oriented databases
attempt to provide a seamless join between program and database and hence overcome the
impedance mismatch. To make this possible the data manipulation language of an
object-oriented database should be computationally complete.

2.2.2 Mandatory features of database systems

A database is a collection of data that is organized so that its contents can easily be
accessed, managed, and updated. Thus, a database system contains the five following
features:

Persistence

As in a conventional database, data must remain after the process that created it has
terminated. For this purpose data has to be stored permanently on secondary storage.
Secondary Storage Management

Traditional databases employ techniques, which manage secondary storage in order to
improve the performance of the system. These are usually invisible to the user of the system.
Concurrency

The system should provide a concurrency mechanism, which is similar to the concurrency
mechanisms in conventional databases.

Recovery

The system should provide a recovery mechanism similar to recovery mechanisms in
conventional databases.

Ad hoc query facility

The database should provide a high-level, efficient, application independent query facility.
This needs not necessarily be a query language but could instead, be some type of graphical
interface.

The above criteria are perhaps the most complete attempt so far to define the features of an
object-oriented database in 1989. Further attempts to define an OODBS standard were
made variables of researchers. One of them is a group called Object Data Management
Group (ODMG). They have worked on an OODBS standard for the industry. The recent
release is ODMG-2 in1997.

2.3 Making OOPL a Database

Basically, an OODBMS is an object database that provides DBMS capabilities to objects that
have been created using an object-oriented programming language (OOPL). The basic
principle is to add persistence to objects and to make objects persistent. Consequently
application programmers who use OODBMSs typically write programs in a native OOPL
such as Java, C++ or Smalltalk, and the language has some kind of Persistent class,
Database class, Database Interface, or Database API that provides DBMS functionality as,
effectively, an extension of the OOPL.

Object-oriented DBMSs, however, go much beyond simply adding persistence to any one
object-oriented programming language. This is because, historically, many object-oriented
DBMSs were built to serve the market for computer-aided design/computer-aided
manufacturing (CAD/CAM) applications in which features like fast navigational access,
versions, and long transactions are extremely important. Object-oriented DBMSs, therefore,
support advanced object-oriented database applications with features like support for
persistent objects from more than one programming language, distribution of data, advanced
transaction models, versions, schema evolution, and dynamic generation of new types.

The following subsection describes object data modeling and the persistency concept in
OODB.

2.3.1 Object data modeling

An object consists of three parts: structure (attribute, and relationship to other objects like
aggregation, and association), behavior (a set of operations) and characteristic of types
(generalization/serialization). An object is similar to an entity in ER model; therefore we
begin with an example to demonstrate the structure and relationship.

Publisher

name: String

Book 1." publishedBy registerNo: Int
composedOf e title: String
ISDN: Int
1 writtenBy Author
PaN)
name: Name
authorNo: Int
v 4
Chapter FictionBook ArtBook
name: String age: Int style: String

Figure 2 Book

The structure of an object Book is defined as following:

class Book ({
title: String;
ISDN: Int;
publishedBy: Publisher inverse publish;
writtenBy: Author inverse write;
chapterSet: Set<Chapters;

}

class Author {
name: String;
authorNo: Int;
write: Book inverse writtenBy;

}

Attributes are like the fields in a relational model. However in the Book example we have,
for attributes publishedBy and writtenBy, complex types Publisher and Author,
which are also objects. Attributes with complex objects, in RDNS, are usually other tables

linked by keys to the employee table.

Relationships: publish and writtenBy are associations with I:N and 1:1 relationship;
composed_of is an aggregation (a Book is composed of chapters). The 1:N relationship is
usually realized as attributes through complex types and at the behavioral level. For

example,
class Publisher {
publish: Set<Book> inverse publishedBy;

Method insert (Book book) {
publish.add (book) ;
}

example

Generalization/Serialization is the is_a relationship, which is supported in OODB through
class hierarchy. An ArtBook is a Book, therefore the ArtBook class is a subclass of Book
class. A subclass inherits all the attribute and method of its superclass.

class ArtBook extends Book ({

style: String;
}

Message: means by which objects communicate, and it is a request from one object to
another to execute one of its methods. For example:

Publisher object.insert (”Rose”, 123,..)

i.e. request to execute the insert method on a Publisher object)

Method: defines the behavior of an object. Methods can be used
— to change state by modifying its attribute values

— to query the value of selected attributes

The method that responds to the message example is the method insert defined in the
Publisher class.

2.3.2 Persistence of objects

Persistence, as mentioned before, means that certain program components “survive” the
termination of the program. Thus these components have to be stored permanently on
secondary storage.

Typically, persistence or non-persistence is specified at object creation time. There are two
possible ways to make an object persistent:
(1) explicitly call built-in function persistence — certain objects are persistent

(2) automatically make object of persistent types persistent — all objects are
persistent

There are several object-oriented DBMSs in the market (e.g., Gemstone, Obijectivity/DB,
ObjectStore, Ontos, 02, Itasca, Matisse). These products all support an object-oriented data
model. Specifically, they allow the user to create a new class with attributes and methods,
have the class inherit attributes and methods from superclasses, create instances of the
class each with a unique object identifier, retrieve the instances either individually or
collectively and load and run methods.

Most of these OODBs support a unified programming language and database language.
That is, one language (e.g., C++ or Smalltalk) in which to do both general-purpose
programming and database management.

2.4 GemStone

The GemStone data management system, developed at Servio Logic, was one of the first
and simplest commercial OODBMS products. It is based on Smalltalk, with very few
extensions. GemStone merges object-oriented language concepts with those of database
systems. And provides an object-oriented database language called OPAL which is used for
data definition, data manipulation and general computation.

2.4.1 Architecture

The GemStone system exhibits client/server architecture, and is distributed over two
processes: the Gem and the Stone processes. The Stone process, running on the server,

8

delivers the data management capabilities performing disk 1/O, concurrency control, recovery
and authorization.

Stone uses unique object id called object-oriented pointers (OOPs) to refer to objects, and an
object table to map an OOP to a physical location. The Gem process runs either on the
server or on a client. It comprises compilation facilities, browsing capabilities, and user
authentication.

VAX LAN

Network Software

GEM Process GEM Process
STONE Process

VMS File I1/0

Figure 3 GemStone Architecture

2.4.2 Object model

The GemStone object model is very closely related to the Smalltalk-80 model.
The three principal concepts of the GemStone model and language are object, message,
and class. All the objects in GemStone are made persistent.

2.4.2.1 Classes

Every GemStone object is an instance of exactly one class. Objects with the same internal
structure and methods are grouped together into a class and are called instances if the class.

2.4.2.2 Objects

An object is a chunk of private memory with a public interface. Internally, most objects are
divided into fields called instance variables. Each instance variable can hold a value, which is
another object. Objects communicate with other objects by passing messages. Object is the
root of all super/subclass hierarchy.

2.4.2.3 Messages

In GemStone, all actions are invoked by message passing. Messages are requests for the
receiving object to change its state or return a result. The set of messages an object
responds to is called protocol (its “public interface”). An object may be inspected or changed
only through its protocol. The basic form of all message expressions is <receiver>
<message>. The <receiver> part is an identifier or expression denoting an object that
receives and interprets the message. The <message> part gives the selector of the message
and possible arguments to the message.

2.4.2.4 Methods

The methods are the concrete implementations that can be invoked by a message sent to an
instance. An object can only responds to a message if it contains a method with a selector
that matches the message format. Methods are provided to query and manipulate the
internal structure.

sender receiver
message

selector
o1 02

Figure 4 Message passing in GemStone

2.4.3 Collection classes

In GemStone, a class defines the structure of its instances, but rarely keeps track of all the
instances. Instead, collection objects — Arrays, Bags, sets — can store groups of instances —
not necessarily of the same type — in indexable or anonymous storage slots. GemStone
provides built-in support for managing collections of objects by the pre-defined Collection
class and its subclasses.

= Array: like String, is a subclass of Collection’s subclass SequenceableColletion.

» Bags and Sets: are non-sequenceable Collections, in which instance variables are
anonymous. They do not maintain any order on their elements. The difference between a
Bag and a Set is that the instances of Bag may contain the same object several times,
whereas a Set contains an element just once — even though it might have been inserted
several times

Figure 5 Class hierarchy of Collection classes

Object
Collection
/ \
Sequen'ceabIeCoIIetion Bag (NSC)
Strir\é \ Array Set

2.5 Comparisons of OODBS & RDBS

2.51 Correspondence between OODBS and RDBS

To have an idea about OODBS, the table shows the correspondence between object-
oriented and relational database systems:

10

OODBS

RDBS

object

tuple

instance variable

column, attribute

class hierarchy

database scheme (is-a relation)

collection class relation

OID key

message procedure call
method procedure body

The correspondence between cbject-oriented and relational database systems

Note that this correspondence table is only an approximate equivalence. The properties in
OODBS are actually not applicable in RDBS and vice versa.

2.5.2 Comparison

Although there are great advantages of using an OODBMS over an RDBMS, some
disadvantages do exist. The following table shows the advantages and disadvantages using

OODBS over RDBS.
Advantage Disadvantage
= Complex objects & relations = Schema change (creating, updating...) is
= (Class hierarchy non trivial, it involves a system wide
= No impedance mismatch recompile.
= No primary keys = Lack of agreed upon standard
= One data model = Lack of universal query language
= High performance on certain tasks = Lack of Ad-Hoc query
= Less programming effort because of = Language dependence: tied to a specific
inheritance, re-use and extensibility of language
code = Don’t support a lot of concurrent users

Advantages and disadvantages using OODBS over RDBS

Because of the existing disadvantages of using OODBS, the approach of ORDBMS has
become popular. In the future, it is likely that we will see the continued presence of OODBMS
that address the needs of specialized market and the continued prominence of ORDBMSs
that address the needs of traditional commercial markets.

The following chapter specifies the indexing design issues and its implementation in
GemStone.

11

