
48 •

· ; ·: :Networl<:~,: ,_. ,
. ,

. .. ~--~·

Figure 3.12 Distributed system.

\

~--~
• _. Processor , ,,.

>'

Figure 3.13 Distributed system.

3.12.6.1 Advantages of a "Shared Nothing Architecture"

Big Data and Analytics

I

1. Fault Isolation: A "Shared Nothing Architecture" provides the benefit of isolating fault. A fault in a

single node is contained and confined to that node exclusively and exposed only through messages (or

lack of it).
2. Scalability: Assume that the disk is a shared resource. It implies that the controller and the disk band­

width are also shared. Synchronization will have to be implemented co maintain a consistent shared

state. This would mean that different nodes will have to take turns to access the critical data. This

a

i

Big Data Analytics • 49

imf)oses a limit on how m~y nodes can be added to the distributed shared disk system, thus compro-
ffiising on scalability. 1 •

fa.7 CAP Theorem Explained ·•

• The CAP theorem is also called the..f1teµ;erl_T:f.ztfl8Pl.lt states that in a distributed computing environment
(a collection of interconnected nodes that share data), it is impossible to provide the following guarantees.
Refer Figure 3.14. At best you can have two of the following three - one must be sacrificed.

1. Consistency
2. Availability
3. Partition tolerance

3.12.7.1 CAP Theorem

Let us spend some time understanding the.earlier mentioned terms.

I. Consistency implies that every read fetches the last write.
2. Availability implies that reads and writes always succeed. In other words, each non-failing node will

return a response in a reasonable amount of time.
3. Partition tolerance implies that the system will continue to function when network partition occurs. _

• ~ -- -----..... -._.,,._~ ..__ ~- ;,,,,.r-~

Let us try to understand this using a real-life situation.
You work for a training institute, "XYZ." The institute has 50 instructors including you. All of you report

to a training coordinator. At the end of the month, all the instructors together with the training coordina­

tor peruse through the training requests received from the various corporate houses and prepare a training
schedule for each instructor. These training schedules (one for each instructor) are shared with "Amey," the

office administrator. Each morning, you either call the office helpdesk (essentially Arney's desk) or check

in-person with Amey for your schedule for the day. In case a training request has been cancelled or updated
(updates can be in the form of change in course, change in duration, change of the training timings, etc.),

Amey is informed of the upda~es and the schedules are subsequently updated by him.
Things were good until now. Few corporate houses were your clients and the schedules of each instructor

could be smoothly managed without any major hiccups. But your training institute has been implement­

ing promotion campaigns to expand the business. As a result of advertising in tpe media and word of

mouth publicity by your existing clients, you suddenly see an upsurge in training requests from existing and

n·ew clients. In consequence of that, more instructors have been recruited. Few trainers/ consultants have

also been roped in fr~m other training institutes to help tack.le the load. • .,. -

• ~ C '• ~

• C<?nsi~tency .

Availabilit "

Partition tolerance
• '

Figure 3.14 Brewer's CAP .

50 •
Big Dara and Analytics

Now when you go to Amey to check your schedule or call in at the helpdesk, you are prepared for a wait

in-_the queue. Looking at the current state of affairs, the uaining coordinator decides to recruit an additional

office administrator "Joey." The helpdesk number will remain the same and will be shared by both the office

adi,iinistrators.

'"fhis arrangement works well for a couple of days. Then one day ...

You: Hey Amey!

. Amey: Hi! How can I help?

You: I think I am scheduled to anchor ~ training at 3:00 pm today. Can I please have the details?

Amey: Sure! Just a minute.

Amey browses through the file where he maintains the schedules. I-ie does not see a uaining scheduled against

your name at 3:00 pm today and responds back, "You do not have any training to conduct at 3:00 pm."

You: How is that possible? The uaining coordinator called up yesterday evening to inform of the same and

said he has updated the office administrators of the same.

Amey. Oh!· Did he say which office administrator? It could have been Joey. Please check with Joey.

Amey: Hey Joey! Please check the schedule for Paul here ... Do you see something scheduled at 3:00 pm

today? /

Joey: Sure enough! He is anchoring the training for client "Z" today at 3:00 pm.

A clear case of i,u:onsistmt system!!! The updates in the schedule were shared by the training coordinator

with Joey and you were checking for your schedule with Amey.

You share this incident with the uaining coordinator and that gets him thinking. The issue has to be

addressed immediately otherwise it will be difficult to avoid a chaotic situation. He comes up with a plan

and shares it with both the office administrators the following day.

Training Coordinator. Folks, each time that either an instructor or me calls any one of you to update a

schedule, make sure that both of you update it in your respective files. This way the instructor will always

get the most recent and consistent information irrespective of whom amongst the two of you he/ she

speaks to. .
Joey: But that could mean a delay in answering either a phone call or sharing the schedule with the instructor

waiting in queue.

Training C?f rdinato!'- Yes, I understand. But there is no way that we can give incorrect information. ,

Amey: There is this othe~ problem as well. Suppose one of us is on leave on a particular day. Th~t would

mean that we ·cannot take any update related calls as we will not be able to simultaneously update both the

files (my file and Joey's).

Training Coordina~or. Well, good point! That's the availability problem!!! But I have thought about that as

well. Here is the plan:

1. If one ~f yo~ rece~ves the update call (any updates to any schedule), ensure th~t you inform the other
person 1f he 1s available.

2. In case the other person is not available, ensure that you inform him of all the updates t all ch dul
• aill' o sees

v1a em . t 1s a mus't!!!

3. When the other _p eison resumes duty, the first thing he will do is update his file with all the updates co

all schedules that he has received via email.

Big Data Analytics • 51

Wow!!! That is sure a Consistent and Available system!!!
. .

Looks like everything is in contlol. Wait a minute! There is a tiff that has taken place between the office

administrators. The two are pretty much available but are not talking to each oth~r which, in other words,

means that the updates are not flowing from one to the other. 'We have to be partition tolerant!!! As a train­

ing coordinator, you instruct them saying that none of you are taking any calls requesting for schedules or

updates to schedules till you' patch up. This implies that the system is partition tolerant but not available at

that time.

In summary, one can at most decide to go with two of the three.

1. Consistent: The instructors or the training coordinator, once they have updated information with

you, will always get the most upd~ted information when they call subsequently.

2. Availability: The instructors or the training coordinators will always get the schedule if any or both of

the office administrators have reported to work.

3. Partition Tolerance: Work will go on as usual even if there is communication loss between the office

administrators owing to a spat or a tiffi

When to choose consistency over availability and vice-versa ...

1. Choose availability over consistency when your business requirements allow some flexibility around

when the data in the system synchronizes.

2. Choose consistency over availability when your business requirements demand atomic reads and

wntes.

Examples of databases that follow one of the possible three combinations:

1. Availability and Partition.Tolerance (AP) • • C ::,
2. Consistency and Partition Tolerance (CP) A , .
3. Consistency and Availability (CA) f - ~ ~"--v 1"0 \ ~ --('"~....ce..

Refer Figure 3 .15 to get a glimpse of databases that adhere to two of the three characteristics of CAP theorem.

Traditional RDBMS
PostgreSQL, MySQL,
etc.

C
Commits are atomic
across the entire
distributed systems

A

CP
HBase
MongoDB
Redls

Is available/ accessible/
operational at all times

Riak, Cassandra, Couctib~.
Dynamo like systems

p
System responds incorrectly
only when there Is a total
network failure

MemcacheDB
BlgTable like systems

Figure 3.15 Databases and CAP.

scions to start with:

used?
~d computing.

-;ed,r

ugh availability.

~bievedr

Big Data and Analytics

ven data item. If no new updates are made to this given data item for a stipulated period of

1ally all accesses to this data item will return the updated value. In other words, if no new

made to a given data item for a stipulated period of time, all updates that were made in the

t applied to this given data item and the several replicas of it will percolate to this data item

.ys as current/ recent as is possible.

tlica convergence?
it has achieved eventual consistency is said to have converged or achieved replica convergence.

·olution: How is the conflict resolved?

:pair: If the read leads to discrepancy or inconsistency, a correction is initiated. It slows down

. operation.

epair: If the write leads to discrepancy or inconsistency, a correction is initiated. This will

te write operation to slow down.

ronous repair: Here, the correction is not part of a read or write operation.

✓ TOP ANALYTICS TOOLS

arth of analytical tools in the market. Please find below our list of few top analytics tools.

rovided the links after each tool for you to explore more ...

1
1pport.office.microsoh.com/ en-in/ article/Whats-new-in-Excel-2013-1 cbc42cd-bfaf-43d7-

88ef1392fd?Correlationld=la217lcc-191f-47de-8a55-08a5f2e9c739&ui=en-US&rs=en­

[N

'NW.sa5.com/ en_ us/home.html

;s Modeler

NW-01.ibm.com/software/analvtics/soss/oroducts/modeler/

I
i
' \

,

I
I
I

Big Data Analytics
• 53

✓ Salford systems (World Programming Systems)

)'ttp://www.salford-syste~s:com/

;. WPS
http://www.teamwpc.co. uk/ products/wps

3.14.1 Open Source ~nalytics Tools

Let us look at a co~ple of open source analytics tools. We have also provided the links after each tool for you.

to explore more ...

(!} R analytics

A http:/ /www.revolutionanalytics.com/

Cb)Weka
http://www.cs.waikato.ac.nz/ ml/weka/

REMIND ME

• Quite ·a few data analytics and visualization tools are avail~le in the market _J:oday from leading f

vendors such as IBM, Tableau, SAS, R Analydcs, Statistica,. World Programming Systems (WPS), t

• etc. to help process and analyze yout big data~ . . .

• Big data aiialytlcs is a about a tight handshake between three communities: IT, business use~, and

data scientists. : .

• Data science is the science of ex.tracting knowledge from data.

• The CAP ·theorem is aiso call&i the Brewer's Theorem .. It states that in a distributed computing

environment (a collectionT of interconnected nodes that share data), it is impossible to provide the ~

following guarantees. Ar best you can have two of the:following three - one must be sacrificed. (
~

• Consistency

• Availability
• 'Partition tolerance

CONNECT ME (INTERNET RESOURCES)

• http://en.wildpedia:org/wiki/.Oata_science . ~

• http:/ /simplys,tatistics.org/20 J.3/.12/l2f~e-key-word-in-qara-science-is--not-data-it-is-science/ I

• http://www.oralyrics.com/20-12/06/data-science-is-multiclisciplinary.html

• http://spot6re.tibco.com/blogl?p=4240.

• http://repor.ts.informationweek.com/ abstract/ 106/ 125 5/Financial/tech-centcr-taking-advantage­

of-in-memory-analytics.html

I • • // --- :_ "----·=---.m lr ,.,un/Qntt-w~rp/infnrmation-manaeement/oradc-analytics-package- l

]

I
I -

;c ... ;;;g:4++±

Big Dara and Analytics

58 •

The big data technology landscape can be majorly studied under two important technologies:

1. NoSQL

2. Hadoop

4.1 NoSQL (NOT ONLY SQL)

The rerm NoSQL was fuse coined ~~.,__, 1998 to name his lightweight, o ~::-:~-,,r' •

database that did not expose the stan ce. The term was reintroduced by s m ear

4.1.1 Where is it Used?

NoSQL databases ~e widely used in big data and other real-time web applications. Refer Figure 4.1. NoS<?,L

databases is used to stock log data which can then be pulled for analysis. Likewise it is used to store social

media data and all such data which cannot be stored and analyzed comfortably in RDBMS.

4.1.2 What is it?

NoSQL stands for Not Only SQL. These are non-relational, open source, distributed databases. They are

hugely popular today owing to their ability to scale out or scale horizontally and the adeptness at dealing

with a rich varie~ of data: structured, semi-structured and unstructured data. Refer Figure 4.2 for additional

featuris"of NoSQL:·. - .___..._- ' u ~. ,,..,_,_,,~• ... ~ --=-- .

1. NoSQL databases are non-relational: They do not adhere to rdarional data modd. In fact, they are

ei~er ~er-value pai_rs or gomwr-oriented or column-oriented or graph-based databases.

/-~istributed: They are distributed ~ea"iii~~chti.J~~!buted~~ro~ s~us_tg_con-

~rured plliw.::costcomlllQ.cjLcy,h..~chv~ - ------ --

., - _,.. .. .__.,.,_ ~= ~ • - --...... - --... --- . -·--- --------~.--........ ---•-·.:.-- ~--- _,._

Where to use NoSQL? }
.-

. .
Socfal.networking feeds •

Time-based data (not easily analyzed in a ADBMS)

figure 4.1 Where to use NoSQL?

Non-relational data storage systems

No fixed table schema

-~.....__...,._-ir-,•--~ -•s:... .. :. ,". ~ .
' ... -

No joins :

No multi-document transactions

Relaxes one or more ACID properties

Figure 4.2 . What is NoSQL?

I
I

I
I
I
I
I
I

I

J

I

l
l
j

I

I

' j
~

t
I •

' f

I
J
,J
;

The Big Data Technology Landscape • 59

" '

3. No support for ACID properties-
1
(Atomicity, Consistency, Isolation, and Durapility): They do not

offer support for ACID properties of transactions. On the contrary, they have adherence to Brewer's

CAP (Consisten , Availabili and Partition tolerance) theorem andareoften~ii~~isTug ~n

cm:is1stency in favor of avai a 1 1ty an partition to erance:' .

4. No fixed table schema: NoSQ.L databases are becoming increasing popular owing to their support for

flexibility to the stjlema. They do not mandate for the data to strictly adhere to any schema structure

at the time of storage.

4.1.3 Types of NoSQL Databases

We have already stated that NoSQL databases are non-relational. They can be broadly classified into the

following:

1. Key-value or the i hash table./

2. Schema-less.

Refer Figure 4.3. Let us take a closer look at key-value and few other types of schema-less databases:

1. Key-value: It maintains a big b.Mh table a£ke~ ~d ... !alues. Fo~ e!.~ple, Dynamo,~ ~ etc.

Sampk Key-Value Pair in Key-Valw Database l J •
·i······· •• ········v~·········· d:>

First Name Simmonds

• Last Name David
(J~ ··············"'"""""'''''''"""''

(_;(\

2. Documen; It maintains data in collections constituted of documents.

Apache Couch.DB, Cou~hb~e, ~arkLogic, ~­
Sample Document fn Document Database

(v
For example, MongoDB,

{
"Book Name": "Fundamentals of Business Analytics", §)

,, "Wil I d. " f':) 1

"Publisher : . " 1 ey ~ 1a , ;, ~ ').,..t

"Year of Publicat10n : 2011 I{' } ~~ J
3

. Column; EC:-ch sto~ block has data from only ,2ne colu~n. For example: Cassandra, ~etc.

Figure 4.3 Types of NoSOL databases.

I
r I

I
i

i l
I j

I

1.1

I. l ! ' !

60 •
Big Oaca and Analytics

'~l~'-

4. Grap.{ They are also called network database. A graph stores data in nodes. For example, Neo4j,

HyperGraphDB, etc.

Sample Graph in Graph Database

Label: knows since 2002 ._ ,. • "
-----y ,., ___ "

• fr: t,i~
-----~~ i. ~··;

---- t 1/
Label: knows since 2002

bel: ;:.:.,, is member since 2002

Label: is member since 2003

fa Table 4.1 for popular schema-less databases.

4.1.4 Why NoSQL?

1. It has scale our architecture instead of the monolithic architecture of relational databases.

•
----- -

2ylt can house large volumes of structured, semi-structured, and unstructured data.

J Dynamic schema: N,.2SQL database allows insertion of d:3-ta wi~hout a_e!!:4qi~? schema. In other

words, it_§.cilitates application cbang.es_,...i,,n...,keaLtime, whis:h thus SlH)ports faster development, easy

ti:\ code integration, a1!2 reg~ir~es l~ss database administration.-~

~Arito-sharding: Il a~~~d.cal]..y..spreads d~~~9s~ ~!} .. arbiJJ.]._~-0:-~-~ q[s,-ewe.t:s. T_he ~eplicati_gn

in question is rnor~_ofte~-~~~~.Y~Il~r~ ~(~]1~ COIJ1positj_qn gf the se . .tVecpQPLir balances the load

of data and query on the·availabte servers; and if and when a server goes down, ~ is quickly repla~d

without anunaj..o;: activicy._disruptia.a.s. '

5. Replication: It offers good support for replication which in turn guarancees high availabili~ fault

toler~ce, and disaster recQ_v~~--
c- -

"'=""'""" w: /
I

4.1.5 Advantages of NoSQL

Let us enumerate the advantages of NoSQL. Refer Figure 4.4.

I. Cao e~ily scale up and down: NoSQL database supports scaling rapidly and elastically and even

allows to scale to the clL

Table 4.1 Popular schema-less databases

...
 ········· ' ················· .. ······················

Key-Value Data Store Column-Oriented Data Store

• Cassand1/

• HBase

• HyperTable /

• Riak

• Redis

• Membase

Document Da~ St~re

• MongoDB~

• CouchDB /

~ RavenDB

Graph Data Store

• InfiniteGrapi?'

• Neo4j /

• AllegroGraph /

•• ••••••••••••••••••••••····························
 ············· ···················· ..•.. ····················· .• ar

cs

],

The Big Dara Technology Lands cape
• 61

Figure 4.4 Advantages of NoSQL.

/4 Cluster scale.• It allow di "b • f d

-.if,)/Pe,:form,,nc; scale: Ir
5
505:~ u ;:: ; iJo ~~~as~ acr:' 1 QQ~ nodes ofi:en in multiple data centers.

'1() Data scale: It sup h. . f b" '.",+~ta, as~~ s,w.d.~ntes per second.

' ports ousmg o I ill1on+ documents in the database. .

2

• Doesnt require a pre-defined sche • N
SQL d

·

It is pretty B "bl F l ma: o oes not reqwre any adherence to pre-defined schema

RD . ext e. _or ex~p e, if we look at MongoDB, the documents (equivalent of records i~

B_MS) m = collection (equivalent of table in RDBMS) can have different sets of key-value pairs.

!-P
1db:lisI O I," B~okName" =. "Fundamentals of business analytics", ''.AuthorName": "Seema Achary "

u her : Wiley India"}
a ,

Lid:102, "BookName":"Big Dara and Analytics"}

3. Ch~~ _easy to implement: Deploying NoSQL properly allows for all of the benefits of scale, high

-~ability, fuult tolerance, etc. while also lowering operational costs. -

/.Relaxes the data consistency requirement: NoSQL databases have adherence to CAP theorem

(9'nsistency, Availability, and Partition Tolerance). Most of the NoSQL databases compromise on con­

SIStency in favor of availability and partition tolerance. However, they do go fo~ eventual consistency.

5. Data can be .repucated to multiple nodes and can be partitioned: There are two terms iliat we will

discuss here:

(a) Shawling: Sharding is when different pieces of data are distributed across multiple servers.

NoSQL databases support auto-sharding meaning they can natively and aurogiatically spread

data across an arbitrary number of servers, without requiring the application to eve"i-i be aware of

the composition of the server pool. Servers can be added or removed from the data layer without

application downtime. This would mean that data and query load are automatically balanced

across servers, and when a server goes down, it can be quickly and transparently replaced with no

application disruption.

(b) Replication: Replication is when multiple copies of data are stored across the cluster and even

across data centers. This promises high availability and fault tolerance.

~
zs:e-tf¢lob; .. ~') ~-~ ..

... _:- -•:'loi- ·" -- ..,

4.1.6 What We Miss With NoSQL?

With NoSQL around, we have been able to counter the problem of scale (NoSQL scale~ out). There is also l

ch B 'b'l' 'th hema design However there are few features of convennonal RDBMS that /

e exi 1 icy w1 respect to sc •
- I

are greatly missed. Refer Figure 4 .5.
'----

_ j

,

61 •

~'\J,J, ,,'ll'..'~tt<~ '~ w:':~,C~ • .. ~ ... ,. ... -1-.-~ .. ~1

_What w_e MISS witrd·-lq$OL_ t
. '... ' •

~~l"~f>M:,,-~- ~ .i.-.; ~i,NY,,·~4---£! . ,!..:,:· •

: '·~ •. ✓:
·.:I.

···~·u.,,.,,•~ I,,µ.

Big Data and Analytics

--~~oup __ y :;. ::_:. ~-.. _._;~}

.,.W,';'"""-• ... ~ -.1~•"' ..:c. ~.~· ~ :-.·; ~ I
: . . • .ACID;'pro·pertle~ • .- ' .• ' ; . j

. .

...~~.-11~-C.">1"'-w•'i· '1,.;,M,-_~q.J .(..-."""-~~l-1,'f.;JUJ---••,... ~.

' • Easy integration\vith other • : _[
applicatiQ!1S th~~_si.Jpport SOL:.· ,'

Figure 4.5 What we miss with NoSQL?

/4t does not suppon joins. However, it compensates for it by allowing embedded documen~in

1'1,.on.goPB-lt does not have provision for ACID properties of transactions. FI,2~e~~r, .. ~:o£er~-~c

~rewer's CAP theorem. NoSQL does not have a standard SQL interface but NoSQL databases such as

MongoDB and Cassandra have their own rich query language [MongoDB query language and Cassandra

query language (CQL)] to compensate for the lack of it. One thing which is dearly missed is the easy inte­

gration with other applications that support SQL.

4.1. 7 Use of NoSQL in Industry

NoSQL is being put to use in varied industries. They are used to support analysis for applications such as

web user data analysis, log analysis, sensor feed analysis, making recommendations for upsell and cross-sell,

etc. Refer Figure 4.6.

Graph•basesjl
' (

Network ·modeling,
recommendation,
Walr'nart - upsell;

cross~sell

/~)
• ~~ Key-Valve Palra ~-II(• _,,,,,,,

Shopping carts
web user data

analysis (Amazon,
Linkedln)

Document basitd <¥ .
Real-time

analytics, logging,
document archive

management

Column-oriented
=

Analyze huge.web
user actions
sensor' tee.els

(Facebook, Twitter),
eBay, Netflix

. F;gure 4.6 Use of NoSQL in industry.

:s

I
I

I

The Big Data Technology Landscape
• 63

I
4.1.8 NoSQL Vendors

Refer Table 4.2 for few popular NoSQL vendors.

I

/ 4.1. 9 SQL versus NoSQL .,

Refer Table 4.3 for few,salienc differences· between SQL and NoSQL.

L.2 Fe~ popular NoSQL vendors

•••••••••••••• .. ••••••••••••••••••••••••••••••••••••••·••·•···•····•·····•···•····•··••••••••••
Company Product MC:)stJ~!!!.~lYJJ~id by

Amazon DynamoDB \Jinked!n, Mozilla',
,.:..-·:---:..-...-- - __.

Facebook Cassandra ~~x, _lwitt~r~~~aY)

Google BigTable fAdobe Photoshop i

••• i, "'~~

\.. . , ---

~ 4.3 SOL versus NoSQL
..

.. ,

SQL NoSQL

Relational database

Relational model

Pre-defined schema

Table based databases

Vertically scalable (by increasing system resources)

Uses SOL

Not preferred for large datasets

Not a best fit for hierarchical data

Emphasis on ACID properties

Excellent support from vendors

Supports complex querying and data keeping needs

Can be configured for strong consistency

Examples: Oracle, D82, MySQL, MS SOL, PostgreSQL,

etc.

Non-relational, distributed database

Model-Less approach

Dynamic schema for unstructured data

Document-bas~ or graph-base~ or ':Y1de column sto.t,e

or ~s databases . .___

~rizontaU,y scalahLa.(by creating a cluster of~\ e-/

commodity machines)

Uses UnQL (Unstructured Query Language)

Largely preferred for large datasets

Best fit for hierarchical storage as it foUows the key­

-value pair of storing data similar to JSON (Java Script

Object]mta.tio.n)
~

Follows Brewe(s CAP theorem

Relies heavily on community support

Does not have good support for complex querying

Few support strong consistency (e.g., MongoDB), few

others cafl be confjgured for eventual consistency

(e.g., Cassandra)

MongoDB, HBase, Cassandra, Redis, Neo4j, CouchDB,

Couchbase, Riak, etc.
o e O I O f O • e f O O O O O O • O ' I o O • 0 I O O • f O O I O O O f O t O O O O I t f O f O O O t O o o O ' o t o O I o O o O I f O f O t O O O O O O f ♦ 0 0 0 0 t o I o O O o O O O O O O O I O t O t O O O O I O f I O f f o I o t O I I ♦ o t o o o o o O O o t o o o o I t o I I o o 0

,....--------
_.

c:ar:7G

64 •
Big Dara and Analytics

~10 NewSQL

..rr.:,· ~ ', -;- -• ' . . • ,_,:........,
;,;•.·.~n ar~~1t_ecture that provides higher per node i
· perforrftaf)c;e.yis~a-vis traditional RDBMS solution I

. .

!· ·Non:iockiri!i ~ncurrency contr~r;;;;anis,;;;-7

. ·.1 that real· time reads will riot conflict with writes i

Figure 4. 7 Characteristics of NewSQL.

There is yet another new term doing the rounds - "NewSQL". So, what is NewSQL and how i~ ic different

from SQL and NoSQL?

~at is that we love ab2!!-L~foSQL.and is nor there with ~ditioaa.LJ3 D_BM.§ and what is that we

loyea6out SQL tha-5_ N~L d~ not have SU£_l2QLC foi:C(ou guessed it right!!! We need a database diaThas

the same scalable performance of NoSQL systems for 0..n.h_ine Transi,oiow_a~g (OLIT)_ while still

maintaining the ACID guarat!tees ofa rradioonal database. This new modern RDBMS is called NewSQL.

lfsupporrs rdacional data model and uses SQL as---d1eir primary interface. -

4. 1. 10. 1 Characteristics of NewSQL

Refer Figure 4.7 to learn about the characteristics of NewSQL. NewSQL is based on the shared nothing

architecture with a SQL interface for application interaction.

4.1.11 Comparison of SQL, NoSQL, and NewSQL

Refer Table 4.4 for a comparative study of SQL, NoSQL and NewSQL.

Table 4.4 Comparative study of SOL, NoSQL, and NewSQL

...................................
............... 1'F•..• ;-;

..................................
.••...•.....

SOL NoSQL NewSQl

Adherence to ACID properties Yes

OLTP /OLAP Yes

No

No

No

Yes

Yes

Maybe
Schema rigidity
Adherence _to data model, __ ___

Data Format Flexibility

Scalability

Yes
Adherence to relational model

No y~ Maybe -
Scale up Scale out Scale out

Vertical Scaling ~ Horizontal Scaling / --

Distributed Computing Yes v v ,es ,es •

.. c~~~~ni.~.s~pP.o~············~·····························~········,~1y.g;.~' .

I
l
I

I

I

I
I ;

I
I
I
I

1
I

The Big Data Technology Landscape

Figure 4.8 Hadoop.

4.2 HADOOP

·"'

• 65

,
\

Hadoop is an open-source project of the Apache foundation. It is a framework written in Jav~, originally

developed by Doug Cutting in 20Q5 who named it afte.: his son's toy elephant. He was working with Yahoo

then. Ir was created to support distribution for "Nutch:, the text search engine: Hadoop uses Google's

MapReduce and Google File System cechnologies a? its foundation. Hadoop is now a core part of the com­

puting infrastructure for companies such as Yahoo, Faceboqk,.J.m1<~..end.Jwitter, etc. Refer Figµre 4.8.

4.2.1 Features of Hadoop

Let us cite a few features of Hadoop:
)

1. It is optimized to handle massive quancities of structured, semi-structured, and unstructured data,

using commodity hardware, that is, relatively inexpensive computers.

2. Hadoop has a shared nothing architecture.
3. It replica.res its data across multiple computers so chat if one goes down, the data can still be processed

from another machine chat stores its replica.
4. Hadoop is for high throughput rather than low latency. le is a batch operation handling mas~iye quan-

-- cities of data; therefore the res onse time is not immediT -. _

5. I~mplements On-Line Transaction rocessing (9LTP) and On-Line Analytical Processing (OLAP).

However, it is not a replacement for a relation~ database management system.

6. It is NOT good when work cannot be parallelized or when there are dependencies within the data.

7. It is NOT good for processing small files. It works best with hug~ data fil~~ d.&uets.

4.2.2 Key Advantages of Hadoop

Refer Figure 4.9 for a quick look at the key advantages of Hadoop:
\

1. Stores data in its native format: Hadoop's data storage framework (HDFS - Hadoop Distributed

File System) can store data in its native format. There is no structure that is imposed while keying

in data or storing data. HDFS is pretty much schema-less. It is only later when the data needs co be

processed that structure is imposed on the raw data.

I
. I

,a

] 110 •
Big Data and Analytics

its "rich query language", "fast in-place update", etc. The chapter will cover the CRUD (Create, Read,

Update, and Delete) operations in detail.

To gain the maximum from the chapter, please attempt the Test Me exercises given at the end of the

chapter.

6.1 WHAT IS ·MONGODB-?

MongoDB is

I. Cross-platform.

2. Open source.

3. Non-relational.

4. Distributed.

5. ~oSQL.
6. Document-oriented data store.

6.2 WHY MONGODB?

Few of the major challenges with traditional RDBMS are dealing with large volumes of data, rich variety of

data - particularly unstructured data, and meeting up to the scale needs of enterprise data. The need is for a

database that can scale out or scale horizontally to meet the scale requirements, has flexibility with respect to

schema; is fault tolerant, is consistent and partition tolerant, and can be easily distributed over a multitude

of nodes in a cluster. Refer Figure 6.1.

6.2.1 • Using Java Script Object Notation (JSON)

]SON is extremely expressive. MongoDB actually does not use]SON but BSON (pronounced Bee Son) - it

is Binary]SON. It is an open standard. It is used to store complex data structures.

• 'oocument oriented

pdate~.J

-Replication

High availability

Figure 6.1 Why MongoDB?

I

j

I
I

I
I

l

,
!
j

I

!
i
f
j
i
'

Introduction to MongoDB • 111

Let us trace the journey from -~sv to XML to]SON: Let 45 look at how data is stored in .csv file. Assume
that this data is about the employf~ of an organization named "XYZ". As can be seen below, the column
values are separated using commas and the rows are ·separated by a carriage returni.. • •

John, Mathews, + 123 4567 8900
Andrews, Symm~nds, +456 7890 1234
Mable, Mathews, +789 1234 5678

This looks good] However let us make it slightly more legible by adding column heading.

FirstName, LastName, ContactNo
John, Mathews, + 123 4567 8900
Andrews, Symmonds, +456 7890 1234
Mable, Mathews, +789 1234 5678

Now assume that few employees have more than one ContactNo; It can be neatly classified as OfficeContactNo
and HorneContactNo. But what if few employees have more ~an one OfficeContactNo and more than one
HomeContactNo? Ok, so this is the first issue we need to address.

Let us look at just another piece of data that you wish to store about the employees. You need to store
their email addresses as well. Here again w_e have the same issues, few employees have two email addresses,
few have three and there are a few employees with more than three email addresses as well.

As we come across these fields or columns, we realize that it gets messy with .csv. CSV are known to store
data well if it is flat and does not have repeating values.

The problem becomes even more complex when different departments maintain the details of their
employees. The formats of .csv (columns, etc.) could vastly differ and it will call for some efforts before we
can merge the ~es from the various departments to make a single fiie.

This problem can be solved' by XML. But as the name suggests XML is highly extensible. It does not
just call for defining a data format, rather it defines how you define a data format. You may be prepared to
undertake this cumbersome task for highly complex and structured data; however, for simple data exchange
it might just be too much work.

Enter JSON! Let us look at how it reacts to the problem at hand.

{
FirstName: John,
LastName: Mathews,
ContactNo: [+123 4567 8900, +123 4444 5555]
}
{
FirstName: Andrews,
LastName: Symmonds,
ContactNo: [+456 7890 1234, +456 6666 7777]
}

{
FirstName Mable,
LastName: Mathews,
ContactNo: +789 1234 5678
}

112 •

Big Data and Analytics

As you can see it is quite easy to read a JSON. There is absolutely no confusion now. One can have a list

of n contact numbers, and they can be stored_with ease. . .

JSON is very expressive. It provides the much needed ease to store and retrieve d~cuments in their real

form. The binary form of]SON is BSON. BSON is an open standard. In most cases it ~nsumes 1~ space

as compared to the text-based]SON. There is yet another advantage with BSON. It is much easier_ and

quicker to convert BSON to a programming language's native data format. There are MongoDB dnvers

available for a number of programming languages such as C, C++, Ruby, PHP, Python, C#, etc.,_ and _each

works slightly differently. Using the basic binary format enables the native data structures to be built quickly

for each language without going through the hassle of first processing]SON.

6.2.2 Creating or Generating a Unique Key

Each JSON document should have a unique identifier. It is the _id key. It is similar to the primary key in

• relational databases. This facilitates search for documents based on the unique identifier. An index is auto­

matically built on the unique identifier. It is your choice to either provide unique values yourself or have the

mongo shell generate the sariie.

0 1 2 3 4 5 6 7 8 9 10 11

Timestamp Machine ID Process ID Counter

6.2.2. 1 Database

It is a collection of collections. In other words, it is like a container for collections. It gets created the first

time that your collection makes a reference to it. This can also be created on demand. Each database gets its

own set of files on the file system. A single MongoDB server can house several databases.

6.2.2.2 Collection

A collection is analogous to a table of RDBMS. A collection is created on demand. It gets created the first

tune that you attempt to save a document that references it. A collection exi~ts within a single database.

A collection holds several MongoDB documents. A collection does not enforce a schema. This implies that

documents within a collection can have different fields. Even if the documents within a collection have same

fields, the order of the fields can be different.

6.2.2.3 Document

A ~o~urn~nt is analogous to a_ row/recor'!-f tuple in an RDBMS table. A document has a dynamic schema.

This un_phe~ that a d~cument 1~ a collection nee~ not nec:ssarily have the same set of fields/key-value pairs.

Shown 1n Figure 6.2 1s a collection by the name students containing three documents.

6.2.3 Support for Dynamic Queries

MongoDB ~ extensive support for dynamic queries. This is in keeping with traditional RDBMS wherein

we have static data ~d ?ynamic quer~es. CouchDB, another document-oriented, schema-less NoSQL data­

base and Mo~goD~ s biggest compeutor, works on quite the reverse philosophy. It has support for dynamic

data and static quenes.

J

I

l
I

I
l

t

I
' j
j

l

cs

st

al
:e
.d
rs
:h
ly

n
)-

te

it

:s

t

t

l

l

I
I

l
I

Incroduction co MongoDB

db.students.insert(

r{~ ·"' RoltNo:. 101,]'JfJJ~~ ~~i.----"71 Documents

~{
EmaiUO:S RollN~: 102.
~ /' ~ge: 18" {
) qont~ctNo RollNo: 103,

E,matUO:S, Age: 19,
ContactNo: 0123456789,
EmaillD:Sample@abc.com
-..:¼-----
)

Collections

Figure 6.2 A collection "students" containing 3 documents.

6.2.4 Storing Binary Data

• 113

MongoDB provides GridFS to support the storage of binary data. It can store up to 4 MB of data. This
usually suffices for photographs (such as a profile picture) or small audio clips. However, if one wishes to
store movie clips, MongoDB has another solution.

It stores the metadata (data about data along with the context information) in a collection called "file".
It then breaks the data into small pieces called chunks and stores it in the "chunks" collection. This process
takes care about the need for ~y scalability.

6.2.5 Replication

Why replication? It provides data redundancy and high availability. It helps to recover from hardware fail­
ure and service interruptions. In MongoDB, the replica set has a single primary and several secondaries.
Each write request from the client is 4irected to the primary. The primary logs all write requests into its
Oplog (operations log). The Op log is then used ~y the seco·ndary replica members to synchronize their
data. This way there is strict adherence to consistency. Refer Figure 6.3. The clients usually read from the
primary. However, the client can also specify a read preference that will then direct the read operations to
the secondary.

Writes Reads

·, Primary

Replication -...,..._.____... .. ~- .i.r--..~--•-,.--a;:-....,

Secondary l
)

.~ ~

· Secondary • • f. • · • Secondary !

Figure 6.3 The process of REPLICATION in MongoDB.

r

114 •

: ' Shard 1 :.
" (256 GB).

Collection 1

1 TB database

Shard 2

(256 GB)

Shard 3

(256 GB)

Shard 4

(256 GB)

1§ l L

Big Data and Analytics

·•················•··••··•··•··•··•····••···· Logical Database (Collection 1)

Figure 6.4 The process of SHARDING in MongoDB.

6.2.6 Sharding

Sharding is akin to horizontal scaling. It means that the large dataset is divided and distributed over multi­

ple servers or shards. Each shard is an independent database and collectively they would constitute a logical

database.

The prime advantages of sharding are as follows:

1. Sharding reduces the amount of data that each shard needs to store and manage. For example, if the

dataset was I TB in size and we were to distribute this over four shards, each shard would house just

256 GB data. Refer Figure 6.4. As the cluster grows, the amount of data that each shard will store and

manage will decrease.

2. Sharding reduces the number of operations that each shard handles. For example, if we were to insert

data, the application needs to access only that shard which houses that data.

6.2. 7 Updating Information In-Place

MongoDB updates the information in-place. This implies that it updates the data wherever it is available.

It does not allodt:e separate space an9 the indexes remain unaltered.

MongoDB is all for lazy-writes. It writes to the disk once every second. Reading and writing to disk f; a

slow operation as compared to reading and writing from memory. The fewer the reads and writes that we

perform to the disk, the better is the performance. This makes MongoDB faster than its other competitors

who write almost immediately to the disk. However, there is a tradeoff. MongoDB makes no guarantee that

data will be stored safely on the disk.

Guess Me

A. Whoamlf

• I am blindingly fast

• I am massively scalable

• I am easy to use

• I work with documents rather than rows

:1

lntrodu

B. w
•
•
•
•

C w
•
•
•

D. If

. .
•
•
•

Answ,
A.
B.
C.
D.

6.3

Introduction to MongoDB • 115

B. Whoamlf

• I am not for everyone
,,4

• I am good with complex data structures such as blog posts and comments

• I am good with analytics such as a real time google analytics

• I am comfortable with Linux, Mac OS, Solaris, and windows

C Whoamlf

• I have support for transactions

• I have static data

• I allow dynamic queries to be run on me

D. Whoaml!

• I am one of the biggest competitor for MongoDB

• I have dynamic data
• Only static queries can be run on me

• I am document-oriented too

Answers:
A. MongoDB
B. MongoDB
C. Traditional RD BMS

D. CouchDB

6.3 TERMS USED IN RDBMS AND MONGODB

RDBMS MongoDB

Database Database

Table Collection

Record Document

Columns Fields/ Key Value pairs
,.__

Index Index

Joins Embedded documents

Primary Key Primary key (_id is a identifier)
•• t

· .. · i.ty5ai: : .. o~~i~ i.t~~g~i,i

Database Server

Database Client

MySqld

MySql

Oracle

SQL Plus

Mongod

mongo
....... , ... ,

f
riC te:t:5i7:t5}; 1

116 •

6.3.1 Create Database

The syntax for creating database is as follows:

use DATABASE_Narne

To create a database by the name "myDB,, the syntax is

use myDB

b. use myOB;
~witched to db myOB

To confirm the existence of your database, type the command at the MongoDB shell:

db

~;

To get a list of all databases, type the below command:

showdbs

~

show dbs;
min (em ty)
cal 0.0~8GB

~est 0.078GB

Big Data and Analytics

Notice that the newly created database, "myDB" does not show up in the list above. The reason is that the

database needs to have at least one document to show up in the list.

The default database in MongoDB is test. If one does not create any database, all collections are by default

stored in the test database.
'

6.3.2 Drop Database

The syntax to drop database is as follows:

db.dropDatabaseO;

To drop the database, "myDB", first ensure that you are currently placed in "myDB" database and then use

the db.dropDatabaseO command to drop the database. -

use myDB;
db.dropDatabaseO;

Confirm if the database "myDB" has been dropped.

~ db.dropDatabase();
~ "dropped" : "myos", "ok" : 1 }

If no database is selected, the default database "test" is dropped.

6.4 DATA TYPES IN MONGODB

The following are various data types in MongoDB.

Ir

Introduction to MongoDB • 117

. ·stri~g-............................ -M~~t ·b~ 'ifrF-'s° ~~ii<1: ... -................................ .

Most commonly used data type. ·• •

Integer Can be 32-bit or 64-bit (depends on the server).

Boolean

Double

Min/Max keys

Arrays

Timestamp

Null

To store a true/false value.
:

To store floating point (real values).

To compare a value against the lowest or highest BSON elements.

To store arrays or list or multiple values into one key.

To record when a document has been modified or added.

To store a NULL value. A NULL is a missing or unknown value.

Date To store the cummt date or time in Unix time format. One can create object of

date and pass day, month and year to it.

Object ID

Binary data

Code

To store the document's id.

To store binary data (images, binaries, etc.).

To store javascript code into the document.

Regular expression To store regular expression.
.

A few commands worth looking at are as follows (try them!!!).

To reporl the ,unne of the current database:

~~•..,. h J,r: ,,,:;:_~ 1:~-~d ::-~~ f
• C:~wmdoilrS\SySl~crn,.~e • mongo - :_:: '-

~ db est

To display the list of databases:

--!~-
> show cllis
admin (empty)
local 0.078GB
myOBl 0.078GB
>

To switeh to a new ~tahase, for example, myDBl:

tched b myOBl

To display the list of coOectiom (iables) in the current database:

-~~ >12£ £:
system. ~ndexes
system.JS
>
To display the current version of the MongoDB server:_

,­
J -

172 • Big Data and Analytics

WHAT'S IN STORE?

This chapter will cover another NoSQL database called "Cassandra". We will explore the features of

Cassandra that has made it so immensely popular. The chapter will cover the basic CRUD (Create, Read,

Update, and Delete) operations using cqlsh.

Please attempt the Test Me exercises given at the end of the chapter to practice, learn, and comprehend

Cassandra effectively.

7 .1 APACHE CASSANDRA - AN INTRODUCTION

We shall start this chapter with few points that a reader should know about Cassandra.

1. Apache Cassandra was born at Facebook. After Facebook open sourced the code in 2008, Cassandra

became an Apache Incubator project in 2009 and subsequently became a top-level Apache project in

2010.
2. It is built on Amazon's dynamo and Google's Big Table.

3. Cassandra does NOT compromise on availability. Since it does not have a master-slave architecture,

there is no quesnon of single point of failure. This proves beneficial for business critical applications

that need to be up and running always and cannot afford to go down ever. •

4. It is highly scalable (it scales out), high performance distributed database. It ~stributes and manages

gigantic amount of data across commodity servers.

....,. ~ ..n.•?.-;,.....,.,....,,~,..,:"O.:.&.-l,t'i',~

...... • : ~-
Features of cassandra ,

I
,\

. . .--· No singte• po.int.
• " of failure _

Elastic scaJabil~) 1

Figure 7 .1 Features of Cassandra.

lhcroduction co Cassandra • 173

5. It is a column-oriented database designed to support peer-to-peer sy~etric nodes instead of the
master-slave architecture.

6. It has adherence to the Availability and Partition Tolerance properties of CAP theorem. It takes care of
consistency using BASE (Basically Available Soft State Eventual Consistency) approach.

Refer Figure 7 .1. Few companies that have successfully deployed Cassandra and have benefitted immensely
from it are as follows:

I. Twitter
2. Netflix
3. Cisco
4. Adobe
5. eBay
6. Rackspace

7 .2 FEATURES OF CASSANDRA

7 .2.1 Peer-to-Peer Network

As with any other NoSQL database, Cassandra is designed to distribute and manage large data loads across
multiple nodes in a cluster constituted of commodity hardware. Cassandra does NOT have a master-slave
architecture which means that it does NOT have single point of failure. A node in Cassandra is structurally

-identical to any other node. Refer Figure 7 .2. In case a node fails or is ta.ken offi.ine, it definitely impacts the
throughput. However, it is a case of graceful degradation where everything does not come crashing at any
given instant owing to a node failure. One can still go about business as usual. It tides over the problem of
failure by employing a peer-to-peer distributed system across homogeneous nodes. It ensures that data is
distributed across all nodes in the cluster. Each node exchanges information across the cluster every second.

Let us look at how a Cassandra node writes. Each write is written to the commit log sequentially. A write
is taken to be successful only if it is written to the commit log. Data is then indexed and pushed to an
in-memory structure called "Memtable". When the in-memory data structure, "the_Memtable", is full, the
contents are flushed to "SSTable" (Sorted String) data file on the disk. The SSTable is immutable and is

Figure 7 .2 Sample Cassandra cluster.

174 • Big Data and Analytics

•••

Figure 7.3 Gossip protocol.

append-only. It is stored on disk sequentially and is maintained for each Cassandra table. The partitioning

and replication of all writes are performed automatically across the duster.

7 .2.2 Gossip and Failure Detection

Gossip protocol is used for intra-ring communication. It is a peer-to-peer communication protocol which

eases the discovery and sharing of location and state information with other nodes in the duster. Refer

Figure 7.3. Although there are quite a few subtleties involved, but at its core it's a simple and robust system.

A node only has to send out the communication to a subset of other nodes. For repairing unread data,

Cassandra uses what's called an anti-entropy version of the gossip protocol.

7 .2.3 Partitioner

A partitioner takes a call on how to distribute data on the various nodes in a cluster. It also determines the

node on which to place the very first copy of the data. Basically a partitioner is a hash function to compute

the token of the partition key. The partition key helps to identify a row uniquely.

7 .2.4 Replication Factor

The replication factor determines the number of copies of data (replicas) that will be stored across nodes in !,j

a cluster. If one wishes to store only one copy of each row on one node, they should set the replication factor aJ

to one. However, if the need is for two copies of each row of data on two different n_odes, one should go

with a replication factor of two. The replication factor should ideally be more than one and nor more than

the number of nodes in the duster. A replication strategy is employed to dete~mine which nodes to place the

data-on. Two replication strategies are available:
=

1. SimpleStrategy.

2. NetworkToplogyStrategy._

The preferred one is NetworkTopologyStrategy as it is simple and supports easy expansion to multiple data

centers, should there be a need.

7 .2.5 Anti-Entropy and Read Repair

A cluster is made up of several nodes. Since the duster is constituted of commodity hardware, it is prone to

failure. In order to achieve fault tolerance, a given piece of data is replicated on one or more nodes. A client

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}

