Database Applications
NoSQL Databases

Ramesh Hari Nandan Dharavath
Associate Professor
Faculty of Computer Science and Engineering
Indian Institute of Technology (Indian School of Mines)
Dhanbad

Today...

" Last Session:
" Recovery Management followed by OO-DBs

" Today’s Session:
" NoSQL databases

Outline

Types of Data

> Scaling Databases & the 2PC Protocol

The CAP Theorem and BASE Properties

NoSQL Databases (MongoDB & Cassandra)

Types of Data

" Data can be broadly classified into four types:

1. Structured Data:

" Have a predefined model, which organizes data into a
form that is relatively easy to store, process, retrieve
and manage

" E.g., relational data

2. Unstructured Data:
" Opposite of structured data
" E.g., Flat binary files containing text, video or audio

" Note: data is not completely devoid of a structure (e.g.,
an audio file may still have an encoding structure, and
some metadata associated with it)

Types of Data

" Data can be broadly classified into four types:

3. Dynamic Data:
" Data that changes relatively frequently

" E.g., office documents and transactional entries in a
financial database

4. Static Data:
" Opposite of dynamic data
" E.g., Medical imaging data from MRI or CT scans

Why Classifying Data?

Segmenting data into one of the following 4 quadrants can help in
designing and developing a pertaining storage solution

Dynamic Static

Media Archive, Broadcast,
Medical Imaging

Media Production, eCAD,

mCAD, Office Docs

Transaction Systems, ERP,

Bl, Data Warehousing
CRM

Structured Unstructured

Relational databases are usually used for structured data

File systems or NoSQL databases can be used for (static),
unstructured data (more on these later)

Outline

Types of Data

> Scaling Databases & the 2PC Protocol

The CAP Theorem and BASE Properties

> NoSQL Databases (MongoDB & Cassandra)

Scaling Traditional Databases

" Traditional RDBMSs can be either scaled:

" Vertically (or Up)

" Can be achieved by hardware upgrades (e.g., faster CPU,
more memory, or larger disk)

" Limited by the amount of CPU, RAM and disk that can be
configured on a single machine

" Horizontally (or Out)
" Can be achieved by adding more machines
" Requires database sharding and probably replication

" Limited by the Read-to-Write ratio and communication
overhead

Why Sharding Data?

" Data is typically sharded (or striped) to allow for
concurrent/parallel accesses

Machine 1 Machine 3
Chunk1 of input data Chunk5 of input data
Chunk2 of input data Chunk5 of input data

E.g., Chunks 1, 3 and 5 can be accessed in parallel

Amdahl’s Law

" How much faster will a parallel program run?
" Suppose that the sequential execution of a program takes T,time

units and the parallel execution on p processors/machines takes
T, time units

" Suppose that out of the entire execution of the program, s
fraction of it is not parallelizable while 1-s fraction is parallelizable

" Then the speedup (Amdahl’s formula):

T, _ Ty 1
- 1— - 1—
Tp (Ty XS+Ty X Ts) s+ TS

Amdahl’s Law: An Example

" Suppose that:
" 80% of your program can be parallelized

" 4 machines are used to run your parallel version of
the program

" The speedup you can get according to Amdahl’s law is:

1 1 .
— = = 2.5times
% 0.2+°4;8

S+

Although you use 4 processors you cannot get a speedup more
than 2.5 times!

Real Vs. Actual Cases

" Amdahl’s argument is too simplified

" In reality, communication overhead and potential workload

imbalance exist upon running parallel programs

Process 1

Process 2

Process 3

Process 4

% Cannot be parallelized

Can be parallelized

1. Parallel Speed-up: An Ideal Case

20

Serial

80

IR
SRR

SRR
S

Process 1

Process 2

Process 3

Process 4

% Cannot be parallelized

Communication overhead

Can be parallelized

----> Load Unbalance

2. Parallel Speed-up: An Actual Case

Why Replicating Data?

" Replicating data across servers helps in:
" Avoiding performance bottlenecks
" Avoiding single point of failures
" And, hence, enhancing scalability and availability

Some Guidelines

" Here are some guidelines to effectively benefit
from parallelization:

1. Maximize the fraction of your program that can
be parallelized

2. Balance the workload of parallel processes

3. Minimize the time spent for communication

Why Replicating Data?

" Replicating data across servers helps in:
" Avoiding performance bottlenecks
" Avoiding single point of failures
" And, hence, enhancing scalability and availability

Maip server— 2235 LAY . oE :

T g

p_“}-_ -
J/ = T
Ay ‘_,_4

\ § Replicated Servers <

But Consistency Becomes a Challenge??

" An example:

" In an e-commerce application, the bank database has
been replicated across two servers

" Maintaining consistency of replicated data is a
challenge

Event 1 = Add $1000 Event 2 = Add interest of 5%

1 2

v
Bal=2100 | ~._ 4 3

v
Bal=2050

™ Replicated Database

The Two-Phase Commit Protocol

" The two-phase commit protocol (2PC) can be used to
ensure atomicity and consistency

Phase I: Voting
VOTE_REQUEST — \
Ir_Y_Q_T_E___Q_O_MM_'T__
: Participant 1 Database Server 1
b
I O"c_ReQuUEST I @
_VOTE_COM MIT S
Coordinator Participant 2 Database Server 2

= ———

__VOTE_COMMIT _
voTe_requesT NG I \
>

Participant 3 Database Server 3

The Two-Phase Commit Protocol

" The two-phase commit protocol (2PC) can be used to
ensure atomicity and consistency

Phase II: Commit
cLoAL_coMMVi __ LOCAL COMMIT
—_ o

Participant 1 Database Server 1

B 05AL_ COMMSN LOCAL_COMMIT _@
I I

Coordinator Participant 2 Database Server 2

cLoeAL_comvil LOCAL_COMMIT I f \
’ Ed
“Strict” consistency, which I

limits scalability! Participant 3 Database Server 3

Outline

Types of Data

> Scaling Databases & the 2PC Protocol

The CAP Theorem and BASE Properties

> NoSQL Databases (MongoDB & Cassandra)

The CAP Theorem

* The limitations of distributed databases can be described
in the so called the CAP theorem

" Consistency: every node always sees the same data at any
given instance (i.e., strict consistency)

" Availability: the system continues to operate, even if nodes
in a cluster crash, or some hardware or software parts are
down due to upgrades

" Partition Tolerance: the system continues to operate in the
presence of network partitions

[CAP theorem: any distributed database with shared data, can have at most two]
of the three desirable properties, C, A or P

The CAP Theorem (Cont'd)

Let us assume two nodes on opposite sides of a
network partition:

Availability + Partition Tolerance forfeit Consistency.

Consistency + Partition Tolerance entails that one side of
the partition must act as if it is unavailable, thus
forfeiting Availability.

Consistency + Availability is only possible if there is no
network partition, thereby forfeiting Partition Tolerance.

When to choose consistency over availability and vice-versa..

" Choose availability over consistency when your business requirements allow some
flexibility around when the data in the system synchronizes.

Choose consistency over availability when your business requirements demand
atomic reads and writes.

Glimpse of databases that adhere to two of the three characteristics

Traditional RDBMS,

PostgreSQL, MySQL, CA

Riak, Cassandra, CouchDB,,
AP
etc.,

Dynamo like systems

C CP P

Hbase, MongoDB, Redis, BigTable like systems

Large-Scale Databases

" When companies such as Google and Amazon were
designing large-scale databases, 24/7 Availability was a key

" A few minutes of downtime means lost revenue

" When horizontally scaling databases to 1000s of machines,
the likelihood of a node or a network failure
increases tremendously

" Therefore, in order to have strong guarantees on
Availability and Partition Tolerance, they had to sacrifice
“strict” Consistency (implied by the CAP theorem)

Trading-Off Consistency

" Maintaining consistency should balance between the
strictness of consistency versus availability/scalability

" Good-enough consistency depends on your application

Trading-Off Consistency

" Maintaining consistency should balance between the
strictness of consistency versus availability/scalability

" Good-enough consistency depends on your application

Loose Consistency ? Strict Consistency

Easier. to implement, Generally hard to implement,
and is efficient and is inefficient

The BASE Properties

The CAP theorem proves that it is impossible to guarantee
strict Consistency and Availability while being able to
tolerate network partitions

This resulted in databases with relaxed ACID guarantees

In particular, such databases apply the BASE properties:
" Basically Available: the system guarantees Availability
" Soft-State: the state of the system may change over time

" Eventual Consistency: the system will eventually
become consistent

Eventual Consistency

" A database is termed as Eventually Consistent if:

" All replicas will gradually become consistent in the
absence of updates

Eventual Consistency

" A database is termed as Eventually Consistent if:

" All replicas will gradually become consistent in the
absence of updates

| —
f%ﬁ e
Webpaseon
|

Webpage-A
Webpage-A
Webpage-A
Webpage-A

%«

Event: Update Webpage-

- i

«

Eventual Consistency: A Main Challenge

" But what if the client accesses the data from
different replicas?

- ﬁﬁﬁ 5/:? S
oln

Webpage-A
U } Webpage-A

ﬁk%
Event: Update Webpage-
Webpage -A A

Webpage-A - -
r”
r\.
¥ 50 |
7 Webpage-A A

Protocols like Read Your Own Writes (RYOW) can be applied!

Outline

Types of Data

> Scaling Databases & the 2PC Protocol

The CAP Theorem and BASE Properties

> NoSQL Databases (MongoDB & Cassandra)

NoSQL Databases

" To this end, a new class of databases emerged, which
mainly follow the BASE properties

" These were dubbed as NoSQL databases
" E.g., Amazon’s Dynamo and Google’s Bigtable

" Main characteristics of NoSQL databases include:
" No strict schema requirements
" No strict adherence to ACID properties
" Consistency is traded in favor of Availability

Types of NoSQL Databases

" Here is a limited taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

Document Stores

" Documents are stored in some standard format or
encoding (e.g., XML, JSON, PDF or Office Documents)

" These are typically referred to as Binary Large Objects
(BLOBS)

" Documents can be indexed

" This allows document stores to outperform traditional
file systems

" E.g., MongoDB and CouchDB (both can be queried
using MapReduce)

What MongoDB

Mongo DB is:

i) Cross-Platform
ii) Open Source

(

(

(iii) Non-relational
(iv) Distributed
(v) NoSQL

(

.

vi) Document Oriented data store

Why MongoDB

v

v

Few of the major challenges with traditional RDBMS are dealing with large
volume of data, rich variety of data - particularly unstructured data, and
meeting up to the scale needs of enterprise data.

The need of a DB that scale out or scale horizontally to mee the scale
requirements, has flexibility w.r.t schema, is fault tolerant, is consistent
and partition tolerant, and can be easily distributed over multiple of nodes
in a cluster.

Why MongoDB

: Auto sharding Doc Oriented
Full index
support
High
Performance
Rish QL SlEEtE
Fast in-place
updates
Easy scalability
High Replication

availability

Creating or Generating A Unique Key: MongoDB uses JSON mechanism,

where it provides the much-needed ease to store and retrieved documents.

> The binary form of JSON is BSON, where in most of the cases it consumes
less space as compared to the text-based JSON.

» Each JSON document should have a unique identifier such as _id key,
similar to the primary key in relational DB. This facilitates search for
documents based on the unique identifier.

Database: A Single MongoDB server can hold/house several databases
Collection: It holds several MongoDB documents

Document: It has a dynamic schema.

Support for Dynamic Queries: Dynamic data and static queries.
Storing Binary Data:

(i) MongoDb provides GridFS to support the storage of Binary data.

(ii) It stores metadata in a collection called “file”. This breaks into smaller
pieces called chunks.

Replication . o
Client application

Writes Reads

Primary

Replication Replication
y
Secondary Secondary Secondary
Sharding
Collection 1
(1TB DB)

¥

Logic Database (Collection 1)

Types of NoSQL Databases

" Here is a limited taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

Types of NoSQL Databases

" Here is a limited taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

Types of NoSQL Databases

" Here is a limited taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

Columnar Databases

" Columnar databases are a hybrid of RDBMSs and Key-
Value stores

" Values are stored in groups of zero or more columns, but in
Column-Order (as opposed to Row-Order)

Record 1 Column A Column A = Group A
[| [|

Alice Bob Carol Alice Bob Carol

3 4 0 25 3 25 4 19
19 45 0 45

Column Family {B, C}

Alice 3 25 Bob
4 19 Carol 0]
45

Row-Order Columnar (or Column-Order) Columnar with Locality Group:

J

" Values are queried by matching keys

" E.g., HBase and Vertica

Cassandra

Summary

Data can be classified into 4 types, structured,
unstructured, dynamic and static

Different data types usually entail different database
designs

Databases can be scaled up or out
The 2PC protocol can be used to ensure strict consistency

Strict consistency limits scalability

Summary (Cont’d)

" The CAP theorem states that any distributed
database with shared data can have at most two
of the three desirable properties:

" Consistency
" Availability
" Partition Tolerance

" The CAP theorem lead to various designs of
databases with relaxed ACID guarantees

Summary (Cont’d)

" NoSQL (or Not-Only-SQL) databases follow the BASE
properties:
" Basically Available
" Soft-State
" Eventual Consistency

" NoSQL databases have different types:
" Document Stores
" Graph Databases
" Key-Value Stores
" Columnar Databases

