110 Big Dara and Analytics

its “rich query language”, “fast in-place update”, etc. The chapter will cover the CRUD (Create, Read,
Update, and Delete) operations in detail.

To gain the maximum from the chapter, please attempt the Test Me exercises given at the end of the
chapter.

6.1 WHAT IS MONGODB?

MongoDB is

1. Cross-platform.
2. Open source.

3. Non-relational. .
4. Distributed. h
5. NoSQL. !
6. Document-oriented data store.

6.2 WHY MONGODB?

Few of the major challenges with traditional RDBMS are dealing with large volumes of data, rich variety of
data - particularly unstructured data, and meeting up to the scale needs of enterprise data. The need is fora
darabase that can scale out or scale horizontally to meet the scale requirements, has flexibility with respect to

schema; is fault tolerant, is consistent and partition tolerant, and can be easily distributed over a multitude
of nodes in a cluster. Refer Figure 6.1.

6.2.1 Using Java Script Object Notation (JSON)
JSON is extremely expressive. MongoDB actually does not use JSON but BSON (pronounced Bee Son) - it

is Binary JSON. It is an open standard. It is used to store complex data structures.

Auto sharding Document ariented

. Fult indexsupport

High performance ;

~ Fast in-place updates §

“ Rich quiery language

Replication

Easy scalability g e
. High availability

Figure 6.1 Why MongoDB?

Introduction to MongoDB e 111

Let us trace the journey from .csv to XML to JSON: Let E look at how data is stored in .csv file. Assume
that this data is about the employees of an organization named “XYZ”. As can be scen below, the column
values are separated using commas and the rows are scparated by a carriage return.

John, Mathews, +123 4567 8900
Andrews, Symmonds, +456 7890 1234
Mable, Mathews, +789 1234 5678

This looks good! However let us make it slightly more legible by adding column heading.
FirstName, LastName, ContactNo

John, Mathews, +123 4567 8900

Andrews, Symmonds, +456 7890 1234

Mable, Mathews, +789 1234 5678

Now assume that few employees have more than one ContactNo. It can be neatly classified as OfficeContactNo

and HomeContactNo. But what if few employees have more than one OfficeContactiNo and more than one
HomeConractNo? Ok, so this is the first issue we need to address.

Let us look at just another piece of data that you wish to store about the employees. You need to store
their email addresses as well. Here again we have the same issues, few employees have two email addresses,
few have three and there are a few employees with more than three email addresses as well.

As we come across these fields or columns, we realize that it gets messy with .csv. CSV are known to store
data well if it is flac and does not have repeating values.

The problem becomes even more complex when different departments mainuin the details of their
employees. The formats of .csv (columns, etc.) could vastly differ and it will call for some efforts before we
can merge the files from the various departments to make a single file.

This problem can be solved by XML. But as the name suggests XML is highly extensible. It does not
just call for defining a data format, rather it defines how you define a data format. You may be prepared to

undertake this cumbersome task for highly complex and structured data; however, for simple data exchange
it might just be too much work.

Enter JSON! Let us look at how it reacts to the problem at hand.

{

FirstName: John,

LastName: Mathews,

ContactNo: [+123 4567 8900, +123 4444 5555)

} . .
~ i -
FirstName: Andrews,

LastName: Symmonds,

ContactNo: [+456 7890 1234, +456 6666 7777)

}

{

FirstName Mable,

LastName: Mathews,

ContactNo: +789 1234 5678

}

CamScanner

https://v3.camscanner.com/user/download

112 » Big Data and Analytics

As you can see it is quite easy to read a JSON. There is absolutely no confusion now. One can have a list
of 7 contact numbers, and they can be stored with case.

JSON is very expressive. It provides the much needed ease to store and retrieve documents in their real
form. The binary form of JSON is BSON. BSON is an open standard. In most cases it consumes less space
as compared to the text-based JSON. There is yet another advantage with BSON. It is much easier and
quicker to convert BSON to a programming language’s native data format. There are MongoDB drivers
available for a number of programming languages such as C, C++, Ruby, PHP, Python, C#, etc., and cach
works slightly differently. Using the basic binary format enables the native data structures to be built quickly
for cach language without going through the hassle of first processing JSON.

6.2.2 Creating or Generating a Unique Key

Each JSON document should have a unique identifier. It is the _id key. It is similar to the primary key in
relational databases. This facilitates search for documents based on the unique identifier. An index is auto-

matically built on the unique identifier. It is your choice to either provide unique values yourself or have the
mongo shell generate the same.

(of1l2]3]safs[e]78]ofw]|n
| Timeszmp | MachineID |ProcessID| Counter

6.2.2.1 Database

It is 2 collection of collections. In other words, it is like a container for collections. It gets created the first
time that your collection makes 2 reference 1o it. This can also be created on demand. Each database gets its
own set of flss on the fille system. A single MongoDB server can house several databases.

6.2.2.2 Collection

A collection is anzlogous o 2 zble of RDBMS. A collection is created on demand. It gets created the first
time that you amempt 1o save 2 document that references it. A collection exists within a single database.
A collection holds several MongoDB documents. A collection does not enforce a schema. This implies that

documents within 2 collection can have different fields. Even if the documents within a collection have same
faelds, the order of the fields can be different.

6.2.2.3 Document

A document is znzlogous to 2 row/record/tuple in an RDBMS table. A document has a dynamic schema.
This implies that 2 document in 2 collection need not necessarily have the same set of fields/key-value pairs.
Shown in Figure 6.2 is a collection by the name “students” containing three documents.

6.2.3 Support for Dynamic Queries
MongoDB has ive support for dynamic queries. This is in keeping with traditional RDBMS wherein
we have static dara and dynamic queries. CouchDB, another document-oriented, schema-less NoSQL data-

base and MongoDB's biggest competitor, works on quite the reverse philosophy. It has support for dynamic
data and static queries. :

Introduction to Mongp DB * 313

db studants insen(

Emailil5: Age 19

J CantactNe: 0122456725

) EmallD Samgle@ary: com
) ——

)

Collectiors
Figure 6.2 A collection “students” containing 3 documents,

6.2.4 Storing Binary Data

MongoDB provides GridFS to support the storage of binary dara It can sore up o 4 M3 of daza This
usually suffices for photographs (such a5 a profile picrure) or small audio clips. However, if one wishes w
store movie clips, MongoDB has another solurion.

It stores the metadata (data abour darz along with the context informanion; in a wollection called “Ale”.
It then breaks the data into small pieces called chunlks and stores it in the “chunks” collection. This proces
takes care about the need for easy scalabilicy.

6.2.5 Replication

Why replication? It provides data redundancy and high availabilicy. It helps w0 recover Fom hardwars fail-
ure and service interruptions. In MongoDB, the replica ser has 2 single primary and several secondaries.
Each write request from the client is directed to the primary. The primary logs all wnir requests inco ins
Oplog (operations log). The Oplog is then used by the secondary replica members synchronze ther
dara. This way there is strict adherence to consistency. Refer Figurs 6.3. The clienss usually rzad from the
primary. However, the client can also specify a read preference that will then direc the read operations ©
the secondary.

Secondary

Figure 6.3 The process of REPLICATION in MongoD8.

CamScanner

https://v3.camscanner.com/user/download

114 * Big Data and Analytics

Callection 1
1 T8 database

Shard 4
(256 GB)

Shard 3
(256 GB)

Shard 2
(256 GB)

Shard 1
256'GB)

Logical Datab (Coll

on 1) i
Figure 6.4 The process of SHARDING in MongoDB.

6.2.6 Sharding

Sharding is akin to horizontal scaling. It means that the large dataset is divided and distributed over multi-

v_nuo?nao;vp_.&.muhrugwgmumnvn_._mga»ﬂv»mnnumno=n.na<a_v.nra<£o=_«_nosumannn_ommﬂ._
darabase. .

The prime advantages of sharding are as follows:

1. Sharding reduces the amount of data that each shard needs to store and manage. For example, if the
dataset was 1 TB in size and we were to distribute this over four shards, each shard would house just
256 GB data. Refer Figure 6.4. As the cluster grows, the amount of data that each shard will store and
manage will decrease.

2. Sharding reduces the number of operations that each shard handles. For example, if we were to insert
dara, the application needs to access only that shard which houses that data.

6.2.7 Updating Information In-Place

MongoDB updates the information in-place. This implies that it updates the data wherever it is available. -

It does nor allocite separate space and the indexes remain unaltered.

MongoDB is all for lazy-writes. It writes to the disk once every second. Reading and writing to disk isa
slow operation as compared to reading and writing from memory. The fewer the reads and writes that we
perform to the disk, the better is the performance. This makes MongoDB faster than its other competitors
who write almost immediately to the disk. However, there is a tradeoff. MongoDB makes no guarantee that
data will be stored safely on the disk. _
Guess Me

A Who am I?

I am blindingly fast

1 am massively scalable

I am easy 1o use

I work with documents rather than rows

Introduction to Mongo DB « 115
B. Who am I?

¢ [am not for everyone ’

« 1am good with complex data structures such as blog posts and comments

* I am good with analytics such as a real time google analyrics

.

D.

[am comfortable with Linux, Mac OS, Solaris, and windows

Who am I?

.

I have support for transactions
I have static data
1 allow dynamic queries to be run on me

Who am I?

I am one of the biggest competitor for MongoDB
I have dynamic darta

Only static queries can be run on me

1 am document-oriented too

Answers:

A. MongoDB
B. MongoDB
C. Traditional RDBMS
D. CouchDB

6.3 TERMS USED IN RDBMS AND MONGODS8

RDBMS MongoD8

Database Database

Table Collection

Record Document

Columns Fields / Key <~E!m pairs

Index Index

Joins Embedded documents

Ltsoome. oo SO P

... lﬁbrg

Database Server MySqld Oracle Monged
Database Client MysSql SQL Plus mongo

CamScanner

https://v3.camscanner.com/user/download

116 « Big Data and Analytics

6.3.1 Create Database

The syntax for creating database is as follows:
usc DATABASE_Name

To create a database by the name “myDB” the syntax is
use myDB

use myDB;
mi.,nn_..na to db myDB

To confirm the existence of your database, type the command at the MongoDB shell:
db

Wxﬂwn

To get a list of all databases, type the below command:
show dbs
> show .Du.
admin Ty)
Tocal c 078GB

test 0.078GB
>

Notice that the newly created database, “myDB” does not show up in the list above. The reason is that the
database nceds to have at least one document to show up in the list.

The default database in MongoDB is test. If one does not create any database, all collections are by default
stored in the test database.

6.3.2 Drop Database
The syntax to drop database is as follows:
db.dropDatabase();

To drop the database, “myDB?”, first ensure that you are currently v_unnm in _.:v.Um.. database and then use
the db.dropDatabase() command to drop the darabase.

use myDB;
db.dropDatabase();

Confirm if the database “myDB” has been dropped.

db. ansonnuwbmoou.
{ "dropped” : “ok™ : 11}

If no dartabase is selected, the default database “test” is dropped.

6.4 DATA TYPES IN MONGODB

The following are various data types in MongoDB.

T

Integer
Boolean
Double
Min/Max keys
Arrays
Timestamp
Null

Date

Object ID
Binary data
Code

Must be UTF-8 valid.
Most commonly used data type.

Can be 32-bit or 64-bit (depends on the server).

To store a true/false value.

To store floating point (real values).

To compare a value against the lowest or highest BSON elements.
To store arrays or list or multiple values into one key.

To record when a document has been modified or added.

To store a NULL value. A NULL is a missing or unknown value.

To store the current date or time in Unix time format. One can create object of
date and pass day, month and year to it.

To store the document’s id.
To store binary data (images, binaries, etc.).
To store javascript code into the document.

A few commands worth looking at are as follows (try them!!).

To report the name of the current database:

S S s Sk
B Cwindows\system3iemd.oxe - mongo

db
est

ai&.@ she i

e\. &ag

admin An:ﬁn(u
local 0.078GB
myDB1 0.078GB
>

To switch to a new database, for

S use mybsl
inn:on to db myDBl

le, myDBI1:

- 5

> m ow CO onﬁagw

system.indexes
system.js
>

To display the current version of the MongoDB server:

https://v3.camscanner.com/user/download

172 « Big Data and Analytics

WHAT'S IN STORE?

This chapter will cover another NoSQL database called “Cassandra”. We will explore the features of
Cassandra that has made it so immensely popular. The chapter will cover the basic CRUD (Create, Read,
Update, and Delete) operations using cqlsh.

Please attempt the Test Me exercises given at the end of the chapter to practice, learn, and comprehend

Cassandra effectively.

7.1 APACHE CASSANDRA - AN INTRODUCTION

We shall start this chapter with few points that a reader should know about Cassandra.

1. Apache Cassandra was born at Facebook. After Facebook open sourced the code in 2008, Cassandra
became an Apache Incubator project in 2009 and subsequently became a top-level Apache project in
2010.

2. It s built on Amazon’s dynamo and Google’s BigTable.

3. Cassandra does NOT compromise on availability. Since it does not have a master-slave architecture,
there is no question of single point of failure. This proves beneficial for business critical applications
that need to be up and running always and cannot afford to go down ever.

4. Itis highly scalable (it scales out), high performance distributed database. It distributes and manages
gigantic amount of data across commodity servers.

Features of cassandra !
3 of failure

Column-orlented =

Peer to Peer

Elastic scalabllifyf

Figure 7.1 Features of Cassandra.

Introduction to Cassandra * 173

5. It is a column-oriented database designed to support peer-to-peer symmetric nodes instead of the
master-slave architecture. :

6. It has adherence to the Availability and Partition Tolerance properties of CAP theorem. It takes care of
consistency using BASE (Basically Available Soft Srate Eventual Consistency) approach.

Refer Figure 7.1. Few companies that have successfully deployed Cassandra and have benefitted immensely
from it are as follows:

1. Twitter
2. Neflix
3. Cisco |
4. Adobe !
5. eBay {
6. Rackspace {

7.2 FEATURES OF CASSANDRA

7.2.1 Peer-to-Peer Network
As with any other NoSQL database, Cassandra is designed to distribute and manage large dara loads across

multiple nodes in a cluster constituted of commodity hardware. Cassandra does NOT have 2 master-slave
architecture which means that it does NOT have single point of failure. A node in Cassandra is structurally
-identical to any other node. Refer Figure 7.2. In case a node fails or is taken offline, it definitely impacts the
throughput. However, it is a case of graceful degradation where everything does not come crashing at any
given instant owing to a node failure. One can still go about business as usual. It tides over the problem of -
failure by employing a peer-to-peer distributed system across homogeneous nedss. It ensurss thac daca is
distributed across all nodes in the cluster. Each node exchanges information across the cluster every second.
Let us look at how a Cassandra node writes. Each write is written o the commit log sequendially. A write
is taken to be successful only if it is written to the commit log. Data is then indexed and pushed to an
in-memory structure called “Memtable”. When the in-memory data structure. “the Memumble™, is full, the
contents are flushed to “SSTable” (Sorted String) dara file on the disk. The SSTable is immurable and is

P TR AT

A s

Figure 7.2 Sample Cassandra cluster.

https://v3.camscanner.com/user/download

174 ¢ Big Data and Analytics

.“,.m.__, me m_mww.m_

Hey! This is what | know ;

And this is what t know!l! ¢

Figure 7.3 Gossip protocol.

append-only. It is stored on disk sequentially and is maintained for each Cassandra table. The partitioning
and replication of all writes are performed automatically across the cluster.

7.2.2 Gossip and Failure Detection

Gossip protocol is used for intra-ring communication. It is a peer-to-peer communication protocol which
cases the discovery and sharing of location and state information with other nodes in the cluster. Refer
Figure 7.3. Although there are quite a few subtleties involved, but at its core it's 2 simple and robust system.
A node only has to send out the communication to a subset of other nodes. For repairing unread data,
Cassandra uses what's called an anti-entropy version of the gossip protocol.

7.2.3 Partitioner

A partitioner takes a call on how to distribute data on the various nodes in a cluster. It also determines the
node on which to place the very first copy of the dara. Basically a partitioner is a hash function to compute
the token of the partition key. The partition key helps to identify a row uniquely.

7.2.4 Replication Factor

The replication factor determines the number of copies of data (replicas) that will be stored across nodes in
a cluster. If one wishes to store only one copy of each row on one node, they should set the replication factor
to one. However, if the need is for two copies of each row of data on two different nodes, one should go
with a replication factor of two. The replication factor should ideally be more than one and not more than
the number of nodes in the cluster. A replication strategy is employed to determine which nodes to place the
dara on. Two replication strategies are available: . X -

1. SimpleStrategy.
2. NerworkToplogyStrategy.

The preferred one is NetworkTopologyStrategy as it is simple and supports easy expansion to multiple dara

centers, should there be 2 need.

7.2.5 Anti-Entropy and Read Repair
A cluster is made up of several nodes. Since the cluster is constituted of commodity hardware, it is prone to

failure. In order to achieve faulr tolerance, a given piece of dara is replicated on one or more nodes. A client :

Introduction to Cassandra * 175

can connect to any node in the cluster to read data. How many nodes will be read before responding to the
client is based on the consistency level specified by the client. If the client-specified consistency is not met,
the read operation blocks. There is a possibility that few of the nodes may respond with an out-of-date value.
In such a case, Cassandra will initiate a read repair operation to bring the replicas with stale values up to date.

For repairing unread data, Cassandra uses an anti-entropy version of the gossip protocol. Anti-entropy
implies comparing all the replicas of each piece of data and updating each replica to the newest version. The
read repair operation is performed either before or after returning the value to the client as per the specified

consistency level.

7.2.6 Writes in Cassandra

Let us look at behind the scene activities. Here is a client thac initiates a write request. Where does his
write get written to? It is first written to the commit log. A write is taken as successful only if it is written
to the commit log. The next step is to push the write to 2 memory resident data structure called Memtable.
A threshold value is defined in the Memtable. When the number of objects stored in the Memtable reaches
a threshold, the contents of Memtable are flushed to the disk in a file called SSTable (Sorted String Table).
Flushing is a non-blocking operation. It is possible to have multiple Memzables for a single column family.
One out of them is current and the rest are waiting w0 be fushed.

7.2.7 Hinted Handoffs

The first question that arises is: Why Cassandra is all for availabiliry? It works on the philosophy that it will
always be available for writes.

Assume that we have a cluster of three nodes — Node A, Node B, and Node C. Nede C is down for some
reason. Refer Figure 7.4. We are maintaining a replication factor of 2 which implies that two copies of each
row will be stored on two different nodes. The client makes a write request to Node A. Node A is the coordi-
nator and serves as a proxy between the client and the nodes on which the replica is to be placed. The client

Cocrdinater

Noce C is down.

Writes row K

Replicates row K
System hints table™;

.-

Figure 7.4 Depiction of hinted handoffs.

CamScanner

https://v3.camscanner.com/user/download

176 * Big Data and Analytics

writes Row K to Node A. Node A then writes Row K to Node B and stores a hint for Node C. The hint will
have the following information:

1. Location of the node on which the replica is to be placed.
2. Version metadara.

3. The actual dara.

When Node C recovers and is back to the functional self, Node A reacts to the hint by forwarding the data
to Node C.

7.2.8 Tunable Consistency

One of the features of Cassandra that has made it immensely popular is its ability to utilize tunable consis-
tency. The database systems can go for cither strong consistency or eventual consistency. Cassandra can cash
in on cither flavor of consistency depending on the requirements. In a distributed system, we work with
several servers in the system. Few of these servers are in one data center and others in other data centers. Let
us take 2 look at whar it means by strong consistency and eventual consistency.

1. Strong consistency: If we work with strong consistency, it implies that each update propagates to all
locations where thar piece of data resides. Let us assume a single data center setup. Strong consistency
will ensure that all of the servers thar should have a copy of the data, will have it, before the client is
acknowledged with a success. If we are wondering whether it will impact performance, yes it will. It
will cost a few extra milliseconds to write to all servers.

2. Eventual consistency: If we work with eventual consistency, it implies that the client is acknowledged
with 2 success as soon as a part of the cluster acknowledges the write. When should one go for eventual
consistency? The choice is fairly obvious... when application performance matters the most. Example:
A single server acknowledges the write and then begins propagating the dara to other servers.

7.2.8.1 Read Consistency
Let us understand whar the read consistency level means. It means how many replicas must respond before send-
ing out the result to the dient applicarion. There are several read consistency levels as mentioned in Table 7.1.

7.2.8.2 Write Consistency

Let us understand what the write consistency level means. It means on how many replicas write must suc- -

ceed before sending our an acknowledgement to the client application. There are several write consistency
levels as mentioned in Table 7.2.

Table 7.1 Read consistency levels in Cassandra

...

ONE Returns 2 response from the closest node (replica) holding the data.

QUORUM Returns a result from a quorum of servers with the most recent timestamp for the data,
LOCAL_ Returns 2 result from a quorum of servers with the most recent timestamp for the data in
QUORUM the same data center as the coordinator node.

EACH_QUORUM Returns a result from a quorum of servers with the most recent timestamp in all data centers.

ALL This provides the highest level of consistency of all levels and the lowest level of availability of
all levels. It responds to a read request from a client after all the replica nodes have responded.

AT EMLNIT SR G DN e s s

Introduction to Cassandra

. 177

EACH_QUORUM

QUORUM
LOCAL_QUORUM

ONE

WO
THREE
LOCAL_ONE

Table 7.2 Write consistency levels in Cassandra

written to the commit log and Memtable on all raglica nodes in the cluster.

A write must be written to the commit log and Memtable on a quorum of raglica nodes in
all data centers.

A write must be written to the commit log and Memtable on 3 quorum of rapiica nodes.

A write must be written to the commit log and Memtatle on a3 quorum of r2olica nedes in
the same data center as the coordinator node. This is to avoid latancy of intar-data center
communication.

A write must be written to the commit log and Memtabie of 3t [2ast ore reslica node.

A write must be written to the commit log and Memtaoie of at least two eplica nodes.

A write must be written to the commit log and Memtasle of at least three r2olica nodes.
A write must be sent ta, and successfully acknowledged by, at l2ast one reniica node in the

local data center.

7.3 CQL DATA TYPES

Refer Table 7.3 for built-in data types for columns in CQL.

Table 7.3 Built-in data types in Cassandra

Int 32 bit signed integer

Bigint 64 bit signed long

Double 64-bit [EEE-754 floating point

Float 32-bit IEEE-754 floating point

Boolean True or false

Blob Arbitrary bytes, expressed in hexadecimal -

Counter Distributed counter value

Decimal Variable - precision integer

List A collection of one or more ordered elements

Map A JSON style array of elements R
Set A collection of one or more elements {
Timestamp Date plus time _
Varchar UTF 8 encoded string _
Varint Arbitrary-precision integers _

Text UTF 8 encoded string

CamScanner

https://v3.camscanner.com/user/download

