
‭Stable storage‬‭is an approximation critical for recovery algorithms. It's implemented by‬
‭replicating‬‭needed information onto several‬‭nonvolatile storage media‬‭(like disks) with‬
‭independent failure modes‬‭. Updates are done in a‬‭controlled manner‬‭to ensure that‬‭failure‬
‭during data transfer‬‭doesn't damage the essential information.‬

‭Shadow Copies:‬‭Before updating, create a‬‭complete copy‬‭of the database. Apply updates to the‬
‭new copy‬‭, leaving the‬‭original (shadow copy)‬‭untouched. To commit, ensure the new copy is on‬
‭disk and‬‭atomically update‬‭the‬‭db-pointer‬‭to point to it. To abort, just delete the new copy. It's‬
‭simple but‬‭expensive‬‭for large databases due to full copying.‬

‭Shadow Paging:‬‭A variant to‬‭reduce copying‬‭. Uses a‬‭page table‬‭(pointers to data pages). When‬
‭updating, only the‬‭page table itself‬‭and any‬‭updated pages‬‭are copied. The new page table‬
‭points to original pages for unchanged data.‬‭Commit involves‬‭atomically updating‬‭the pointer‬
‭(‬‭db-pointer‬‭)‬‭to the‬‭new page table‬‭. This avoids copying the whole database but‬‭doesn't work‬
‭well with concurrency‬‭and isn't widely used in databases.‬

‭Database Modification:‬
‭Updates data in disk buffer/disk (not private memory). Log old/new values‬‭before‬‭modifying.‬

‭●‬ ‭Types:‬
‭1.‬ ‭Immediate‬‭:‬‭Updates while active.‬

‭2.‬ ‭Deferred‬‭:‬‭Updates post-commit.‬

‭●‬ ‭Steps:‬
‭1.‬ ‭Compute privately.‬
‭2.‬ ‭Modify disk buffer block.‬
‭3.‬ ‭Write buffer block to disk.‬

‭Q1 Explain why log records for transactions on the undo-list must be processed in‬
‭reverse order, whereas redo is performed in a forward direction.‬

‭Ans :‬

‭●‬ ‭Undo (Reverse Order): To restore the original state‬‭before‬‭a transaction, changes‬
‭must be undone in the reverse sequence they were applied. Processing forward‬
‭would incorrectly stop at an intermediate value if an item was updated multiple‬
‭times.‬

‭●‬ ‭Redo (Forward Direction): To ensure the final committed state is reached, changes‬
‭must be reapplied in the same sequence they originally occurred. Processing in‬
‭reverse would incorrectly leave the data item with an earlier, non-final value.‬



‭Q2. Suppose the deferred modification technique is used in a database.‬

‭a. Is the old-value part of an update log record required any more? Why or why not?‬

‭b. If old values are not stored in update log records, transaction undo is clearly not feasible. How would‬
‭the redo-phase of recovery have to be modified as a result?‬

‭c. Deferred modification can be implemented by keeping updated data items in local memory of‬
‭transactions, and reading data items that have not been updated directly from the database buffer.‬
‭Suggest how to efficiently implement a data item read, ensuring that a transaction sees its own updates.‬

‭d. What problem would arise with the above technique, if transactions perform a large number of‬
‭updates?‬

‭Answer: .‬‭Old Value Needed?‬‭No. With‬‭deferred modification‬‭,‬‭the original value remains‬

‭untouched in the stable database until commit. Committed transactions don't need undo, and if a‬
‭transaction aborts or the system crashes before commit, the stable database wasn't altered,‬
‭making the‬‭old-value‬‭in the log redundant.‬

‭b.‬‭Redo Phase Modification:‬‭The redo phase simplifies.‬‭Since no uncommitted changes have‬
‭reached the stable database, there's no need to maintain an‬‭undo-list‬‭during redo. The redo‬

‭process only needs to apply log records for committed transactions forward.‬

‭c.‬‭Efficient Read Implementation:‬‭To read a data item: First, check the transaction's‬‭local‬

‭memory‬‭.‬‭If the item (possibly updated by the transaction) is found, return it. Otherwise, retrieve‬

‭the item from the‬‭database buffer‬‭(loading it into local memory if desired for future reads) and‬

‭return that value.‬

‭d.‬‭Problem with Large Updates:‬‭If a transaction performs many updates, the‬‭local memory‬

‭required to store all these deferred changes could become excessively large, potentially‬
‭exhausting available memory or degrading performance.‬



‭Q3. Disk space allocated to a file as a result of a transaction should not be released even‬
‭if the transaction is rolled back. Explain why, and explain how ARIES ensures that such‬
‭actions are not rolled back.‬

‭Ans :‬‭Why not roll back allocation:‬‭Disk space allocated by a transaction shouldn't be released‬
‭upon rollback because other concurrent transactions might have already stored data in that‬
‭space. Undoing the allocation would corrupt their data.‬

‭How ARIES prevents rollback:‬‭ARIES treats such actions (like page allocation) as‬‭nested‬

‭top actions‬‭. To prevent undo, when the allocation‬‭occurs, a special‬‭dummy CLR‬

‭(Compensation Log Record) is generated. During rollback, this CLR's‬‭UndoNextLSN‬‭directs the‬

‭process to‬‭skip‬‭over the original log records for the allocation, effectively making the action‬

‭permanent even if the main transaction aborts.‬



‭Q3. The shadow-paging scheme requires the page table to be copied. Suppose the page‬
‭table is represented as a B+-tree‬
‭. a. Suggest how to share as many nodes as possible between the new copy and the‬
‭shadow-copy of the B+-tree, assuming that updates are made only to leaf entries, with no‬
‭insertions and deletions.‬
‭b. Even with the above optimization, logging is much cheaper than a shadow-copy‬
‭scheme, for transactions that perform small updates. Explain why.‬

‭Answer a‬‭.‬‭Sharing B+-Tree Nodes:‬‭Initially, copy only the‬‭root node‬‭.‬‭When a‬‭leaf entry‬‭is‬

‭modified, copy only that leaf and the ancestor nodes along the‬‭path‬‭back to the (new) root. All‬

‭unchanged nodes remain‬‭shared‬‭between the‬‭new copy‬‭and the‬‭shadow-copy‬‭.‬

‭b.‬‭Why Logging is Cheaper for Small Updates:‬‭Even optimized‬‭shadow-copy‬‭schemes‬

‭require copying multiple pages (the updated leaf and its path to the root) for a single update.‬
‭Logging‬‭only writes‬‭small log records‬‭, which are often grouped onto a few‬‭log pages‬‭,‬

‭resulting in fewer disk I/O operations and potentially less‬‭disk arm movement‬‭compared to‬

‭copying potentially scattered B+-tree pages.‬

‭Q4 Disk space allocated to a file as a result of a transaction should not be released even if‬
‭the transaction is rolled back. Explain why, and explain how ARIES ensures that such‬
‭actions are not rolled back.‬

‭Answer :‬

‭Why not roll back allocation: Disk space allocated by a transaction shouldn't be released upon‬
‭rollback because other concurrent transactions might have already stored data in that space.‬
‭Undoing the allocation would corrupt their data.‬

‭How ARIES prevents rollback: ARIES treats such actions (like page allocation) as‬‭nested top‬

‭actions‬‭. To prevent undo, when the allocation occurs, a special‬‭dummy CLR‬‭(Compensation‬

‭Log Record) is generated. During rollback, this CLR's‬‭UndoNextLSN‬‭directs the process to‬‭skip‬

‭over the original log records for the allocation, effectively making the action permanent even if‬
‭the main transaction aborts.‬


