CHAPTER 1 6

Recovery System

16.1

A computer system, like any other device, is subject to failure from a variety
of causes: disk crash, power outage, software error, a fire in the machine room,
even sabotage. In any failure, information may be lost. Therefore, the database
system must take actions in advance to ensure that the atomicity and durability
properties of transactions, introduced in Chapter 14, are preserved.EAm integral
part of a database system is a recovery scheme that can restore the database to
the consistent state that existed before the failure. The recovery scheme must
also provide high availability; that is, it must minimize the time for which the
database is not usable after a fail@

Failure Classification

There are various types of failure that may occur in a system, each of which needs
to be dealt with in a different manner. In this chapter, we shall consider only the
following types of failure:

P Transaction failure. There are two types of errors that may cause a transaction
to fail:

o Logical error. The transaction can no longer continue with its normal
execution because of some internal condition, such as bad input, data not
found, overflow, or resource limit exceeded.

o System error. The system has entered an undesirable state (for example,
deadlock), as a result of which a transaction cannot continue with its
normal execution. The transaction, however, can be reexecuted at a later
time.

_0 System crash. There is a hardware malfunction, or a bug in the database
software or the operating system, that causes the loss of the content of volatile
storage, and brings transaction processing to a halt. The content of nonvolatile
storage remains intact, and is not corrupted.

721

722

16.2

Chapter 16 Recovery System

@" he assumption that hardware errors and bugs in the software bring the
system to a halt, but do not corrupt the nonvolatile storage contents, is known
as the fail-stop assumption. Well-designed systems have numerous internal
checks, at the hardware and the software level, that bring the system to a halt
when there is an error. Hence, the fail-stop assumption is a reasonable on\e}

Disk failure. A disk block loses its content as a result of either a head crash or
failure during a data-transfer operation. Copies of the data on other disks, or
archival backups on tertiary media, such as DVD or tapes, are used to recover
from the failure.

To determine how the system should recover from failures, we need to iden-
tify the failure modes of those devices used for storing data. Next, we must
consider how these failure modes affect the contents of the database. We can
then propose algorithms to ensure database consistency and transaction atomic-
ity despite failures. These algorithms, known as recovery algorithms, have two
parts:

. Actions taken during normal transaction processing to ensure that enough
information exists to allow recovery from failures.

'ﬂ. Actions taken after a failure to recover the database contents to a state that
ensures database consistency, transaction atomicity, and durability.

Storage

As we saw in Chapter 10, the various data items in the database may be stored
and accessed in a number of different storage media. In Section 14.3, we saw
&hat storage media can be distinguished by their relative speed, capacity, and
resilience to failure)We identified three categories of storage:

e Volatile storage
e Nonvolatile storage

e Stable storage

Stable storage or, more accurately, an approximation thereof, plays a critical role
in recovery algorithms.

16.2.1 Stable-Storage Implementation

Eo implement stable storage, we need to replicate the needed information in
several nonvolatile storage media (usually disk) with independent failure modes,
and to update the information in a controlled manner to ensure that failure during
data transfer does not damage the needed informati(ﬂ

16.2 Storage 723

Recall (from Chapter 10) that RAID systems guarantee that the failure of a
single disk (even during data transfer) will not result in loss of data. The simplest
and fastest form of RAID is the mirrored disk, which keeps two copies of each
block, on separate disks. Other forms of RAID offer lower costs, but at the expense
of lower performance.

ERAID systems, however, cannot guard against data loss due to disasters such
as fires or flooding. Many systems store archival backups of tapes off site to guard
against such disasters. However, since tapes cannot be carried off site continually,
updates since the most recent time that tapes were carried off site could be lost in
such a disaster. More secure systems keep a copy of each block of stable storage
at a remote site, writing it out over a computer network, in addition to storing
the block on a local disk system. Since the blocks are output to a remote system as
and when they are output to local storage, once an output operation is complete,
the output is not lost, even in the event of a disaster such as a fire or flood. We
study such remote backup systemd in Section 16.9.

In the remainder of this section, we discuss how storage media can be pro-
tected from failure during data transfer. Block transfer between memory and disk
storage can result in:

¢ Successful completion. The transferred information arrived safely at its des-
tination.

e Partial failure. A failure occurred in the midst of transfer, and the destination
block has incorrect information.

¢ Total failure. The failure occurred sufficiently early during the transfer that
the destination block remains intact.

[\TVe require that, if a data-transfer failure occurs, the system detects it and
invokes a recovery procedure to restore the block to a consistent state. To do so,
the system must maintain two physical blocks for each logical database block;
in the case of mirrored disks, both blocks are at the same location; in the case of
remote backup, one of the blocks is local, whereas the other is at a remote site. An
output operation is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information onto
the second physical block.

3. The output is completed only after the second write completes successfully.

If the system fails while blocks are being written, it is possible that the two
copies of a block are inconsistent with each other. During recovery, for each block,
the system would need to examine two copies of the blocks. If both are the same
and no detectable error exists, then no further actions are necessary. (Recall that
errors in a disk block, such as a partial write to the block, are detected by storing
a checksum with each block.) If the system detects an error in one block, then it

724

Chapter 16 Recovery System

replaces its content with the content of the other block. If both blocks contain no
detectable error, but they differ in content, then the system replaces the content of
the first block with the value of the second. This recovery procedure ensures that
a write to stable storage either succeeds completely (that is, updates all copies) or
results in no change.)

The requirement of comparing every corresponding pair of blocks during
recovery is expensive to meet. We can reduce the cost greatly by keeping track of
block writes that are in progress, using a small amount of nonvolatile RAM. On
recovery, only blocks for which writes were in progress need to be compared.

The protocols for writing out a block to a remote site are similar to the protocols
for writing blocks to a mirrored disk system, which we examined in Chapter 10,
and particularly in Practice Exercise 10.3.

We can extend this procedure easily to allow the use of an arbitrarily large
number of copies of each block of stable storage. Although a large number of
copies reduces the probability of a failure to even lower than two copies do, it is
usually reasonable to simulate stable storage with only two copies.

16.2.2 Data Access

Aswe saw in Chapter 10, the database system resides permanently on nonvolatile
storage (usually disks) and only parts of the database are in memory at any time.!
The database is partitioned into fixed-length storage units called blocks. Blocks
are the units of data transfer to and from disk, and may contain several data items.
We shall assume that no data item spans two or more blocks. This assumption is
realistic for most data-processing applications, such as a bank or a university.
Transactions input information from the disk to main memory, and then

output the information back onto the disk. The input and output operations are
done in block units_.&he blocks residing on the disk are referred to as physical
blocks; the blocks residing temporarily in main memory are referred to as buffer
blocks. The area of memory where blocks reside temporarily is called the disk
buffer.)

(Block movements between disk and main memory are initiated through the
following two operations:

1. input(B) transfers the physical block B to main memory.

2. output(B) transfers the buffer block B to the disk, and replaces the appro-
priate physical block there]

Figure 16.1 illustrates this scheme.

@onceptually, each transaction T; has a private work area in which copies of
data items accessed and updated by T; are kept. The system creates this work
area when the transaction is initiated; the system removes it when the transaction

IThere is a special category of database system, called main-memory database systems, where the entire database can be
loaded into memory at once. We consider such systems in Section 26.4.

16.2 Storage 725

input(A)) =

output(B)

disk

main memory

Figure 16.1 Block storage operations.

either commits or aborts. Each data item X kept in the work area of transaction T;
is denoted by x;. Transaction T; interacts with the database system by transferring
data to and from its work area to the system buffer. We transfer data by these two
operations:

1. read(X) assigns the value of data item X to the local variable x;. It executes
this operation as follows:

a. If block Bx on which X resides is not in main memory, it issues
input(Bx).

b. Itassigns to x; the value of X from the buffer block.

2. write(X) assigns the value of local variable x; to data item X in the buffer
block. It executes this operation as follows:

a. If block Bx on which X resides is not in main memory, it issues
input(Bx).

b. It assigns the value of x; to X in buffer B X_'j

[Note that both operations may require the transfer of a block from disk to main
memory. They do not, however, specifically require the transfer of a block from
main memory to disk.

A buffer block is eventually written out to the disk either because the buffer
manager needs the memory space for other purposes or because the database
system wishes to reflect the change to B on the disk. We shall say that the database
system performs a force-output of buffer B if it issues an output(B).

When a transaction needs to access a data item X for the first time, it must
execute read(X). The system then performs all updates to X on x;. At any point
during its execution a transaction may execute write(X) to reflect the change to X
in the database itself; write(X) must certainly be done after the final write to X.

726

16.3

Chapter 16 Recovery System

The output(Bx) operation for the buffer block Bx on which X resides does not
need to take effect immediately after write(X) is executed, since the block Bx may
contain other data items that are still being accessed. Thus, the actual output may
take place later. Notice that, if the system crashes after the write(X) operation was
executed but before output(Bx) was executed, the new value of X is never written
to disk and, thus, is lost. As we shall see shortly, the database system executes
extra actions to ensure that updates performed by committed transactions are not
lost even if there is a system crash.

Recovery and Atomicity

Consider again our simplified banking system and a transaction T; that transfers
$50 from account A to account B, with initial values of A and B being $1000 and
$2000, respectively. Suppose that a system crash has occurred during the execution
of T;, after output(B 4) has taken place, but before output(Bg) was executed, where
B and Bg denote the buffer blocks on which A and B reside. Since the memory
contents were lost, we do not know the fate of the transaction.

When the system restarts, the value of A would be $950, while that of B
would be $2000, which is clearly inconsistent with the atomicity requirement
for transaction T;. Unfortunately, there is no way to find out by examining the
database state what blocks had been output, and what had not, before the crash.
It is possible that the transaction completed, updating the database on stable
storage from an initial state with the values of A and B being $1000 and $1950;
it is also possible that the transaction did not affect the stable storage at all, and
the values of A and B were $950 and $2000 initially; or that the updated B was
output but not the updated A; or that the updated A was output but the updated
B was not.

Our goal is to perform either all or no database modifications made by T;.
However, if T; performed multiple database modifications, several output opera-
tions may be required, and a failure may occur after some of these modifications
have been made, but before all of them are made.

To achieve our goal of atomicity, we must first output to stable storage infor-
mation describing the modifications, without modifying the database itself. As we
shall see, this information can help us ensure that all modifications performed by
committed transactions are reflected in the database (perhaps during the course
of recovery actions after a crash). This information can also help us ensure that
no modifications made by an aborted transaction persist in the database.

16.3.1 Log Records

The most widely used structure for recording database modifications is the log.
The log is a sequence of log records, recording all the update activities in the
database.

(There are several types of log records. An update log record describes a single
database write. It has these fields:

16.3 Recovery and Atomicity 727

SHADOW COPIES AND SHADOW PAGING

In the shadow-copy scheme, a transaction that wants to update the database
first creates a complete copy of the database. All updates are done on the new
database copy, leaving the original copy, the shadow copy, untouched. If at any
point the transaction has to be aborted, the system merely deletes the new copy.
The old copy of the database has not been affected. The current copy of the
database is identified by a pointer, called db-pointer, which is stored on disk.

If the transaction partially commits (that is, executes its final statement) it
is committed as follows: First, the operating system is asked to make sure that
all pages of the new copy of the database have been written out to disk. (Unix
systems use the fsync command for this purpose.) After the operating system
has written all the pages to disk, the database system updates the pointer db-
pointer to point to the new copy of the database; the new copy then becomes
the current copy of the database. The old copy of the database is then deleted.
The transaction is said to have been committed at the point where the updated
db-pointer is written to disk.

The implementation actually depends on the write to db-pointer being atomic;
that is, either all its bytes are written or none of its bytes are written. Disk sys-
tems provide atomic updates to entire blocks, or at least to a disk sector. In other
words, the disk system guarantees that it will update db-pointer atomically, as
long as we make sure that db-pointer lies entirely in a single sector, which we
can ensure by storing db-pointer at the beginning of a block.

Shadow copy schemes are commonly used by text editors (saving the file is
equivalent to transaction commit, while quitting without saving the file is equiv-
alent to transaction abort). Shadow copying can be used for small databases, but
copying a large database would be extremely expensive. A variant of shadow-
copying, called shadow-paging, reduces copying as follows: the scheme uses a
page table containing pointers to all pages; the page table itself and all updated
pages are copied to a new location. Any page which is not updated by a trans-
action is not copied, but instead the new page table just stores a pointer to the
original page. When a transaction commits, it atomically updates the pointer to
the page table, which acts as db-pointer, to point to the new copy.

Shadow paging unfortunately does not work well with concurrent transac-
tions and is not widely used in databases.

¢ Transaction identifier, which is the unique identifier of the transaction that
performed the write operation.

¢ Data-item identifier, which is the unique identifier of the data item written.
Typically, it is the location on disk of the data item, consisting of the block
identifier of the block on which the data item resides, and an offset within
the block.

e Old value, which is the value of the data item prior to the write.

728

Chapter 16 Recovery System

= New value, which is the value that the data item will have after the write.

EWe representan update logrecord as <T;, X;, V1, V»>,indicating that transaction
T; has performed a write on data item X;. X; had value V; before the write, and
has value V, after the write. Other special log records exist to record significant
events during transaction processing, such as the start of a transaction and the
commit or abort of a transaction. Among the types of log records are:

e <T; start>. Transaction T; has started.
® <T; commit>. Transaction T; has committed.

<T; abort>. Transaction T; has aborted.

We shall introduce several other types of log records later.]

Whenever a transaction performs a write, it is essential that the log record
for that write be created and added to the log, before the database is modified.
Once a log record exists, we can output the modification to the database if that is
desirable. Also, we have the ability to undo a modification that has already been
output to the database. We undo it by using the old-value field in log records.

For log records to be useful for recovery from system and disk failures, the
log must reside in stable storage. For now, we assume that every log record is
written to the end of the log on stable storage as soon as it is created. In Section
16.5, we shall see when it is safe to relax this requirement so as to reduce the
overhead imposed by logging. Observe that the log contains a complete record of
all database activity. As a result, the volume of data stored in the log may become
unreasonably large. In Section 16.3.6, we shall show when it is safe to erase log
informatioﬁ

16.3.2 Database Modification

As we noted earlier, a transaction creates a log record prior to modifying the
database. The log records allow the system to undo changes made by a transaction
in the event that the transaction must be aborted; they allow the system also to
redo changes made by a transaction if the transaction has committed but the
system crashed before those changes could be stored in the database on disk.(In
order for us to understand the role of these log records in recovery, we need to
consider the steps a transaction takes in modifying a data ite@

The transaction performs some computations in its own private part of main
memory.

The transaction modifies the data block in the disk buffer in main memory
holding the data item.

3. The database system executes the output operation that writes the data block
to disk.

16.3 Recovery and Atomicity 729

(:_We say a transaction modifies the database if it performs an update on a disk
buffer, or on the disk itself; updates to the private part of main memory do not
count as database modifications. If a transaction does not modify the database
until it has committed, it is said to use the deferred-modification technique. If
database modifications occur while the transaction is still active, the transaction is
said to use the immediate-modification technique. Deferred modification has the
overhead that transactions need to make local copies of all updated data items;
further, if a transaction reads a data item that it has updated, it must read the
value from its local copy.

The recovery algorithms we describe in this chapter support immediate mod-
ification. As described, they work correctly even with deferred modification, but
can be optimized to reduce overhead when used with deferred modification; we
leave details as an exercise.

A recovery algorithm must take into account a variety of factors, including:

¢ The possibility that a transaction may have committed although some of its
database modifications exist only in the disk buffer in main memory and not
in the database on disk.

e The possibility that a transaction may have modified the database while in
the active state and, as a result of a subsequent failure, may need to abort.

Because all database modifications must be preceded by the creation of a log
record, the system has available both the old value prior to the modification of
the data item and the new value that is to be written for the data item. This allows
the system to perform undo and redo operations as appropriate.

L7 Undo using a log record sets the data item specified in the log record to the
old value.

/e Redo using a log record sets the data item specified in the log record to the
new value.

16.3.3 Concurrency Control and Recovery

If the concurrency control scheme allows a data item X that has been modified
by a transaction T; to be further modified by another transaction T, before T;
commits, then undoing the effects of T; by restoring the old value of X (before Ty
updated X) would also undo the effects of T,. To avoid such situations, recovery
algorithms usually require that if a data item has been modified by a transaction,
no other transaction can modify the data item until the first transaction commits
or aborts.

This requirement can be ensured by acquiring an exclusive lock on any up-
dated data item and holding the lock until the transaction commits; in other
words, by using strict two-phase locking. Snapshot-isolation and validation-

730 Chapter 16 Recovery System

based concurrency-control techniques also acquire exclusive locks on data items
at the time of validation, before modifying the data items, and hold the locks until
the transaction is committed; as a result the above requirement is satisfied even
by these concurrency control protocols.

We discuss later, in Section 16.7, how the above requirement can be relaxed
in certain cases.

When either snapshot-isolation or validation is used for concurrency control,
database updates of a transaction are (conceptually) deferred until the transac-
tion is partially committed; the deferred-modification technique is a natural fit
with these concurrency control schemes. However, it is worth noting that some
implementations of snapshot isolation use immediate modification, but provide
a logical snapshot on demand: when a transaction needs to read an item that
a concurrent transaction has updated, a copy of the (already updated) item is
made, and updates made by concurrent transactions are rolled back on the copy
of the item. Similarly, immediate modification of the database is a natural fit with
two-phase locking, but deferred modification can also be used with two-phase
locking.

16.3.4 Transaction Commit

@Ve say that a transaction has committed when its commit log record, which is the
last log record of the transaction, has been output to stable storage; at that point
all earlier log records have already been output to stable storage. Thus, there is
enough information in the log to ensure that even if there is a system crash, the
updates of the transaction can be redone. If a system crash occurs before a log
record < T; commit> is output to stable storage, transaction T; will be rolled
back. Thus, the output of the block containing the commit log record is the single
atomic action that results in a transaction getting committed)?

With most log-based recovery techniques, including the ones we describe in
this chapter, blocks containing the data items modified by a transaction do not
have to be output to stable storage when the transaction commits, but can be
output some time laterl We discuss this issue further in Section 16.5.2.

16.3.5 Using the Log to Redo and Undo Transactions

We now provide an overview of how the log can be used to recover from a
system crash, and to roll back transactions during normal operation. However, we
postpone details of the procedures for failure recovery and rollback to Section 16.4.

Consider our simplified banking system. Let Ty be a transaction that transfers
$50 from account A to account B:

2The output of a block can be made atomic by techniques for dealing with data-transfer failure, as described earlier in
Section 16.2.1.

16.3 Recovery and Atomicity 731

<T, start>

<T,, A, 1000, 950>
<Ty, B, 2000, 2050>
<Ty commit>

<T; start>

<TIy, C, 700, 600>
<T; commit>

Figure 16.2 Portion of the system log corresponding to Tp and T5.

To: read(A);
A=A —-50;
write(A);
read(B);

B :=B + 50;
write(B).

Let T} be a transaction that withdraws $100 from account C:

Ti: read(C);
C:=C - 100;
write(C).

The portion of the log containing the relevant information concerning these two
transactions appears in Figure 16.2.

Figure 16.3 shows one possible order in which the actual outputs took place
in both the database system and the log as a result of the execution of Ty and T;.

Using the log, the system can handle any failure that does not result in the
loss of information in nonvolatile storage. The recovery scheme uses two recovery
procedures. Both these procedures make use of the log to find the set of data items
updated by each transaction T;, and their respective old and new values.

e redo(T;) sets the value of all data items updated by transaction T; to the new
values.

[T_he order in which updates are carried out by redo is importan_a when
recovering from a system crash, if updates to a particular data item are
applied in an order different from the order in which they were applied
originally, the final state of that data item will have a wrong value. Most
recovery algorithms, including the one we describe in Section 16.4, do not
perform redo of each transaction separately; instead they perform a single
scan of the log, during which redo actions are performed for each log record
as it is encountered. This approach ensures the order of updates is preserved,

3Notice that this order could not be obtained using the deferred-modification technique, because the database is modified
by Ty before it commits, and likewise for Tj.

732 Chapter 16 Recovery System

Log Database
<T, start>
<Ty, A, 1000, 950>
<Ty, B, 2000, 2050>

A =950
B =2050
<T, commit>
<T, start>
<T,, C, 700, 600>
C =600

<T; commit>

Figure 16.3 State of system log and database corresponding to Tp and T.

and is more efficient since the log needs to be read only once overall, instead
of once per transaction.

® undo(T;) restores the value of all data items updated by transaction T; to the
old values.
In the recovery scheme that we describe in Section 16.4:

v6 The undo operation not only restores the data items to their old value,
but also writes log records to record the updates performed as part of the
undo process. These log records are special redo-only log records, since
they do not need to contain the old-value of the updated data item.
As with the redo procedure, the order in which undo operations are
performed is important; again we postpone details to Section 1@

C9When the undo operation for transaction T; completes, it writes a <T;
abort> log record, indicating that the undo has completed.

As we shall see in Section 16.4, the undo(T;) procedure is executed
only once for a transaction, if the transaction is rolled back during normal
processing or if on recovering from a system crash, neither a commit nor
an abort record is found for transaction T;. As a result, every transaction
will eventually have either a commit or an abort record in the log.

After a system crash has occurred, the system consults the log to determine
which transactions need to be redone, and which need to be undone so as to
ensure atomicity.

@ Transaction T; needs to be undone if the log contains the record <T; start>,
but does not contain either the record <T; commit> or the record <T; abort>.

1’ Transaction T; needs to be redone if the log contains the record <T; start> and
either the record <T; commit> or the record <T; abort>. It may seem strange
to redo T; if the record <T; abort> is in the log. To see why this works, note

16.3 Recovery and Atomicity 733

<T, start> <T, start> <T, start>
<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<T,, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>
<T, commit> <T, commit>
<T; start> <T; start>
<Ty, C, 700, 600> <T;, C, 700, 600>
<T; commit>

(a) (b) (©)

Figure 16.4 The same log, shown at three different times.

that if <T; abort> is in the log, so are the redo-only records written by the
undo operation. Thus, the end result will be to undo T;’s modifications in this
case. This slight redundancy simplifies the recovery algorithm and enables
faster overall recovery tim@

As an illustration, return to our banking example, with transaction T and
T; executed one after the other in the order Tj followed by T;. Suppose that the
system crashes before the completion of the transactions. We shall consider three
cases. The state of the logs for each of these cases appears in Figure 16.4.

First, let us assume that the crash occurs just after the log record for the step:

write(B)

of transaction Ty has been written to stable storage (Figure 16.4a). When the system
comes back up, it finds the record <Tj start> in the log, but no corresponding
<Tp commit> or <T, abort> record. Thus, transaction Ty must be undone, so an
undo(Tp) is performed. As a result, the values in accounts A and B (on the disk)
are restored to $1000 and $2000, respectively.

Next, let us assume that the crash comes just after the log record for the step:

write(C)

of transaction T; has been written to stable storage (Figure 16.4b). When the
system comes back up, two recovery actions need to be taken. The operation
undo(T;) must be performed, since the record <T; start> appears in the log, but
there is no record <T; commit> or <T; abort>. The operation redo(Ty) must be
performed, since the log contains both the record <Tj start> and the record <Tj
commit>. At the end of the entire recovery procedure, the values of accounts A,
B, and C are $950, $2050, and $700, respectively.
Finally, let us assume that the crash occurs just after the log record:

<T; commit>

734

Chapter 16 Recovery System

has been written to stable storage (Figure 16.4c). When the system comes back up,
both Ty and T; need to be redone, since the records <Ty start> and <T; commit>
appear in thelog, as do the records <Tj start> and <T; commit>. After the system
performs the recovery procedures redo(Ty) and redo(T;), the values in accounts
A, B, and C are $950, $2050, and $600, respectively.

16.3.6 Checkpoints

When a system crash occurs, we must consult the log to determine those trans-
actions that need to be redone and those that need to be undone. In principle, we
need to search the entire log to determine this information. There are two major
difficulties with this approach:

1. The search process is time-consuming.

2. Most of the transactions that, according to our algorithm, need to be redone
have already written their updates into the database. Although redoing
them will cause no harm, it will nevertheless cause recovery to take longer.

To reduce these types of overhead, we introduce checkpoints.

We describe below a simple checkpoint scheme that (a) does not permit any
updates to be performed while the checkpoint operation is in progress, and (b)
outputs all modified buffer blocks to disk when the checkpoint is performed.
We discuss later how to modify the checkpointing and recovery procedures to
provide more flexibility by relaxing both these requirements.

A checkpoint is performed as follows:

1. Output onto stable storage all log records currently residing in main mem-
ory.

2. Output to the disk all modified buffer blocks.

3. Output onto stable storage a log record of the form <checkpoint L>, where
L is a list of transactions active at the time of the checkpoint.

Transactions are not allowed to perform any update actions, such as writing
to a buffer block or writing a log record, while a checkpoint is in progress. We
discuss how this requirement can be enforced, later, in Section 16.5.2.

The presence of a <checkpoint L> record in the log allows the system to
streamline its recovery procedure. Consider a transaction T; that completed prior
to the checkpoint. For such a transaction, the <T; commit> record (or < T; abort>
record) appears in the log before the <checkpoint> record. Any database mod-
ifications made by T; must have been written to the database either prior to the
checkpoint or as part of the checkpoint itself. Thus, at recovery time, there is no
need to perform a redo operation on T;.

After a system crash has occurred, the system examines the log to find the last
<checkpoint L> record (this can be done by searching the log backward, from
the end of the log, until the first <checkpoint L> record is found).

16.4

16.4 Recovery Algorithm 735

The redo or undo operations need to be applied only to transactions in L, and
to all transactions that started execution after the <checkpoint L> record was
written to the log. Let us denote this set of transactions as T'.

e For all transactions Ty in T that have no <T, commit> record or <Tj abort>
record in the log, execute undo(Tj).

e For all transactions T; in T such that either the record <T, commit> or the
record <T; abort> appears in the log, execute redo(Tx).

Note that we need only examine the part of the log starting with the last check-
pointlog record to find the set of transactions T, and to find out whether a commit
or abort record occurs in the log for each transaction in T.

As an illustration, consider the set of transactions {Ty, T1, ..., Tigo}. Suppose
that the most recent checkpoint took place during the execution of transaction Tg;
and Ty, while Tgg and all transactions with subscripts lower than 67 completed
before the checkpoint. Thus, only transactions Te7, Teo, . .., Tioo need to be con-
sidered during the recovery scheme. Each of them needs to be redone if it has
completed (that is, either committed or aborted); otherwise, it was incomplete,
and needs to be undone.

Consider the set of transactions L in a checkpoint log record. For each trans-
action T; in L, log records of the transaction that occur prior to the checkpoint
log record may be needed to undo the transaction, in case it does not commit.
However, all log records prior to the earliest of the < T; start> log records, among
transactions T; in L, are not needed once the checkpoint has completed. These log
records can be erased whenever the database system needs to reclaim the space
occupied by these records.

The requirement that transactions must not perform any updates to buffer
blocks or to the log during checkpointing can be bothersome, since transaction
processing has to halt while a checkpoint is in progress. A fuzzy checkpoint
is a checkpoint where transactions are allowed to perform updates even while
buffer blocks are being written out. Section 16.5.4 describes fuzzy-checkpointing
schemes. Later in Section 16.8 we describe a checkpoint scheme that is not only
fuzzy, but does not even require all modified buffer blocks to be output to disk at
the time of the checkpoint.

Recovery Algorithm

Until now, in discussing recovery, we have identified transactions that need to
be redone and those that need to be undone, but we have not given a precise
algorithm for performing these actions. We are now ready to present the full
recovery algorithm using log records for recovery from transaction failure and
a combination of the most recent checkpoint and log records to recover from a
system crash.

736

Chapter 16 Recovery System

EThe recovery algorithm described in this section requires that a data item
that has been updated by an uncommitted transaction cannot be modified b
any other transaction, until the first transaction has either committed or abortegi‘ﬁ
Recall that this restriction was discussed earlier, in Section 16.3.3.

16.4.1 Transaction Rollback

First consider transaction rollback during normal operation (that is, not during
recovery from a system crash). Rollback of a transaction T; is performed as follows:

1. The log is scanned backward, and for each log record of T; of the form
<T;, X;, Vi, Vo> thatis found:

a. The value V; is written to data item X, and

b. Aspecial redo-onlylog record <T;, X;, V1> iswritten to thelog, where
V1 is the value being restored to data item X; during the rollback.
These log records are sometimes called compensation log records.
Such records do not need undo information, since we never need to
undo such an undo operation. We shall explain later how they are
used.

2. Once the log record <T; start> is found the backward scan is stopped, and
a log record <T; abort> is written to the log.

Observe that every update action performed by the transaction or on behalf
of the transaction, including actions taken to restore data items to their old value,
have now been recorded in the log. In Section 16.4.2 we shall see why this is a
good idea.

16.4.2 Recovery After a System Crash

Recovery actions, when the database system is restarted after a crash, take place
in two phases:

1. Intheredo phase, the system replays updates of all transactions by scanning
the log forward from the last checkpoint. The log records that are replayed
include log records for transactions that were rolled back before system
crash, and those that had not committed when the system crash occurred.
This phase also determines all transactions that were incomplete at the time
of the crash, and must therefore be rolled back. Such incomplete transactions
would either have been active at the time of the checkpoint, and thus would
appear in the transaction list in the checkpoint record, or would have started
later; further, such incomplete transactions would have neither a <T; abort>
nor a <T; commit> record in the log.

The specific steps taken while scanning the log are as follows:

a. Thelist of transactions to be rolled back, undo-list, is initially set to the
list L in the <checkpoint L> log record.

16.4 Recovery Algorithm 737

b. Whenever a normal log record of the form <T;, X;, V1, V»>, or a
redo-only log record of the form <T;, X;, V2> is encountered, the
operation is redone; that is, the value V; is written to data item X;.

c. Whenever a log record of the form <T; start> is found, T; is added to
undo-list.

d. Whenever a log record of the form <T; abort> or <T; commit> is
found, T; is removed from undo-list.

At the end of the redo phase, undo-list contains the list of all transactions
that are incomplete, that is, they neither committed nor completed rollback
before the crash.

2. In the undo phase, the system rolls back all transactions in the undo-list. It
performs rollback by scanning the log backward from the end.

a. Whenever it finds a log record belonging to a transaction in the undo-
list, it performs undo actions just as if the log record had been found
during the rollback of a failed transaction.

b. When the system finds a <T; start> log record for a transaction T; in
undo-list, it writes a <T; abort> log record to the log, and removes T;
from undo-list.

c. The undo phase terminates once undo-list becomes empty, that is, the
system has found <T; start> log records for all transactions that were
initially in undo-list.

After the undo phase of recovery terminates, normal transaction processing
can resume.

Observe that the redo phase replays every log record since the most recent
checkpoint record. In other words, this phase of restart recovery repeats all the
update actions that were executed after the checkpoint, and whose log records
reached the stable log. The actions include actions of incomplete transactions and
the actions carried out to rollback failed transactions. The actions are repeated
in the same order in which they were originally carried out; hence, this process
is called repeating history. Although it may appear wasteful, repeating history
even for failed transactions simplifies recovery schemes.

Figure 16.5 shows an example of actions logged during normal operation,
and actions performed during failure recovery. In the log shown in the figure,
transaction T; had committed, and transaction Ty had been completely rolled
back, before the system crashed. Observe how the value of data item B is restored
during the rollback of Ty. Observe also the checkpoint record, with the list of
actjve transactions containing Ty and T.

t\fﬂ‘nen recovering from a crash, in the redo phase, the system performs a redo
of all operations after the last checkpoint record. In this phase, the list undo-list
initially contains Ty and Ty; T; is removed first when its commit log record is
found, while T, is added when its start log record is found. Transaction Tj is

738

16.5

Chapter 16 Recovery System

Beginning of log Start log records

older <Tostart> found f'or al[
<T,, B, 2000, 2050> transactions in
o ’ undo list
<T; start> T, rollback
<checkpoint {Ty, T;}> (during normal Redo Pass
<T; C, 700, 600> opera_tion)
<T; commit> begins
<T, start>
Endoflog | | .7, A, 500, 400> e
at crash! <T,, B, 2000>
S~<T,abort> — T,is incomplete /
Log records at crash Undo list: T, Undo Pass
added during <Tz A, 500> —
recovery <T, abort> T, rolled back
in undo pass
newer

Figure 16.5 Example of logged actions, and actions during recovery.

removed from undo-list when its abort log record is found, leaving only T, in
undo-list. The undo phase scans the log backwards from the end, and when it
finds a log record of T, updating A, the old value of Ais restored, and a redo-only
log record written to the log. When the start record for T is found, an abort record
is added for T,. Since undo-list contains no more transactions, the undo phase
terminates, completing recover,

Buffer Management

In this section, we consider several subtle details that are essential to the imple-
mentation of a crash-recovery scheme that ensures data consistency and imposes
a minimal amount of overhead on interactions with the database.

16.5.1 Log-Record Buffering

So far, we have assumed that every log record is output to stable storage at the
time it is created. This assumption imposes a high overhead on system execution
for several reasons: Typically, output to stable storage is in units of blocks. In
most cases, a log record is much smaller than a block. Thus, the output of each
log record translates to a much larger output at the physical level. Furthermore,
as we saw in Section 16.2.1, the output of a block to stable storage may involve
several output operations at the physical level.

The cost of outputting a block to stable storage is sufficiently high that it is
desirable to output multiple log records at once. To do so, we write log records to
a log buffer in main memory, where they stay temporarily until they are output to
stable storage. Multiple log records can be gathered in the log buffer and output

