Stable storage is an approximation critical for recovery algorithms. It's implemented by
replicating needed information onto several nonvolatile storage media (like disks) with
independent failure modes. Updates are done in a controlled manner to ensure that failure
during data transfer doesn't damage the essential information.

Shadow Copies: Before updating, create a complete copy of the database. Apply updates to the
new copy, leaving the original (shadow copy) untouched. To commit, ensure the new copy is on
disk and atomically update the db-pointer to point to it. To abort, just delete the new copy. It's
simple but expensive for large databases due to full copying.

Shadow Paging: A variant to reduce copying. Uses a page table (pointers to data pages). When
updating, only the page table itself and any updated pages are copied. The new page table
points to original pages for unchanged data. Commit involves atomically updating the pointer
(db-pointer) to the new page table. This avoids copying the whole database but doesn't work
well with concurrency and isn't widely used in databases.

Database Modification:

Updates data in disk buffer/disk (not private memory). Log old/new values before modifying.

e Types:

1. Immediate: Updates while active.

2. Deferred: Updates post-commit.

1. Compute privately.
2. Modify disk buffer block.
3. Write buffer block to disk.

Q1 Explain why log records for transactions on the undo-list must be processed in

reverse order, whereas redo is performed in a forward direction.
Ans :

e Undo (Reverse Order): To restore the original state before a transaction, changes
must be undone in the reverse sequence they were applied. Processing forward
would incorrectly stop at an intermediate value if an item was updated multiple
times.

e Redo (Forward Direction): To ensure the final committed state is reached, changes
must be reapplied in the same sequence they originally occurred. Processing in
reverse would incorrectly leave the data item with an earlier, non-final value.



Q2. Suppose the deferred modification technique is used in a database.
a. Is the old-value part of an update log record required any more? Why or why not?

b. If old values are not stored in update log records, transaction undo is clearly not feasible. How would
the redo-phase of recovery have to be modified as a result?

c. Deferred modification can be implemented by keeping updated data items in local memory of
transactions, and reading data items that have not been updated directly from the database buffer.
Suggest how to efficiently implement a data item read, ensuring that a transaction sees its own updates.

d. What problem would arise with the above technique, if transactions perform a large number of
updates?

Answer: . Old Value Needed? No. With deferred modification, the original value remains
untouched in the stable database until commit. Committed transactions don't need undo, and if a
transaction aborts or the system crashes before commit, the stable database wasn't altered,
making the old-value in the log redundant.

b. Redo Phase Modification: The redo phase simplifies. Since no uncommitted changes have
reached the stable database, there's no need to maintain an undo-1ist during redo. The redo

process only needs to apply log records for committed transactions forward.

c. Efficient Read Implementation: To read a data item: First, check the transaction's 1local
memory. If the item (possibly updated by the transaction) is found, return it. Otherwise, retrieve
the item from the database buffer (loading it into local memory if desired for future reads) and

return that value.

d. Problem with Large Updates: If a transaction performs many updates, the local memory
required to store all these deferred changes could become excessively large, potentially
exhausting available memory or degrading performance.



Q3. Disk space allocated to a file as a result of a transaction should not be released even
if the transaction is rolled back. Explain why, and explain how ARIES ensures that such

actions are not rolled back.

Ans : Why not roll back allocation: Disk space allocated by a transaction shouldn't be released
upon rollback because other concurrent transactions might have already stored data in that
space. Undoing the allocation would corrupt their data.

How ARIES prevents rollback: ARIES treats such actions (like page allocation) as nested
top actions. To prevent undo, when the allocation occurs, a special dummy CLR
(Compensation Log Record) is generated. During rollback, this CLR's UndoNextLSN directs the
process to skip over the original log records for the allocation, effectively making the action

permanent even if the main transaction aborts.



Q3. The shadow-paging scheme requires the page table to be copied. Suppose the page
table is represented as a B+-tree

. a. Suggest how to share as many nodes as possible between the new copy and the
shadow-copy of the B+-tree, assuming that updates are made only to leaf entries, with no
insertions and deletions.

b. Even with the above optimization, logging is much cheaper than a shadow-copy
scheme, for transactions that perform small updates. Explain why.

Answer a. Sharing B+-Tree Nodes: Initially, copy only the root node. When a 1eaf entry is
modified, copy only that leaf and the ancestor nodes along the path back to the (new) root. All

unchanged nodes remain shared between the new copy and the shadow-copy.

b. Why Logging is Cheaper for Small Updates: Even optimized shadow-copy schemes

require copying multiple pages (the updated leaf and its path to the root) for a single update.
Logging only writes small log records, which are often grouped onto a few log pages,
resulting in fewer disk 1/0 operations and potentially less disk arm movement compared to

copying potentially scattered B+-tree pages.

Q4 Disk space allocated to a file as a result of a transaction should not be released even if
the transaction is rolled back. Explain why, and explain how ARIES ensures that such
actions are not rolled back.

Answer :

Why not roll back allocation: Disk space allocated by a transaction shouldn't be released upon
rollback because other concurrent transactions might have already stored data in that space.
Undoing the allocation would corrupt their data.

How ARIES prevents rollback: ARIES treats such actions (like page allocation) as nested top
actions. To prevent undo, when the allocation occurs, a special dummy CLR (Compensation
Log Record) is generated. During rollback, this CLR's UndoNextLSN directs the process to skip
over the original log records for the allocation, effectively making the action permanent even if
the main transaction aborts.



