CHAPTER 26

Advanced Transaction
Processing

In Chapters 14, 15, and 16, we introduced the concept of a transaction, a program
unit that accesses—and possibly updates—various data items, and whose ex-
ecution ensures the preservation of the ACID properties. We discussed in those
chapters a variety of techniques for ensuring the ACID properties in an environ-
ment where failure can occur, and where the transactions may run concurrently.

In this chapter, we go beyond the basic schemes discussed previously, and
cover advanced transaction-processing concepts, including transaction-processing
monitors, transactional workflows, and transaction processing in the context of
electronic commerce. We also cover main-memory databases, real-time databases,
long-duration transactions, and nested transactions.

26.1 Transaction-Processing Monitors

Transaction-processing monitors (TP monitors) are systems that were developed
in the 1970s and 1980s, initially in response to a need to support a large number of
remote terminals (such as airline-reservation terminals) from a single computer.
The term TP monitor initially stood for teleprocessing monitor.

TP monitors have since evolved to provide the core support for distributed
transaction processing, and the term TP monitor has acquired its current meaning.
The CICS TP monitor from IBM was one of the earliest TP monitors, and has
been very widely used. Other TP monitors include Oracle Tuxedo and Microsoft
Transaction Server.

Web application server architectures, including servlets, which we studied
earlier in Section 9.3, support many of the features of TP monitors and are some-
times referred to as “TP lite.” Web application servers are in widespread use,
and have supplanted traditional TP monitors for many applications. However,
the concepts underlying them, which we study in this section, are essentially the
same.

1091

1092 Chapter 26 Advanced Transaction Processing

26.1.1 TP-Monitor Architectures

Large-scale transaction-processing systems are built around a client-server archi-
tecture. One way of building such systems is to have a server process for each
client; the server performs authentication, and then executes actions requested by
the client. This process-per-client model is illustrated in Figure 26.1a. This model
presents several problems with respect to memory utilization and processing
speed:

® Per-process memory requirements are high. Even if memory for program
code is shared by all processes, each process consumes memory for local data
and open file descriptors, as well as for operating-system overhead, such as
page tables to support virtual memory.

¢ The operating system divides up available CPU time among processes by
switching among them; this technique is called multitasking. Each context
switch between one process and the next has considerable CPU overhead;
even on today’s fast systems, a context switch can take hundreds of mi-
croseconds.

The above problems can be avoided by having a single-server process to
which all remote clients connect; this model is called the single-server model,

= e

remote server files remote server files
clients clients
(a) Process-per-client model (b) Single-server model

—

remote router servers files remote routers servers files
clients clients
(c) Many-server, single-router model (d) Many-server, many-router model

Figure 26.1 TP-monitor architectures.

26.1 Transaction-Processing Monitors 1093

illustrated in Figure 26.1b. Remote clients send requests to the server process,
which then executes those requests. This model is also used in client-server en-
vironments, where clients send requests to a single-server process. The server
process handles tasks, such as user authentication, that would normally be han-
dled by the operating system. To avoid blocking other clients when processing
a long request for one client, the server process is multithreaded: The server
process has a thread of control for each client, and, in effect, implements its own
low-overhead multitasking. It executes code on behalf of one client for a while,
then saves the internal context and switches to the code for another client. Unlike
the overhead of full multitasking, the cost of switching between threads is low
(typically only a few microseconds).

Systems based on the single-server model, such as the original version of the
IBM CICS TP monitor and file servers such as Novel’s NetWare, successfully pro-
vided high transaction rates with limited resources. However, they had problems,
especially when multiple applications accessed the same database:

¢ Since all the applications run as a single process, there is no protection among
them. A bug in one application can affect all the other applications as well. It
would be best to run each application as a separate process.

e Suchsystems are not suited for parallel or distributed databases, since a server
process cannot execute on multiple computers at once. (However, concurrent
threads within a process can be supported in a shared-memory multiproces-
sor system.) This is a serious drawback in large organizations, where parallel
processing is critical for handling large workloads, and distributed data are
becoming increasingly common.

One way to solve these problems is to run multiple application-server pro-
cesses that access a common database, and to let the clients communicate with
the application through a single communication process that routes requests. This
model is called the many-server, single-router model, illustrated in Figure 26.1c.
This model supports independent server processes for multiple applications; fur-
ther, each application can have a pool of server processes, any one of which can
handle a client session. The request can, for example, be routed to the most lightly
loaded server in a pool. As before, each server process can itself be multithreaded,
so that it can handle multiple clients concurrently. As a further generalization, the
application servers can run on different sites of a parallel or distributed database,
and the communication process can handle the coordination among the processes.

The above architecture is also widely used in Web servers. A Web server has
a main process that receives HTTP requests, and then assigns the task of handling
each request to a separate process (chosen from among a pool of processes). Each
of the processes is itself multithreaded, so that it can handle multiple requests. The
use of safe programming languages, such as Java, C#, or Visual Basic, allows Web
application servers to protect threads from errors in other threads. In contrast,
with a language like C or C++, errors such as memory allocation errors in one
thread can cause other threads to fail.

1094

Chapter 26 Advanced Transaction Processing

authorization

T A —| lock manager |

application_| recovery manager|

servers

| log manager |

resource managers
I

T database and

tput
network output queue

Figure 26.2 TP-monitor components.

A more general architecture has multiple processes, rather than just one, to
communicate with clients. The client communication processes interact with one
or more router processes, which route their requests to the appropriate server.
Later-generation TP monitors therefore have a different architecture, called the
many-server, many-router model, illustrated in Figure 26.1d. A controller process
starts up the other processes and supervises their functioning. Very high perfor-
mance Web-server systems also adopt such an architecture. The router processes
are often network routers that direct traffic addressed to the same Internet ad-
dress to different server computers, depending on where the traffic comes from.
What looks like a single server with a single address to the outside world may be
a collection of servers.

The detailed structure of a TP monitor appears in Figure 26.2. A TP monitor
does more than simply pass messages to application servers. When messages
arrive, they may have to be queued; thus, there is a queue manager for incoming
messages. The queue may be a durable queue, whose entries survive system
failures. Using a durable queue helps ensure that once received and stored in the
queue, the messages will be processed eventually, regardless of system failures.
Authorization and application-server management (for example, server start-up
and routing of messages to servers) are further functions of a TP monitor. TP
monitors often provide logging, recovery, and concurrency-control facilities, al-
lowing application servers to implement the ACID transaction properties directly
if required.

Finally, TP monitors also provide support for persistent messaging. Recall that
persistent messaging (Section 19.4.3) provides a guarantee that the message will
be delivered if (and only if) the transaction commits.

In addition to these facilities, many TP monitors also provided presentation
facilities to create menus/forms interfaces for dumb clients such as terminals;

26.1 Transaction-Processing Monitors 1095

these facilities are no longer important since dumb clients are no longer widely
used.

26.1.2 Application Coordination Using TP monitors

Applications today often have to interact with multiple databases. They may
also have to interact with legacy systems, such as special-purpose data-storage
systems built directly on file systems. Finally, they may have to communicate
with users or other applications at remote sites. Hence, they also have to interact
with communication subsystems. It is important to be able to coordinate data
accesses, and to implement ACID properties for transactions across such systems.

Modern TP monitors provide support for the construction and administration
of such large applications, built up from multiple subsystems such as databases,
legacy systems, and communication systems. A TP monitor treats each subsys-
tem as a resource manager that provides transactional access to some set of re-
sources. The interface between the TP monitor and the resource manager is defined
by a set of transaction primitives, such as begin_transaction, commit_transaction,
abort_transaction, and prepare_to_commit_transaction (for two-phase commit). Of
course, the resource manager must also provide other services, such as supplying
data, to the application.

The resource-manager interface is defined by the X/Open Distributed Trans-
action Processing standard. Many database systems support the X/Open stan-
dards, and can act as resource managers. TP monitors—as well as other products,
such as SQL systems, that support the X/Open standards—can connect to the
resource managers.

In addition, services provided by a TP monitor, such as persistent messaging
and durable queues, act as resource managers supporting transactions. The TP
monitor can act as coordinator of two-phase commit for transactions that access
these services as well as database systems. For example, when a queued update
transaction is executed, an output message is delivered, and the request transac-
tion is removed from the request queue. Two-phase commit between the database
and the resource managers for the durable queue and persistent messaging helps
ensure that, regardless of failures, either all these actions occur or none occurs.

We can also use TP monitors to administer complex client-server systems
consisting of multiple servers and a large number of clients. The TP monitor
coordinates activities such as system checkpoints and shutdowns. It provides se-
curity and authentication of clients. It administers server pools by adding servers
or removing servers without interruption of the the database system. Finally, it
controls the scope of failures. If a server fails, the TP monitor can detect this failure,
abort the transactions in progress, and restart the transactions. If a node fails, the
TP monitor can migrate transactions to servers at other nodes, again backing out
incomplete transactions. When failed nodes restart, the TP monitor can govern
the recovery of the node’s resource managers.

TP monitors can be used to hide database failures in replicated systems; remote
backup systems (Section 16.9) are an example of replicated systems. Transaction
requests are sent to the TP monitor, which relays the messages to one of the

1096

26.2

Chapter 26 Advanced Transaction Processing

database replicas (the primary site, in case of remote backup systems). If one site
fails, the TP monitor can transparently route messages to a backup site, masking
the failure of the first site.

In client-server systems, clients often interact with servers via a remote-
procedure-call (RPC) mechanism, where a client invokes a procedure call, which
is actually executed at the server, with the results sent back to the client. As
far as the client code that invokes the RPC is concerned, the call looks like a
local procedure-call invocation. TP monitor systems provide a transactional RPC
interface to their services. In such an interface, the RPC mechanism provides calls
that can be used to enclose a series of RPC calls within a transaction. Thus, updates
performed by an RPC are carried out within the scope of the transaction, and can
be rolled back if there is any failure.

Transactional Workflows

A workflow is an activity in which multiple tasks are executed in a coordinated
way by different processing entities. A task defines some work to be done and
can be specified in a number of ways, including a textual description in a file
or electronic-mail message, a form, a message, or a computer program. The pro-
cessing entity that performs the tasks may be a person or a software system (for
example, a mailer, an application program, or a database-management system).

Figure 26.3 shows a few examples of workflows. A simple example is that of an
electronic-mail system. The delivery of a single mail message may involve several
mail systems that receive and forward the mail message, until the message reaches
its destination, where it is stored. Other terms used in the database and related
literature to refer to workflows include task flow and multisystem applications.
Workflow tasks are also sometimes called steps.

In general, workflows may involve one or more humans. For instance, con-
sider the processing of a loan. The relevant workflow appears in Figure 26.4. The
person who wants a loan fills out a form, which is then checked by a loan officer.
An employee who processes loan applications verifies the data in the form, using
sources such as credit-reference bureaus. When all the required information has
been collected, the loan officer may decide to approve the loan; that decision may

Workflow Typical Typical processing
application task entity
electronic-mail routing electronic-mail message | mailers
humans,
loan processing form processing application software
humans, application
purchase-order processing | form processing software, DBMSs

Figure 26.3 Examples of workflows.

26.2 Transactional Workflows 1097

loan
application

customer loan officer

loan superior
disbursement & e

Figure 26.4 Workflow in loan processing.

accept

then have to be approved by one or more superior officers, after which the loan
can be made. Each human here performs a task; in a bank that has not automated
the task of loan processing, the coordination of the tasks is typically carried out
by passing of the loan application, with attached notes and other information,
from one employee to the next. Other examples of workflows include processing
of expense vouchers, of purchase orders, and of credit-card transactions.

Today, all the information related to a workflow is more than likely to be stored
in a digital form on one or more computers, and, with the growth of networking,
information can be easily transferred from one computer to another. Hence, it is
feasible for organizations to automate their workflows. For example, to automate
the tasks involved in loan processing, we can store the loan application and
associated information in a database. The workflow itself then involves handing
of responsibility from one human to the next, and possibly even to programs that
can automatically fetch the required information. Humans can coordinate their
activities by means such as electronic mail.

Workflows are becoming increasingly important for multiple reasons within
as well as between organizations. Many organizations today have multiple soft-
ware systems that need to work together. For example, when an employee joins
an organization, information about the employee may have to be provided to
the payroll system, to the library system, to authentication systems that allow the
user to log on to computers, to a system that manages cafeteria accounts, an so on.
Updates, such as when the employee changes status or leaves the organization,
also have to be propagated to all the systems.

Organizations are increasingly automating their services; for example, a sup-
plier may provide an automated system for customers to place orders. Several
tasks may need to be carried out when an order is placed, including reserving
production time to create the ordered product and delivery services to deliver the
product.

We have to address two activities, in general, to automate a workflow. The
first is workflow specification: detailing the tasks that must be carried out and
defining the execution requirements. The second problem is workflow execu-
tion, which we must do while providing the safeguards of traditional database

1098

Chapter 26 Advanced Transaction Processing

systems related to computation correctness and data integrity and durability. For
example, it is not acceptable for a loan application or a voucher to be lost, or to be
processed more than once, because of a system crash. The idea behind transac-
tional workflows is to use and extend the concepts of transactions to the context
of workflows.

Both activities are complicated by the fact that many organizations use several
independently managed information-processing systems that, in most cases, were
developed separately to automate different functions. Workflow activities may
require interactions among several such systems, each performing a task, as well
as interactions with humans.

A number of workflow systems have been developed in recent years. Here,
we study properties of workflow systems at a relatively abstract level, without
going into the details of any particular system.

26.2.1 Workflow Specification

Internal aspects of a task donot need to be modeled for the purpose of specification
and management of a workflow. In an abstract view of a task, a task may use
parameters stored in its input variables, may retrieve and update data in the local
system, may store its results in its output variables, and may be queried about its
execution state. At any time during the execution, the workflow state consists of
the collection of states of the workflow’s constituent tasks, and the states (values)
of all variables in the workflow specification.

The coordination of tasks can be specified either statically or dynamically. A
static specification defines the tasks—and dependencies among them—before
the execution of the workflow begins. For instance, the tasks in an expense-
voucher workflow may consist of the approvals of the voucher by a secretary, a
manager, and an accountant, in that order, and finally the delivery of a check. The
dependencies among the tasks may be simple—each task has to be completed
before the next begins.

A generalization of this strategy is to have a precondition for execution of
each task in the workflow, so that all possible tasks in a workflow and their
dependencies are known in advance, but only those tasks whose preconditions
are satisfied are executed. The preconditions can be defined through dependencies
such as the following:

e Execution states of other tasks—for example, “task f; cannot start until task
tj has ended,” or “task t; must abort if task t; has committed.”

¢ Output values of other tasks—for example, “task t; can start if task t; re-
turns a value greater than 25,” or “the manager-approval task can start if the
secretary-approval task returns a value of OK.”

e External variables modified by external events—for example, “task t; cannot
be started before 9 AM.,” or “task t; must be started within 24 hours of the
completion of task t;.”

26.2 Transactional Workflows 1099

We can combine the dependencies by the regular logical connectors (or, and, not)
to form complex scheduling preconditions.

An example of dynamic scheduling of tasks is an electronic-mail routing
system. The next task to be scheduled for a given mail message depends on what
the destination address of the message is, and on which intermediate routers are
functioning.

26.2.2 Failure-Atomicity Requirements of a Workflow

The workflow designer may specify the failure-atomicity requirements of a work-
flow according to the semantics of the workflow. The traditional notion of failure
atomicity would require that a failure of any task result in the failure of the work-
flow. However, a workflow can, in many cases, survive the failure of one of its
tasks—for example, by executing a functionally equivalent task at another site.
Therefore, we should allow the designer to define failure-atomicity requirements
of a workflow. The system must guarantee that every execution of a workflow
will terminate in a state that satisfies the failure-atomicity requirements defined
by the designer. We call those states acceptable termination states of a work-
flow. All other execution states of a workflow constitute a set of nonacceptable
termination states, in which the failure-atomicity requirements may be violated.

An acceptable termination state can be designated as committed or aborted.
A committed acceptable termination state is an execution state in which the
objectives of a workflow have been achieved. In contrast, an aborted acceptable
termination state is a valid termination state in which a workflow has failed to
achieve its objectives. If an aborted acceptable termination state has been reached,
all undesirable effects of the partial execution of the workflow must be undone
in accordance with that workflow’s failure-atomicity requirements.

A workflow must reach an acceptable termination state even in the presence
of system failures. Thus, if a workflow is in a nonacceptable termination state at
the time of failure, during system recovery it must be brought to an acceptable
termination state (whether aborted or committed).

For example, in the loan-processing workflow, in the final state, either the
loan applicant is told that a loan cannot be made or the loan is disbursed. In case
of failures such as a long failure of the verification system, the loan application
could be returned to the loan applicant with a suitable explanation; this outcome
would constitute an aborted acceptable termination. A committed acceptable
termination would be either the acceptance or the rejection of the loan.

In general, a task can commit and release its resources before the workflow
reaches a termination state. However, if the multitask transaction later aborts,
its failure atomicity may require that we undo the effects of already completed
tasks (for example, committed subtransactions) by executing compensating tasks
(as subtransactions). The semantics of compensation requires that a compensat-
ing transaction eventually complete its execution successfully, possibly after a
number of resubmissions.

In an expense-voucher-processing workflow, for example, a department-
budget balance may be reduced on the basis of an initial approval of a voucher

1100

Chapter 26 Advanced Transaction Processing

by the manager. If the voucher is later rejected, whether because of failure or for
other reasons, the budget may have to be restored by a compensating transaction.

26.2.3 Execution of Workflows

The execution of the tasks may be controlled by a human coordinator or by a soft-
ware system called a workflow-management system. A workflow-management
system consists of a scheduler, task agents, and a mechanism to query the state of
the workflow system. A task agent controls the execution of a task by a processing
entity. A scheduler is a program that processes workflows by submitting various
tasks for execution, monitoring various events, and evaluating conditions related
to intertask dependencies. A scheduler may submit a task for execution (to a task
agent), or may request that a previously submitted task be aborted. In the case
of multidatabase transactions, the tasks are subtransactions, and the processing
entities are local database-management systems. In accordance with the work-
flow specifications, the scheduler enforces the scheduling dependencies and is
responsible for ensuring that tasks reach acceptable termination states.

There are three architectural approaches to the development of a workflow-
management system. A centralized architecture has a single scheduler that sched-
ules the tasks for all concurrently executing workflows. The partially distributed
architecture has one scheduler instantiated for each workflow. When the issues
of concurrent execution can be separated from the scheduling function, the latter
option is a natural choice. A fully distributed architecture has no scheduler, but
the task agents coordinate their execution by communicating with one another to
satisfy task dependencies and other workflow execution requirements.

The simplest workflow-execution systems follow the fully distributed ap-
proach just described and are based on messaging. Messaging may be imple-
mented by persistent messaging mechanisms, to provide guaranteed delivery.
Some implementations use email for messaging; such implementations provide
many of the features of persistent messaging, but generally do not guarantee
atomicity of message delivery and transaction commit. Each site has a task agent
that executes tasks received through messages. Execution may also involve pre-
senting messages to humans, who have then to carry out some action. When a
task is completed at a site, and needs to be processed at another site, the task
agent dispatches a message to the next site. The message contains all relevant
information about the task to be performed. Such message-based workflow sys-
tems are particularly useful in networks that may be disconnected for part of the
time.

The centralized approach is used in workflow systems where the data are
stored in a central database. The scheduler notifies various agents, such as humans
or computer programs, that a task has to be carried out, and keeps track of task
completion. It is easier to keep track of the state of a workflow with a centralized
approach than it is with a fully distributed approach.

The scheduler must guarantee that a workflow will terminate in one of the
specified acceptable termination states. Ideally, before attempting to execute a
workflow, the scheduler should examine that workflow to check whether the

26.2 Transactional Workflows 1101

workflow may terminate in a nonacceptable state. If the scheduler cannot guar-
antee that a workflow will terminate in an acceptable state, it should reject such
specifications without attempting to execute the workflow. As an example, let
us consider a workflow consisting of two tasks represented by subtransactions
51 and S, with the failure-atomicity requirements indicating that either both or
neither of the subtransactions should be committed. If S; and S, do not provide
prepared-to-commit states (for a two-phase commit), and further do not have
compensating transactions, then it is possible to reach a state where one subtrans-
action is committed and the other aborted, and there is no way to bring both to
the same state. Therefore, such a workflow specification is unsafe, and should be
rejected.

Safety checks such as the one just described may be impossible or impractical
to implement in the scheduler; it then becomes the responsibility of the person
designing the workflow specification to ensure that the workflows are safe.

26.2.4 Recovery of a Workflow

The objective of workflow recovery is to enforce the failure atomicity of the work-
flows. The recovery procedures must make sure that, if a failure occurs in any
of the workflow-processing components (including the scheduler), the workflow
will eventually reach an acceptable termination state (whether aborted or com-
mitted). For example, the scheduler could continue processing after failure and
recovery, as though nothing happened, thus providing forward recoverability.
Otherwise, the scheduler could abort the whole workflow (that is, reach one
of the global abort states). In either case, some subtransactions may need to be
committed or even submitted for execution (for example, compensating subtrans-
actions).

We assume that the processing entities involved in the workflow have their
own recovery systems and handle their local failures. To recover the execution-
environment context, the failure-recovery routines need to restore the state infor-
mation of the scheduler at the time of failure, including the information about the
execution states of each task. Therefore, the appropriate status information must
be logged on stable storage.

We also need to consider the contents of the message queues. When one
agent hands off a task to another, the handoff should be carried out exactly once:
If the handoff happens twice a task may get executed twice; if the handoff does
not occur, the task may get lost. Persistent messaging (Section 19.4.3) provides
exactly the features to ensure positive, single handoff.

26.2.5 Workflow-Management Systems

Workflows are often hand coded as part of application systems. For instance, en-
terprise resource planning (ERP) systems, which help coordinate activities across
an entire enterprise, have numerous workflows built into them.

The goal of workflow-management systems is to simplify the construction of
workflows and make them more reliable, by permitting them to be specified in a
high-level manner and executed in accordance with the specification. There are a

1102

26.3

Chapter 26 Advanced Transaction Processing

large number of commercial workflow-management systems; some are general-
purpose workflow-management systems, while others are specific to particular
workflows, such as order processing or bug/failure reporting systems.

In today’s world of interconnected organizations, it is not sufficient to man-
age workflows only within an organization. Workflows that cross organizational
boundaries are becoming increasingly common. For instance, consider an order
placed by an organization and communicated to another organization that ful-
fills the order. In each organization there may be a workflow associated with the
order, and it is important that the workflows be able to interoperate, in order to
minimize human intervention.

The term business process management is used to refer to the management
of workflows related to business processes. Today, applications are increasingly
making their functionality available as services that can be invoked by other
applications, often using a Web service architecture. A system architecture based
on invoking services provided by multiple applications is referred to as a service
oriented architecture SOA. Such services are the base layer on top of which
workflow management is implemented today. The process logic that controls the
workflow by invoking the services is referred to as orchestration.

Business process management systems based on the SOA architecture include
Microsoft’s BizTalk Server, IBMs WebSphere Business Integration Server Founda-
tion, and BEAs WebLogic Process Edition, among others.

The Web Services Business Process Execution Language (WS-BPEL) is an XML
based standard for specifying Web services and business processes (workflows)
based on the Web services, which can be executed by a business process manage-
ment system. The Business Process Modeling Notation (BPMN), is a standard
for graphical modeling of business processes in a workflow, and XML Process
Definition Language (XPDL) is an XML based representation of business process
definitions, based on BPMN diagrams.

E-Commerce

E-commerce refers to the process of carrying out various activities related to
commerce, through electronic means, primarily through the Internet. The types
of activities include:

¢ Presale activities, needed to inform the potential buyer about the product or
service being sold.

¢ The sale process, which includes negotiations on price and quality of service,
and other contractual matters.

¢ The marketplace: When there are multiple sellers and buyers for a product,
a marketplace, such as a stock exchange, helps in negotiating the price to
be paid for the product. Auctions are used when there is a single seller and
multiple buyers, and reverse auctions are used when there is a single buyer
and multiple sellers.

26.3 E-Commerce 1103

¢ Payment for the sale.

e Activities related to delivery of the product or service. Some products and
services can be delivered over the Internet; for others the Internet is used only
for providing shipping information and for tracking shipments of products.

¢ Customer support and postsale service.

Databases are used extensively to support these activities. For some of the
activities, the use of databases is straightforward, but there are interesting appli-
cation development issues for the other activities.

26.3.1 E-Catalogs

Any e-commerce site provides users with a catalog of the products and services
that the site supplies. The services provided by an e-catalog may vary consider-
ably.

At the minimum, an e-catalog must provide browsing and search facilities to
help customers find the product for which they are looking. To help with brows-
ing, products should be organized into an intuitive hierarchy, so a few clicks on
hyperlinks can lead customers to the products in which they are interested. Key-
words provided by the customer (for example, “digital camera” or “computer”)
should speed up the process of finding required products. E-catalogs should also
provide a means for customers to easily compare alternatives from which to
choose among competing products.

E-catalogs can be customized for the customer. For instance, a retailer may
have an agreement with a large company to supply some products at a discount.
An employee of the company, viewing the catalog to purchase products for the
company, should see prices with the negotiated discount, instead of the regular
prices. Because of legal restrictions on sales of some types of items, customers who
are underage, or from certain states or countries, should not be shown items that
cannot legally be sold to them. Catalogs can also be personalized to individual
users, on the basis of past buying history. For instance, frequent customers may
be offered special discounts on some items.

Supporting such customization requires customer information as well as spe-
cial pricing/discount information and sales restriction information to be stored
in a database. There are also challenges in supporting very high transaction rates,
which are often tackled by caching of query results or generated Web pages.

26.3.2 Marketplaces

When there are multiple sellers or multiple buyers (or both) for a product, a
marketplace helps in negotiating the price to be paid for the product. There are
several different types of marketplaces:

® In areverse auction system a buyer states requirements, and sellers bid for
supplying the item. The supplier quoting the lowest price wins. In a closed
bidding system, the bids are not made public, whereas in an open bidding
system the bids are made public.

1104

Chapter 26 Advanced Transaction Processing

¢ In an auction there are multiple buyers and a single seller. For simplicity,
assume that there is only one instance of each item being sold. Buyers bid for
the items being sold, and the highest bidder for an item gets to buy the item
at the bid price.
When there are multiple copies of an item, things become more complicated:
Suppose there are four items, and one bidder may want three copies for $10
each, while another wants two copies for $13 each. It is not possible to satisfy
both bids. If the items will be of no value if they are not sold (for instance,
airline seats, which must be sold before the plane leaves), the seller simply
picks a set of bids that maximizes the income. Otherwise the decision is more
complicated.

¢ In an exchange, such as a stock exchange, there are multiple sellers and
multiple buyers. Buyers can specify the maximum price they are willing to
pay, while sellers specify the minimum price they want. There is usually a
market maker who matches buy and sell bids, deciding on the price for each
trade (for instance, at the price of the sell bid).

There are other more complex types of marketplaces.
Among the database issues in handling marketplaces are these:

¢ Bidders need to be authenticated before they are allowed to bid.

¢ Bids (buy or sell) need to be recorded securely in a database. Bids need to be
communicated quickly to other people involved in the marketplace (such as
all the buyers or all the sellers), who may be numerous.

¢ Delays in broadcasting bids can lead to financial losses to some participants.

¢ The volumes of trades may be extremely large at times of stock market volatil-
ity, or toward the end of auctions. Thus, very high performance databases
with large degrees of parallelism are used for such systems.

26.3.3 Order Settlement

After items have been selected (perhaps through an electronic catalog) and the
price determined (perhaps by an electronic marketplace), the order has to be
settled. Settlement involves payment for goods and the delivery of the goods.

A simple but unsecure way of paying electronically is to send a credit-card
number. There are two major problems. First, credit-card fraud is possible. When a
buyer pays for physical goods, companies can ensure that the address for delivery
matches the cardholder’s address, so no one else can receive the goods, but for
goods delivered electronically no such check is possible. Second, the seller has to
be trusted to bill only for the agreed-on item and to not pass on the card number
to unauthorized people who may misuse it.

Several protocols are available for secure payments that avoid both the prob-
lems listed above. In addition, they provide for better privacy, whereby the seller
may not be given any unnecessary details about the buyer, and the credit-card

26.4

26.4 Main-Memory Databases 1105

company is not provided any unnecessary information about the items pur-
chased. All information transmitted must be encrypted so that anyone intercept-
ing the data on the network cannot find out the contents. Public-/private-key
encryption is widely used for this task.

The protocols must also prevent person-in-the-middle attacks, where some-
one can impersonate the bank or credit-card company, or even the seller, or buyer,
and steal secret information. Impersonation can be perpetrated by passing off a
fake key as someone else’s public key (the bank’s or credit-card company’s, or the
merchant’s or the buyer’s). Impersonation is prevented by a system of digital cer-
tificates, whereby public keys are signed by a certification agency, whose public
key is well known (or which in turn has its public key certified by another certi-
fication agency and so on up to a key that is well known). From the well-known
public key, the system can authenticate the other keys by checking the certificates
in reverse sequence. Digital certificates were described earlier, in Section 9.8.3.2.

Several novel payment systems were developed in the early days of the Web.
One of these was a secure payment protocol called the Secure Electronic Transaction
(SET) protocol. The protocol requires several rounds of communication between
the buyer, seller, and the bank, in order to guarantee safety of the transaction.
There were also systems that provide for greater anonymity, similar to that pro-
vided by physical cash. The DigiCash payment system was one such system. When
a payment is made in such a system, it is not possible to identify the purchaser.
In contrast, identifying purchasers is very easy with credit cards, and even in the
case of SET, it is possible to identify the purchaser with the cooperation of the
credit-card company or bank. However, none of these systems was successful
commercially, for both technical and non-technical reasons.

Today, many banks provide secure payment gateways which allow a pur-
chaser to pay online at the banks Web site, without exposing credit card or bank
account information to the online merchant. When making a purchase at an online
merchant, the purchaser’s Web browser is redirected to the gateway to complete
the payment by providing credit card or bank account information, after which
the purchaser is again redirected back to the merchant’s site to complete the pur-
chase. Unlike the SET or DigiCash protocols, there is no software running on the
purchasers machine, except a Web browser; as a result this approach has found
wide success where the earlier approaches failed.

An alternative approach which is used by the PayPal system is for both the
purchaser and the merchant to have an account on a common platform, and the
money transfer happens entirely within the common platform. The purchaser
first loads her account with money using a credit card, and can then transfer
money to the merchants account. This approach has been very successful with
small merchants, since it does not require either the purchaser or the merchant to
run any software.

Main-Memory Databases

To allow a high rate of transaction processing (hundreds or thousands of trans-
actions per second), we must use high-performance hardware, and must exploit

1106

Chapter 26 Advanced Transaction Processing

parallelism. These techniques alone, however, are insufficient to obtain very low
response times, since disk I/O remains a bottleneck—about 10 milliseconds are
required for each 1/0, and this number has not decreased at a rate comparable
to the increase in processor speeds. Disk 1/0 is often the bottleneck for reads, as
well as for transaction commits. The long disk latency increases not only the time
to access a data item, but also limits the number of accesses per second.!

We can make a database system less disk bound by increasing the size of the
database buffer. Advances in main-memory technology let us construct large main
memories at relatively low cost. Today, commercial 64-bit systems can support
main memories of tens of gigabytes. Oracle TimesTen is a currently available
main-memory database. Additional information on main-memory databases is
given in the references in the bibliographical notes.

For some applications, such as real-time control, it is necessary to store data
in main memory to meet performance requirements. The memory size required
for most such systems is not exceptionally large, although there are at least a few
applications that require multiple gigabytes of data to be memory resident. Since
memory sizes have been growing at a very fast rate, an increasing number of
applications can be expected to have data that fit into main memory.

Large main memories allow faster processing of transactions, since data are
memory resident. However, there are still disk-related limitations:

¢ Log records must be written to stable storage before a transaction is commit-
ted. The improved performance made possible by a large main memory may
result in the logging process becoming a bottleneck. We can reduce commit
time by creating a stable log buffer in main memory, using nonvolatile RAM
(implemented, for example, by battery-backed-up memory). The overhead
imposed by logging can also be reduced by the group-commit technique dis-
cussed later in this section. Throughput (number of transactions per second)
is still limited by the data-transfer rate of the log disk.

¢ Buffer blocks marked as modified by committed transactions still have to be
written so that the amount of log that has to be replayed at recovery time is
reduced. If the update rate is extremely high, the disk data-transfer rate may
become a bottleneck.

e If the system crashes, all of main memory is lost. On recovery, the system
has an empty database buffer, and data items must be input from disk when
they are accessed. Therefore, even after recovery is complete, it takes some
time before the database is fully loaded in main memory and high-speed
processing of transactions can resume.

On the other hand, a main-memory database provides opportunities for op-
timizations:

IWrite latency for flash depends on whether an erase operation must be done first.

26.4 Main-Memory Databases 1107

® Since memory is costlier than disk space, internal data structures in main-
memory databases have to be designed to reduce space requirements. How-
ever, data structures can have pointers crossing multiple pages, unlike those
in disk databases, where the cost of the I/Os to traverse multiple pages would
be excessively high. For example, tree structures in main-memory databases
can be relatively deep, unlike B*-trees, but should minimize space require-
ments.
However, the speed difference between cache memory and main-memory,
and the fact that data is transferred between main-memory and cache in
units of a cache-line (typically about 64 bytes), results in a situation where
the relationship between cache and main-memory is not dissimilar to the
relationship between main-memory and disk (although with smaller speed
differences). As a result, BT -trees with small nodes that fit in a cache line have
been found quite useful even in main-memory databases.

® There is no need to pin buffer pages in memory before data are accessed,
since buffer pages will never be replaced.

® Query-processing techniques should be designed to minimize space over-
head, so that main-memory limits are not exceeded while a query is being
evaluated; that situation would result in paging to swap area, and would
slow down query processing.

® Once the disk 1/O bottleneck is removed, operations such as locking and
latching may become bottlenecks. Such bottlenecks must be eliminated by
improvements in the implementation of these operations.

e Recovery algorithms can be optimized, since pages rarely need to be written
out to make space for other pages.

The process of committing a transaction T requires these records to be written
to stable storage:

¢ Alllog records associated with T that have not been output to stable storage.

¢ The <T commit> log record.

These output operations frequently require the output of blocks that are only
partially filled. To ensure that nearly full blocks are output, we use the group-
commit technique. Instead of attempting to commit T when T completes, the
system waits until several transactions have completed, or a certain period of
time has passed since a transaction completed execution. It then commits the
group of transactions that are waiting, together. Blocks written to the log on
stable storage would contain records of several transactions. By careful choice of
group size and maximum waiting time, the system can ensure that blocks are
full when they are written to stable storage without making transactions wait
excessively. This technique results, on average, in fewer output operations per
committed transaction.

1108

26.5

Chapter 26 Advanced Transaction Processing

Although group commit reduces the overhead imposed by logging, it results
in a slight delay in commit of transactions that perform updates. The delay can be
made quite small (say, 10 milliseconds), which is acceptable for many applications.
These delays can be eliminated if disks or disk controllers support nonvolatile
RAM buffers for write operations. Transactions can commit as soon as the write is
performed on the nonvolatile RAM buffer. In this case, there is no need for group
commit.

Note that group commit is useful even in databases with disk-resident data,
not just for main-memory databases. If flash storage is used instead of magnetic
disk for storing log records, the commit delay is significantly reduced. However,
group commit can still be useful since it minimizes the number of pages written;
this translates to performance benefits in flash storage, since pages cannot be
overwritten, and the erase operation is expensive. (Flash storage systems remap
logical pages to a pre-erased physical page, avoiding delay at the time a page is
written, but the erase operation must be performed eventually as part of garbage
collection of old versions of pages.)

Real-Time Transaction Systems

The integrity constraints that we have considered thus far pertain to the values
stored in the database. In certain applications, the constraints include deadlines
by which a task must be completed. Examples of such applications include plant
management, traffic control, and scheduling. When deadlines are included, cor-
rectness of an execution is no longer solely an issue of database consistency.
Rather, we are concerned with how many deadlines are missed, and by how
much time they are missed. Deadlines are characterized as follows:

e Hard deadline. Serious problems, such as system crash, may occur if a task
is not completed by its deadline.

e Firm deadline. The task has zero value if it is completed after the deadline.

¢ Soft deadlines. The task has diminishing value if it is completed after the
deadline, with the value approaching zero as the degree of lateness increases.

Systems with deadlines are called real-time systems.

Transaction management in real-time systems must take deadlines into ac-
count. If the concurrency-control protocol determines that a transaction T; must
wait, it may cause T; to miss the deadline. In such cases, it may be preferable to
pre-empt the transaction holding the lock, and to allow T; to proceed. Pre-emption
must be used with care, however, because the time lost by the pre-empted trans-
action (due to rollback and restart) may cause the pre-empted transaction to miss
its deadline. Unfortunately, it is difficult to determine whether rollback or waiting
is preferable in a given situation.

A major difficulty in supporting real-time constraints arises from the variance
in transaction execution time. In the best case, all data accesses reference data in

26.6

26.6 Long-Duration Transactions 1109

the database buffer. In the worst case, each access causes a buffer page to be
written to disk (preceded by the requisite log records), followed by the reading
from disk of the page containing the data to be accessed. Because the two or more
disk accesses required in the worst case take several orders of magnitude more
time than the main-memory references required in the best case, transaction
execution time can be estimated only very poorly if data are resident on disk.
Hence, main-memory databases are often used if real-time constraints have to be
met.

However, even if data are resident in main memory, variances in execution
time arise from lock waits, transaction aborts, and so on. Researchers have devoted
considerable effort to concurrency control for real-time databases. They have
extended locking protocols to provide higher priority for transactions with early
deadlines. They have found that optimistic concurrency protocols perform well in
real-time databases; that is, these protocols result in fewer missed deadlines than
even the extended locking protocols. The bibliographical notes provide references
to research in the area of real-time databases.

In real-time systems, deadlines, rather than absolute speed, are the most
important issue. Designing a real-time system involves ensuring that there is
enough processing power to meet deadlines without requiring excessive hard-
ware resources. Achieving this objective, despite the variance in execution time
resulting from transaction management, remains a challenging problem.

Long-Duration Transactions

The transaction concept developed initially in the context of data-processing
applications, in which most transactions are noninteractive and of short duration.
Although the techniques presented here and earlier in Chapters 14, 15, and 16
work well in those applications, serious problems arise when this concept is
applied to database systems that involve human interaction. Such transactions
have these key properties:

¢ Longduration. Once a human interacts with an active transaction, that trans-
action becomes a long-duration transaction from the perspective of the com-
puter, since human response time is slow relative to computer speed. Further-
more, in design applications, the human activity may involve hours, days, or
an even longer period. Thus, transactions may be of long duration in human
terms, as well as in machine terms.

® Exposure of uncommitted data. Data generated and displayed to a user
by a long-duration transaction are uncommitted, since the transaction may
abort. Thus, users—and, as a result, other transactions—may be forced to
read uncommitted data. If several users are cooperating on a project, user
transactions may need to exchange data prior to transaction commit.

¢ Subtasks. An interactive transaction may consist of a set of subtasks initiated
by the user. The user may wish to abort a subtask without necessarily causing
the entire transaction to abort.

1110

Chapter 26 Advanced Transaction Processing

® Recoverability. It is unacceptable to abort a long-duration interactive trans-
action because of a system crash. The active transaction must be recovered
to a state that existed shortly before the crash so that relatively little human
work is lost.

¢ Performance. Good performance in an interactive transaction system is de-
fined as fast response time. This definition is in contrast to that in a non-
interactive system, in which high throughput (number of transactions per
second) is the goal. Systems with high throughput make efficient use of
system resources. However, in the case of interactive transactions, the most
costly resource is the user. If the efficiency and satisfaction of the user is to be
optimized, response time should be fast (from a human perspective). In those
cases where a task takes a long time, response time should be predictable (that
is, the variance in response times should be low), so that users can manage
their time well.

In Sections 26.6.1 through 26.6.5, we shall see why these five properties are in-
compatible with the techniques presented thus far and shall discuss how those
techniques can be modified to accommodate long-duration interactive transac-
tions.

26.6.1 Nonserializable Executions

The properties that we discussed make it impractical to enforce the requirement
used in earlier chapters that only serializable schedules be permitted. Each of the
concurrency-control protocols of Chapter 15 has adverse effects on long-duration
transactions:

¢ Two-phase locking. When a lock cannot be granted, the transaction request-
ing the lock is forced to wait for the data item in question to be unlocked.
The duration of this wait is proportional to the duration of the transaction
holding the lock. If the data item is locked by a short-duration transaction,
we expect that the waiting time will be short (except in case of deadlock or
extraordinary system load). However, if the data item is locked by a long-
duration transaction, the wait will be of long duration. Long waiting times
lead to both longer response time and an increased chance of deadlock.

¢ Graph-based protocols. Graph-based protocols allow for locks to be released
earlier than under the two-phase locking protocols, and they prevent dead-
lock. However, they impose an ordering on the data items. Transactions must
lock data items in a manner consistent with this ordering. As a result, a trans-
action may have to lock more data than it needs. Furthermore, a transaction
must hold a lock until there is no chance that the lock will be needed again.
Thus, long-duration lock waits are likely to occur.

¢ Timestamp-based protocols. Timestamp protocols never require a transac-
tion to wait. However, they do require transactions to abort under certain cir-
cumstances. If a long-duration transaction is aborted, a substantial amount of

26.6 Long-Duration Transactions 1111

work is lost. For noninteractive transactions, this lost work is a performance
issue. For interactive transactions, the issue is also one of user satisfaction.
It is highly undesirable for a user to find that several hours” worth of work
have been undone.

e Validation protocols. Like timestamp-based protocols, validation protocols
enforce serializability by means of transaction abort.

Thus, it appears that the enforcement of serializability results in long-duration
waits, in abort of long-duration transactions, or in both. There are theoretical
results, cited in the bibliographical notes, that substantiate this conclusion.

Further difficulties with the enforcement of serializability arise when we con-
sider recovery issues. We previously discussed the problem of cascading rollback,
in which the abort of a transaction may lead to the abort of other transactions.
This phenomenon is undesirable, particularly for long-duration transactions. If
locking is used, exclusive locks must be held until the end of the transaction, if
cascading rollback is to be avoided. This holding of exclusive locks, however,
increases the length of transaction waiting time.

Thus, it appears that the enforcement of transaction atomicity must either
lead to an increased probability of long-duration waits or create a possibility of
cascading rollback.

Snapshot isolation, described in Section 15.7, can provide a partial solution to
these issues, as can the optimistic concurrency control without read validation protocol
described in Section 15.9.3. The latter protocol was in fact designed specifically
to deal with long duration transactions that involve user interaction. Although
it does not guarantee serializability, optimistic concurrency control without read
validation is quite widely used.

However, when transactions are of long duration, conflicting updates are
more likely, resulting in additional waits or aborts. These considerations are the
basis for the alternative concepts of correctness of concurrent executions and
transaction recovery that we consider in the remainder of this section.

26.6.2 Concurrency Control

The fundamental goal of database concurrency control is to ensure that concur-
rent execution of transactions does not result in a loss of database consistency:.
The concept of serializability can be used to achieve this goal, since all serializable
schedules preserve consistency of the database. However, not all schedules that
preserve consistency of the database are serializable. For an example, consider
again a bank database consisting of two accounts A and B, with the consistency
requirement that the sum A + B be preserved. Although the schedule of Fig-
ure 26.5 is not conflict serializable, it nevertheless preserves the sum of A + B.
It also illustrates two important points about the concept of correctness without
serializability.

¢ Correctness depends on the specific consistency constraints for the database.

¢ Correctness depends on the properties of operations performed by each trans-
action.

1112

Chapter 26 Advanced Transaction Processing

Ty T>

read(A)

A:=A-50

write(A)
read(B)
B:=B—-10
write(B)

read(B)

B:=B + 50

write(B)
read(A)
A=A+10
write(A)

Figure 26.5 A non-conflict-serializable schedule.

In general it is not possible to perform an automatic analysis of low-level opera-
tions by transactions and check their effect on database consistency constraints.
However, there are simpler techniques. One is to use the database consistency
constraints as the basis for a split of the database into subdatabases on which con-
currency can be managed separately. Another is to treat some operations besides
read and write as fundamental low-level operations and to extend concurrency
control to deal with them.

The bibliographical notes reference other techniques for ensuring consistency
without requiring serializability. Many of these techniques exploit variants of
multiversion concurrency control (see Section 15.6). For older data-processing
applications that need only one version, multiversion protocols impose a high
space overhead to store the extra versions. Since many of the new database
applications require the maintenance of versions of data, concurrency-control
techniques that exploit multiple versions are practical.

26.6.3 Nested and Multilevel Transactions

A long-duration transaction can be viewed as a collection of related subtasks or
subtransactions. By structuring a transaction as a set of subtransactions, we are
able to enhance parallelism, since it may be possible to run several subtransactions
in parallel. Furthermore, it is possible to deal with failure of a subtransaction
(due to abort, system crash, and so on) without having to roll back the entire
long-duration transaction.

A nested or multilevel transaction T consists of aset T = {t, b, ..., t,} of
subtransactions and a partial order P on T. A subtransaction t; in T may abort
without forcing T to abort. Instead, T may either restart t; or simply choose not to
run t;. If ; commits, this action does not make #; permanent (unlike the situation in
Chapter 16). Instead, t; commits to T, and may still abort (or require compensation
—see Section 26.6.4) if T aborts. An execution of T must not violate the partial

26.6 Long-Duration Transactions 1113

order P. Thatis, ifanedget; — t; appears in the precedence graph, thent; —
must not be in the transitive closure of P.

Nesting may be several levels deep, representing a subdivision of a transac-
tion into subtasks, subsubtasks, and so on. At the lowest level of nesting, we have
the standard database operations read and write that we have used previously.

If a subtransaction of T is permitted to release locks on completion, T is
called a multilevel transaction. When a multilevel transaction represents a long-
duration activity, the transaction is sometimes referred to as a saga. Alternatively,
if locks held by a subtransaction # of T are automatically assigned to T on
completion of #;, T is called a nested transaction.

Although the main practical value of multilevel transactions arises in com-
plex, long-duration transactions, we shall use the simple example of Figure 26.5
to show how nesting can create higher-level operations that may enhance con-
currency. We rewrite transaction T;, using subtransactions T7; and T;», which
perform increment or decrement operations:

e Tj consists of:

o Tj.1, which subtracts 50 from A.
© T2, which adds 50 to B.

Similarly, we rewrite transaction T», using subtransactions T, ; and T;,, which
also perform increment or decrement operations:

e T, consists of:
o T 1, which subtracts 10 from B.
o Ty, which adds 10 to A.

No ordering is specified on Ty 1, Ti2, T2,1, and T ». Any execution of these sub-
transactions will generate a correct result. The schedule of Figure 26.5 corresponds
to the schedule < T1‘1, TZ,l, Tl,2, szz >.

26.6.4 Compensating Transactions

To reduce the frequency of long-duration waiting, we arrange for uncommit-
ted updates to be exposed to other concurrently executing transactions. Indeed,
multilevel transactions may allow this exposure. However, the exposure of un-
committed data creates the potential for cascading rollbacks. The concept of com-
pensating transactions helps us to deal with this problem.

Let transaction T be divided into several subtransactions f1, 5, ..., t,. After a
subtransaction f; commits, it releases its locks. Now, if the outer-level transaction
T has to be aborted, the effect of its subtransactions must be undone. Suppose
that subtransactions f1, ..., fy have committed, and that t;,1 was executing when
the decision to abort is made. We can undo the effects of #; by aborting that

1114

Chapter 26 Advanced Transaction Processing

subtransaction. However, it is not possible to abort subtransactions t;, ..., f,
since they have committed already.

Instead, we execute a new subtransaction ct;, called a compensating transaction,
to undo the effect of a subtransaction t;. Each subtransaction ¢; is required to have
a compensating transaction ct;. The compensating transactions must be executed
in the inverse order cty, ..., ct;. Here are several examples of compensation:

¢ Consider the schedule of Figure 26.5, which we have shown to be correct,
although not conflict serializable. Each subtransaction releases its locks once
it completes. Suppose that T, fails just prior to termination, after T, has re-
leased its locks. We then run a compensating transaction for T , that subtracts
10 from A and a compensating transaction for T ; that adds 10 to B.

¢ Consider a database insert by transaction T; that, as a side effect, causes a
Bt-tree index to be updated. The insert operation may have modified several
nodes of the B*-tree index. Other transactions may have read these nodes
in accessing data other than the record inserted by T;. As mentioned in Sec-
tion 16.7, we can undo the insertion by deleting the record inserted by T;. The
result is a correct, consistent B*-tree, but is not necessarily one with exactly
the same structure as the one we had before T; started. Thus, deletion is a
compensating action for insertion.

¢ Consider a long-duration transaction T; representing a travel reservation.
Transaction T has three subtransactions: T; 1, which makes airline reserva-
tions; T;», which reserves rental cars; and T; 3, which reserves a hotel room.
Suppose that the hotel cancels the reservation. Instead of undoing all of T;,
we compensate for the failure of T; 3 by deleting the old hotel reservation and
making a new one.

If the system crashes in the middle of executing an outer-level transaction, its
subtransactions must be rolled back when it recovers. The techniques described
in Section 16.7 can be used for this purpose.

Compensation for the failure of a transaction requires that the semantics of
the failed transaction be used. For certain operations, such as incrementation or
insertion into a B*-tree, the corresponding compensation is easily defined. For
more complex transactions, the application programmers may have to define
the correct form of compensation at the time that the transaction is coded. For
complex interactive transactions, it may be necessary for the system to interact
with the user to determine the proper form of compensation.

26.6.5 Implementation Issues

The transaction concepts discussed in this section create serious difficulties for
implementation. We present a few of them here, and discuss how we can address
these problems.

Long-duration transactions must survive system crashes. We can ensure that
they will by performing a redo on committed subtransactions, and by perform-

26.7

26.7 Summary 1115

ing either an undo or compensation for any short-duration subtransactions that
were active at the time of the crash. However, these actions solve only part of
the problem. In typical database systems, such internal system data as lock ta-
bles and transaction timestamps are kept in volatile storage. For a long-duration
transaction to be resumed after a crash, these data must be restored. Therefore, it
is necessary to log not only changes to the database, but also changes to internal
system data pertaining to long-duration transactions.

Logging of updates is made more complex when certain types of data items
exist in the database. A data item may be a CAD design, text of a document,
or another form of composite design. Such data items are physically large. Thus,
storing both the old and new values of the data item in a log record is undesirable.

There are two approaches to reducing the overhead of ensuring the recover-
ability of large data items:

¢ Operation logging. Only the operation performed on the data item and
the data-item name are stored in the log. Operation logging is also called
logical logging. For each operation, an inverse operation must exist. We
perform undo using the inverse operation and redo using the operation
itself. Recovery through operation logging is more difficult, since redo and
undo are not idempotent. Further, using logical logging for an operation that
updates multiple pages is greatly complicated by the fact that some, but not
all, of the updated pages may have been written to the disk, so it is hard to
apply either the redo or the undo of the operation on the disk image during
recovery. Using physical redo logging and logical undo logging, as described
in Section 16.7, provides the concurrency benefits of logical logging while
avoiding the above pitfalls.

® Loggingand shadow paging. Logging is used for modifications to small data
items, but large data items are often made recoverable via a shadowing, or
copy-on-write, technique. When we use shadowing;, it is possible to reduce
the overhead by keeping copies of only those pages that are actually modified.

Regardless of the technique used, the complexities introduced by long-duration
transactions and large data items complicate the recovery process. Thus, it is
desirable to allow certain noncritical data to be exempt from logging, and to rely
instead on offline backups and human intervention.

Summary

¢ Workflows are activities that involve the coordinated execution of multiple
tasks performed by different processing entities. They exist not just in com-
puter applications, but also in almost all organizational activities. With the
growth of networks, and the existence of multiple autonomous database sys-
tems, workflows provide a convenient way of carrying out tasks that involve
multiple systems.

¢ Although the usual ACID transactional requirements are too strong or are
unimplementable for such workflow applications, workflows must satisfy a

1116

Chapter 26 Advanced Transaction Processing

limited set of transactional properties that guarantee that a process is not left
in an inconsistent state.

Transaction-processing monitors were initially developed as multithreaded
servers that could service large numbers of terminals from a single process.
They have since evolved, and today they provide the infrastructure for build-
ing and administering complex transaction-processing systems that have a
large number of clients and multiple servers. They provide services such as
durable queueing of client requests and server responses, routing of client
messages to servers, persistent messaging, load balancing, and coordination
of two-phase commit when transactions access multiple servers.

E-commerce systems have become a core part of commerce. There are sev-
eral database issues in e-commerce systems. Catalog management, especially
personalization of the catalog, is done with databases. Electronic market-
places help in pricing of products through auctions, reverse auctions, or
exchanges. High-performance database systems are needed to handle such
trading. Orders are settled by electronic payment systems, which also need
high-performance database systems to handle very high transaction rates.

Large main memories are exploited in certain systems to achieve high sys-
tem throughput. In such systems, logging is a bottleneck. Under the group-
commit concept, the number of outputs to stable storage can be reduced, thus
releasing this bottleneck.

The efficient management of long-duration interactive transactions is more
complex, because of the long-duration waits and because of the possibil-
ity of aborts. Since the concurrency-control techniques used in Chapter 15
use waits, aborts, or both, alternative techniques must be considered. These
techniques must ensure correctness without requiring serializability.

Along-duration transaction is represented as a nested transaction with atomic
database operations at the lowest level. If a transaction fails, only active short-
duration transactions abort. Active long-duration transactions resume once
any short-duration transactions have recovered. A compensating transaction
is needed to undo updates of nested transactions that have committed, if the
outer-level transaction fails.

In systems with real-time constraints, correctness of execution involves not
only database consistency but also deadline satisfaction. The wide variance
of execution times for read and write operations complicates the transaction-
management problem for time-constrained systems.

Review Terms

e TP-monitor architectures

e TP monitor o Process per client

o Single server

o Many server, single router
© Many server, many router

¢ Multitasking

e Context switch

e Multithreaded server

¢ Queue manager

e Application coordination

o Resource manager
o Remote procedure call (RPC)
e Transactional workflows
o Task
o Processing entity
o Workflow specification
o Workflow execution
* Workflow state
o Execution states
o Qutput values
o External variables

¢ Workflow failure atomicity
o Workflow termination states

o Acceptable

o Nonacceptable
o Committed

o Aborted

¢ Workflow recovery
¢ Workflow-management system

¢ Workflow-management system
architectures

Practice Exercises

Practice Exercises 1117

o Centralized
o Partially distributed
o Fully distributed

Business process management
Orchestration

E-commerce

E-catalogs

Marketplaces

o Auctions
o Reverse auctions
o Exchange

Order settlement

Digital certificates
Main-memory databases
Group commit
Real-time systems
Deadlines

o Hard deadline
o Firm deadline

o Soft deadline

Real-time databases
Long-duration transactions
Exposure of uncommitted data
Nonserializable executions
Nested transactions

Multilevel transactions

Saga

Compensating transactions

Logical logging

26.1 Like database systems, workflow systems also require concurrency and
recovery management. List three reasons why we cannot simply apply a
relational database system using 2PL, physical undo logging, and 2PC.

1118 Chapter 26 Advanced Transaction Processing

26.2

26.3

26.4

26.5

26.6

Exercises

26.7

26.8

26.9

26.10

Consider a main-memory database system recovering from a system
crash. Explain the relative merits of:

¢ Loading the entire database back into main memory before resuming
transaction processing.

¢ Loading data as it is requested by transactions.

Is a high-performance transaction system necessarily a real-time system?
Why or why not?

Explain why it may be impractical to require serializability for long-
duration transactions.

Consider a multithreaded process that delivers messages from a durable
queue of persistent messages. Different threads may run concurrently,
attempting to deliver different messages. In case of a delivery failure, the
message must be restored in the queue. Model the actions that each thread
carries out as a multilevel transaction, so that locks on the queue need not
be held until a message is delivered.

Discuss the modifications that need to be made in each of the recovery
schemes covered in Chapter 16 if we allow nested transactions. Also,
explain any differences that result if we allow multilevel transactions.

Explain how a TP monitor manages memory and processor resources more
effectively than a typical operating system.

Compare TP-monitor features with those provided by Web servers sup-
porting servlets (such servers have been nicknamed TP-lite).

Consider the process of admitting new students at your university (or
new employees at your organization).

a. Give a high-level picture of the workflow starting from the student
application procedure.

b. Indicate acceptable termination states and which steps involve hu-
man intervention.

c. Indicate possible errors (including deadline expiry) and how they
are dealt with.

d. Study how much of the workflow has been automated at your uni-
versity.

Answer the following questions regarding electronic payment systems:

26.11

26.12

26.13

26.14

26.15

Bibliographical Notes 1119

a. Explain why electronic transactions carried out using credit-card
numbers may be insecure.

b. Analternativeis to have an electronic payment gateway maintained
by the credit-card company, and the site receiving payment redirects
customers to the gateway site to make the payment.

i. Explain what benefits such a system offers if the gateway does
not authenticate the user.

ii. Explain what further benefits are offered if the gateway has a
mechanism to authenticate the user.

c. Some credit-card companies offer a one-time-use credit-card number
as a more secure method of electronic payment. Customers connect
to the credit-card company’s Web site to get the one-time-use num-
ber. Explain what benefit such a system offers, as compared to using
regular credit-card numbers. Also explain its benefits and drawbacks
as compared to electronic payment gateways with authentication.

d. Does either of the above systems guarantee the same privacy that is
available when payments are made in cash? Explain your answer.

If the entire database fits in main memory, do we still need a database
system to manage the data? Explain your answer.

In the group-commit technique, how many transactions should be part of
a group? Explain your answer.

In a database system using write-ahead logging, what is the worst-case
number of disk accesses required to read a data item from a specified
disk page. Explain why this presents a problem to designers of real-time
database systems. Hint: consider the case when the disk buffer is full.

What is the purpose of compensating transactions? Present two examples
of their use.

Explain the connections between a workflow and a long-duration trans-
action.

Bibliographical Notes

Gray and Reuter [1993] provides a detailed (and excellent) textbook description
of transaction-processing systems, including chapters on TP monitors. X/Open
[1991] defines the X/Open XA interface.

Fischer [2006] is a handbook on workflow systems, which is published in as-
sociation with the Workflow Management Coalition. The Web site of the coalition
is www.wfmc.org. Our description of workflows follows the model of Rusinkiewicz
and Sheth [1995].

Loeb [1998] provides a detailed description of secure electronic transactions.

1120

Chapter 26 Advanced Transaction Processing

Garcia-Molina and Salem [1992] provides an overview of main-memory
databases. Jagadish etal. [1993] describes a recovery algorithm designed for main-
memory databases. A storage manager for main-memory databases is described
in Jagadish et al. [1994].

Real-time databases are discussed by Lam and Kuo [2001]. Concurrency con-
trol and scheduling in real-time databases are discussed by Haritsa et al. [1990],
Hong et al. [1993], and Pang et al. [1995]. Ozsoyoglu and Snodgrass [1995] is a
survey of research in real-time and temporal databases.

Nested and multilevel transactions are presented by Moss [1985], Lynch and
Merritt [1986], Moss [1987], Haerder and Rothermel [1987], Rothermel and Mohan
[1989], Weikum et al. [1990], Korth and Speegle [1990], Weikum [1991], and Korth
and Speegle [1994], Theoretical aspects of multilevel transactions are presented
in Lynch et al. [1988]. The concept of Saga was introduced in Garcia-Molina and
Salem [1987].

