
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 26: Advanced Transaction Chapter 26: Advanced Transaction
ProcessingProcessing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan26.2Database System Concepts - 6th Edition

Chapter 26: Advanced Transaction ProcessingChapter 26: Advanced Transaction Processing

 Transaction-Processing Monitors
 Transactional Workflows
 High-Performance Transaction Systems

 Main memory databases
 Real-Time Transaction Systems

 Long-Duration Transactions
 Transaction management in multidatabase systems

©Silberschatz, Korth and Sudarshan26.3Database System Concepts - 6th Edition

Transaction Processing MonitorsTransaction Processing Monitors
 TP monitors initially developed as multithreaded servers to support

large numbers of terminals from a single process.
 Provide infrastructure for building and administering complex transaction

processing systems with a large number of clients and multiple servers.
 Provide services such as:

 Presentation facilities to simplify creating user interfaces
 Persistent queuing of client requests and server responses
 Routing of client messages to servers
 Coordination of two-phase commit when transactions access

multiple servers.
 Some commercial TP monitors: CICS from IBM, Pathway from Tandem,

Top End from NCR, and Encina from Transarc

©Silberschatz, Korth and Sudarshan26.4Database System Concepts - 6th Edition

TP Monitor ArchitecturesTP Monitor Architectures

©Silberschatz, Korth and Sudarshan26.5Database System Concepts - 6th Edition

TP Monitor Architectures (Cont.)TP Monitor Architectures (Cont.)
 Process per client model - instead of individual login session per

terminal, server process communicates with the terminal, handles
authentication, and executes actions.
 Memory requirements are high
 Multitasking- high CPU overhead for context switching between

processes
 Single process model - all remote terminals connect to a single

server process.
 Used in client-server environments
 Server process is multi-threaded; low cost for thread switching
 No protection between applications
 Not suited for parallel or distributed databases

©Silberschatz, Korth and Sudarshan26.6Database System Concepts - 6th Edition

TP Monitor Architectures (Cont.)TP Monitor Architectures (Cont.)
 Many-server single-router model - multiple application server

processes access a common database; clients communicate with the
application through a single communication process that routes
requests.
 Independent server processes for multiple applications
 Multithread server process
 Run on parallel or distributed database

 Many server many-router model - multiple processes communicate
with clients.
 Client communication processes interact with router processes

that route their requests to the appropriate server.
 Controller process starts up and supervises other processes.

©Silberschatz, Korth and Sudarshan26.7Database System Concepts - 6th Edition

Detailed Structure of a TP MonitorDetailed Structure of a TP Monitor

©Silberschatz, Korth and Sudarshan26.8Database System Concepts - 6th Edition

Detailed Structure of a TP MonitorDetailed Structure of a TP Monitor
 Queue manager handles incoming messages
 Some queue managers provide persistent or durable message

queueing contents of queue are safe even if systems fails.
 Durable queueing of outgoing messages is important

 application server writes message to durable queue as part of a
transaction

 once the transaction commits, the TP monitor guarantees
message is eventually delivered, regardless of crashes.

 ACID properties are thus provided even for messages sent
outside the database

 Many TP monitors provide locking, logging and recovery services,
to enable application servers to implement ACID properties by
themselves.

©Silberschatz, Korth and Sudarshan26.9Database System Concepts - 6th Edition

Application Coordination Using Application Coordination Using
TP MonitorsTP Monitors

 A TP monitor treats each subsystem as a resource manager that
provides transactional access to some set of resources.

 The interface between the TP monitor and the resource manager is
defined by a set of transaction primitives

 The resource manager interface is defined by the X/Open Distributed
Transaction Processing standard.

 TP monitor systems provide a transactional remote procedure call
(transactional RPC) interface to their service
 Transactional RPC provides calls to enclose a series of RPC calls

within a transaction.
 Updates performed by an RPC are carried out within the scope of the

transaction, and can be rolled back if there is any failure.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Workflow SystemsWorkflow Systems

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan26.11Database System Concepts - 6th Edition

Transactional WorkflowsTransactional Workflows
 Workflows are activities that involve the coordinated execution of

multiple tasks performed by different processing entities.
 With the growth of networks, and the existence of multiple autonomous

database systems, workflows provide a convenient way of carrying out
tasks that involve multiple systems.

 Example of a workflow delivery of an email message, which goes
through several mails systems to reach destination.
 Each mailer performs a tasks: forwarding of the mail to the next

mailer.
 If a mailer cannot deliver mail, failure must be handled semantically

(delivery failure message).
 Workflows usually involve humans: e.g. loan processing, or purchase

order processing.

©Silberschatz, Korth and Sudarshan26.12Database System Concepts - 6th Edition

Examples of WorkflowsExamples of Workflows

©Silberschatz, Korth and Sudarshan26.13Database System Concepts - 6th Edition

Loan Processing WorkflowLoan Processing Workflow

 In the past, workflows were handled by creating and forwarding paper forms
 Computerized workflows aim to automate many of the tasks. But the humans

still play role e.g., in approving loans.

©Silberschatz, Korth and Sudarshan26.14Database System Concepts - 6th Edition

Transactional WorkflowsTransactional Workflows

 Must address following issues to computerize a workflow.
 Specification of workflows - detailing the tasks that must be

carried out and defining the execution requirements.
 Execution of workflows - execute transactions specified in the

workflow while also providing traditional database safeguards
related to the correctness of computations, data integrity, and
durability.

 E.g.: Loan application should not get lost even if system fails.
 Extend transaction concepts to the context of workflows.
 State of a workflow - consists of the collection of states of its

constituent tasks, and the states (i.e., values) of all variables in the
execution plan.

©Silberschatz, Korth and Sudarshan26.15Database System Concepts - 6th Edition

Workflow SpecificationWorkflow Specification

 Static specification of task coordination:
 Tasks and dependencies among them are defined before the

execution of the workflow starts.
 Can establish preconditions for execution of each task: tasks are

executed only when their preconditions are satisfied.
 Defined preconditions through dependencies:

 Execution states of other tasks.
 “task ti cannot start until task tj has ended”

 Output values of other tasks.
 “task ti can start if task tj returns a value greater than

25”
 External variables, that are modified by external events.

 “task ti must be started within 24 hours of the completion of task tj”

©Silberschatz, Korth and Sudarshan26.16Database System Concepts - 6th Edition

WorkflowWorkflow Specification (Cont.)Specification (Cont.)

 Dynamic task coordination
E.g., Electronic mail routing system in which the text to be schedule
for a given mail message depends on the destination address and on
which intermediate routers are functioning.

©Silberschatz, Korth and Sudarshan26.17Database System Concepts - 6th Edition

Failure-Automicity RequirementsFailure-Automicity Requirements
 Usual ACID transactional requirements are too strong/

unimplementable for workflow applications.
 However, workflows must satisfy some limited transactional

properties that guarantee a process is not left in an inconsistent
state.

 Acceptable termination states - every execution of a workflow will
terminate in a state that satisfies the failure-atomicity requirements
defined by the designer.
 Committed - objectives of a workflow have been achieved.
 Aborted - valid termination state in which a workflow has failed to

achieve its objectives.
 A workflow must reach an acceptable termination state even in the

presence of system failures.

©Silberschatz, Korth and Sudarshan26.18Database System Concepts - 6th Edition

Execution of WorkflowsExecution of Workflows

Workflow management systems include:
 Scheduler - program that process workflows by submitting various

tasks for execution, monitoring various events, and evaluation
conditions related to intertask dependencies

 Task agents - control the execution of a task by a processing entity.
 Mechanism to query to state of the workflow system.

©Silberschatz, Korth and Sudarshan26.19Database System Concepts - 6th Edition

Workflow Management System ArchitecturesWorkflow Management System Architectures

 Centralized - a single scheduler schedules the tasks for all concurrently
executing workflows.
 used in workflow systems where the data is stored in a central

database.
 easier to keep track of the state of a workflow.

 Partially distributed - has one (instance of a) scheduler for each
workflow.

 Fully distributed - has no scheduler, but the task agents coordinate their
execution by communicating with each other to satisfy task dependencies
and other workflow execution requirements.
 used in simplest workflow execution systems
 based on electronic mail

©Silberschatz, Korth and Sudarshan26.20Database System Concepts - 6th Edition

Workflow SchedulerWorkflow Scheduler

 Ideally scheduler should execute a workflow only after ensuring that it
will terminate in an acceptable state.

 Consider a workflow consisting of two tasks S1 and S2. Let the failure-
atomicity requirement be that either both or neither of the
subtransactions should be committed.
 Suppose systems executing S1 and S2 do not provide prepared-

to-commit states and S1 or S2 do not have compensating
transactions.

 It is then possible to reach a state where one subtransaction is
committed and the other aborted. Both cannot then be brought to
the same state.

 Workflow specification is unsafe, and should be rejected.
 Determination of safety by the scheduler is not possible in general,

and is usually left to the designer of the workflow.

©Silberschatz, Korth and Sudarshan26.21Database System Concepts - 6th Edition

Recovery of a WorkflowRecovery of a Workflow

 Ensure that is a failure occurs in any of the workflow-processing
components, the workflow eventually reaches an acceptable
termination state.

 Failure-recovery routines need to restore the state information of the
scheduler at the time of failure, including the information about the
execution states of each task. Log status information on stable
storage.

 Handoff of tasks between agents should occur exactly once in spite
of failure.

 Problem: Repeating handoff on recovery may lead to duplicate
execution of task; not repeating handoff may lead to task not being
executed.
 Solution: Persistent messaging systems

©Silberschatz, Korth and Sudarshan26.22Database System Concepts - 6th Edition

Recovery of a Workflow (Cont.)Recovery of a Workflow (Cont.)
 Persistent messages: messages are stored in permanent message

queue and therefore not lost in case of failure.
 Described in detail in Chapter 19 (Distributed Databases)

 Before an agent commits, it writes to the persistent message queue
whatever messages need to be sent out.

 The persistent message system must make sure the messages get
delivered eventually if and only if the transaction commits.

 The message system needs to resend a message when the site
recovers, if the message is not known to have reached its destination.

 Messages must be logged in stable storage at the receiving end to
detect multiple receipts of a message.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

High Performance High Performance
Transaction SystemsTransaction Systems

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan26.24Database System Concepts - 6th Edition

High-Performance Transaction SystemsHigh-Performance Transaction Systems

 High-performance hardware and parallelism help improve the rate
of transaction processing, but are insufficient to obtain high
performance:
 Disk I/O is a bottleneck — I/O time (10 milliseconds) has no

decreased at a rate comparable to the increase in processor
speeds.

 Parallel transactions may attempt to read or write the same
data item, resulting in data conflicts that reduce effective
parallelism

 We can reduce the degree to which a database system is disk
bound by increasing the size of the database buffer.

©Silberschatz, Korth and Sudarshan26.25Database System Concepts - 6th Edition

Main-Memory DatabaseMain-Memory Database
 Commercial 64-bit systems can support main memories of tens of

gigabytes.
 Memory resident data allows faster processing of transactions.
 Disk-related limitations:

 Logging is a bottleneck when transaction rate is high.
 Use group-commit to reduce number of output operations (Will

study two slides ahead.)
 If the update rate for modified buffer blocks is high, the disk

data-transfer rate could become a bottleneck.
 If the system crashes, all of main memory is lost.

©Silberschatz, Korth and Sudarshan26.26Database System Concepts - 6th Edition

Main-Memory Database OptimizationsMain-Memory Database Optimizations

 To reduce space overheads, main-memory databases can use
structures with pointers crossing multiple pages. In disk databases,
the I/O cost to traverse multiple pages would be excessively high.

 No need to pin buffer pages in memory before data are accessed,
since buffer pages will never be replaced.

 Design query-processing techniques to minimize space overhead -
avoid exceeding main memory limits during query evaluation.

 Improve implementation of operations such as locking and latching,
so they do not become bottlenecks.

 Optimize recovery algorithms, since pages rarely need to be written
out to make space for other pages.

©Silberschatz, Korth and Sudarshan26.27Database System Concepts - 6th Edition

Group CommitGroup Commit
 Idea: Instead of performing output of log records to stable storage as

soon as a transaction is ready to commit, wait until
 log buffer block is full, or
 a transaction has been waiting sufficiently long after being ready to

commit
 Results in fewer output operations per committed transaction, and

correspondingly a higher throughput.
 However, commits are delayed until a sufficiently large group of

transactions are ready to commit, or a transaction has been waiting
long enough-leads to slightly increased response time.

 Above delay acceptable in high-performance transaction systems
since log buffer blocks will fill up quickly.

©Silberschatz, Korth and Sudarshan26.28Database System Concepts - 6th Edition

Real-Time Transaction SystemsReal-Time Transaction Systems

 In systems with real-time constraints, correctness of execution involves
both database consistency and the satisfaction of deadlines.
 Hard deadline – Serious problems may occur if task is not

completed within deadline
 Firm deadline - The task has zero value if it completed after the

deadline.
 Soft deadline - The task has diminishing value if it is completed

after the deadline.
 The wide variance of execution times for read and write operations on

disks complicates the transaction management problem for time-
constrained systems
 main-memory databases are thus often used
 Waits for locks, transaction aborts, contention for resources remain

as problems even if data is in main memory
 Design of a real-time system involves ensuring that enough processing

power exists to meet deadline without requiring excessive hardware
resources.

©Silberschatz, Korth and Sudarshan26.29Database System Concepts - 6th Edition

Long Duration TransactionsLong Duration Transactions

Traditional concurrency control techniques do not work
well when user interaction is required:

 Long duration: Design edit sessions are very long
 Exposure of uncommitted data: E.g., partial update to a

design
 Subtasks: support partial rollback
 Recoverability: on crash state should be restored even for

yet-to-be committed data, so user work is not lost.
 Performance: fast response time is essential so user time is

not wasted.

©Silberschatz, Korth and Sudarshan26.30Database System Concepts - 6th Edition

Long-Duration TransactionsLong-Duration Transactions

 Represent as a nested transaction
 atomic database operations (read/write) at a lowest level.

 If transaction fails, only active short-duration transactions abort.
 Active long-duration transactions resume once any short duration

transactions have recovered.
 The efficient management of long-duration waits, and the possibility

of aborts.
 Need alternatives to waits and aborts; alternative techniques must

ensure correctness without requiring serializability.

©Silberschatz, Korth and Sudarshan26.31Database System Concepts - 6th Edition

Concurrency ControlConcurrency Control

 Correctness without serializability:
 Correctness depends on the specific consistency constraints for

the databases.
 Correctness depends on the properties of operations performed

by each transaction.
 Use database consistency constraints as to split the database into

subdatabases on which concurrency can be managed separately.
 Treat some operations besides read and write as fundamental low-

level operations and extend concurrency control to deal with them.

©Silberschatz, Korth and Sudarshan26.32Database System Concepts - 6th Edition

Concurrency Control (Cont.)Concurrency Control (Cont.)
 A non-conflict-serializable

schedule that preserves
the sum of A + B

©Silberschatz, Korth and Sudarshan26.33Database System Concepts - 6th Edition

Nested and Multilevel TransactionsNested and Multilevel Transactions

 A nested or multilevel transaction T is represented by a set
T = {t1, t2, ..., tn} of subtransactions and a partial order P on T.

 A subtransaction ti in T may abort without forcing T to abort.
 Instead, T may either restart ti, or simply choose not to run ti.
 If ti commits, this action does not make ti, permanent (unlike the

situation in Chapter 15). Instead, ti, commits to T, and may still abort
(or require compensation) if T aborts.

 An execution of T must not violate the partial order P, i.e., if an edge ti
 ti appears in the precedence graph, then ti  ti must not be in the
transitive closure of P.

©Silberschatz, Korth and Sudarshan26.34Database System Concepts - 6th Edition

Nested and Multilevel Transactions (Cont.)Nested and Multilevel Transactions (Cont.)

 Subtransactions can themselves be nested/multilevel transactions.
 Lowest level of nesting: standard read and write operations.

 Nesting can create higher-level operations that may enhance
concurrency.

 Types of nested/ multilevel transactions:
 Multilevel transaction: subtransaction of T is permitted to release

locks on completion.
 Saga: multilevel long-duration transaction.
 Nested transaction: locks held by a subtransaction ti of T are

automatically assign to T on completion of ti.

©Silberschatz, Korth and Sudarshan26.35Database System Concepts - 6th Edition

Example of NestingExample of Nesting

 Rewrite transaction T1 using subtransactions Ta and Tb that perform
increment or decrement operations:
 T1 consists of

 T1,1, which subtracts 50 from A
 T1,2, which adds 50 to B

 Rewrite transaction T2 using subtransactions Tc and Td that perform
increment or decrement operations:
 T2 consists of

 T2,1, which subtracts 10 from B
 T2,2, which adds 10 to A

 No ordering is specified on subtransactions; any execution generates
a correct result.

©Silberschatz, Korth and Sudarshan26.36Database System Concepts - 6th Edition

Compensating TransactionsCompensating Transactions

 Alternative to undo operation; compensating transactions deal with the
problem of cascading rollbacks.

 Instead of undoing all changes made by the failed transaction, action
is taken to “compensate” for the failure.

 Consider a long-duration transaction Ti representing a travel
reservation, with subtransactions Ti,1, which makes airline reservations,
Ti,2 which reserves rental cars, and Ti,3 which reserves a hotel room.
 Hotel cancels the reservation.
 Instead of undoing all of Ti, the failure of Ti,3 is compensated for by

deleting the old hotel reservation and making a new one.
 Requires use of semantics of the failed transaction.

©Silberschatz, Korth and Sudarshan26.37Database System Concepts - 6th Edition

Implementation IssuesImplementation Issues
 For long-duration transactions to survive system crashes, we must log

not only changes to the database, but also changes to internal system
data pertaining to these transactions.

 Logging of updates is made more complex by physically large data items
(CAD design, document text); undesirable to store both old and new
values.

 Two approaches to reducing the overhead of ensuring the recoverability
of large data items:
 Operation logging. Only the operation performed on the data item

and the data-item name are stored in the log.
 Logging and shadow paging. Use logging from small data items; use

shadow paging for large data items. Only modified pages need to be
stored in duplicate.

©Silberschatz, Korth and Sudarshan26.38Database System Concepts - 6th Edition

Transaction Management in Transaction Management in
Multidatabase SystemsMultidatabase Systems

 Transaction management is complicated in multidatabase systems
because of the assumption of autonomy
 Global 2PL -each local site uses a strict 2PL (locks are released

at the end); locks set as a result of a global transaction are
released only when that transaction reaches the end.
 Guarantees global serializability

 Due to autonomy requirements, sites cannot cooperate and
execute a common concurrency control scheme
 E.g., no way to ensure that all databases follow strict 2PL

 Solutions:
 provide very low level of concurrent execution, or
 use weaker levels of consistency

©Silberschatz, Korth and Sudarshan26.39Database System Concepts - 6th Edition

Transaction ManagementTransaction Management

 Local transactions are executed by each local DBMS, outside of the
MDBS system control.

 Global transactions are executed under multidatabase control.
 Local autonomy - local DBMSs cannot communicate directly to

synchronize global transaction execution and the multidatabase has
no control over local transaction execution.
 local concurrency control scheme needed to ensure that DBMS’s

schedule is serializable
 in case of locking, DBMS must be able to guard against local

deadlocks.
 need additional mechanisms to ensure global serializability

©Silberschatz, Korth and Sudarshan26.40Database System Concepts - 6th Edition

Two-Level SerializabilityTwo-Level Serializability

 DBMS ensures local serializability among its local transactions,
including those that are part of a global transaction.

 The multidatabase ensures serializability among global transactions
alone- ignoring the orderings induced by local transactions.

 2LSR does not ensure global serializability, however, it can fulfill
requirements for strong correctness.
1. Preserve consistency as specified by a given set of constraints
2. Guarantee that the set of data items read by each transaction is

consistent
 Global-read protocol: Global transactions can read, but not update,

local data items; local transactions do not have access to global data.
There are no consistency constraints between local and global data
items.

©Silberschatz, Korth and Sudarshan26.41Database System Concepts - 6th Edition

Two-Level Serializability (Cont.)Two-Level Serializability (Cont.)

 Local-read protocol: Local transactions have read access to global
data; disallows all access to local data by global transactions.

 A transaction has a value dependency if the value that it writes to a
data item at one site depends on a value that it read for a data item on
another site.

 For strong correctness: No transaction may have a value dependency.
 Global-read-write/local-read protocol: Local transactions have read

access to global data; global transactions may read and write all data;
 No consistency constraints between local and global data items.
 No transaction may have value dependency.

©Silberschatz, Korth and Sudarshan26.42Database System Concepts - 6th Edition

Global SerializabilityGlobal Serializability

 Even if no information is available concerning the structure of the
various concurrency control schemes, a very restrictive protocol that
ensures serializability is available.

 Transaction-graph : a graph with vertices being global transaction
names and site names.

 An undirected edge (Ti, Sk) exists if Ti is active at site Sk.
 Global serializability is assured if transaction-graph contains no

undirected cycles.

©Silberschatz, Korth and Sudarshan26.43Database System Concepts - 6th Edition

Ensuring Global SerializabilityEnsuring Global Serializability

 Each site Si has a special data item, called ticket
 Every transaction Tj that runs at site Sk writes to the ticket at site Si

 Ensures global transactions are serialized at each site, regardless of
local concurrency control method, so long as the method guarantees
local serializability

 Global transaction manager decides serial ordering of global
transactions by controlling order in which tickets are accessed

 However, above protocol results in low concurrency between global
transactions.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 26End of Chapter 26

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan26.45Database System Concepts - 6th Edition

Figure 26.01Figure 26.01

©Silberschatz, Korth and Sudarshan26.46Database System Concepts - 6th Edition

Figure 26.02Figure 26.02

©Silberschatz, Korth and Sudarshan26.47Database System Concepts - 6th Edition

Figure 26.03Figure 26.03

©Silberschatz, Korth and Sudarshan26.48Database System Concepts - 6th Edition

Figure 26.04Figure 26.04

©Silberschatz, Korth and Sudarshan26.49Database System Concepts - 6th Edition

Figure 26.05Figure 26.05

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Extra slidesExtra slides

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan26.51Database System Concepts - 6th Edition

Weak Levels ConsistencyWeak Levels Consistency

 Use alternative notions of consistency that do not ensure serializability,
to improve performance.

 Degree-two consistency avoids cascading aborts without necessarily
ensuring serializability.
 Unlike two-phase locking, S-locks may be released at any time,

and licks may be acquired at any time.
 X-locks be released until the transaction either commits or aborts.

©Silberschatz, Korth and Sudarshan26.52Database System Concepts - 6th Edition

Example Schedule with Degree-Two ConsistencyExample Schedule with Degree-Two Consistency

Nonserializable schedule with degree-two consistency (Figure 20.5) where
T3 reads the value if Q before and after that value is written by T4.

T3 T4

lock-S (Q)
read (Q)

unlock (Q)

lock-S (Q)
 read (Q)
unlock (Q)

lock-X (Q)
read (Q)
 write (Q)

unlock (Q)

©Silberschatz, Korth and Sudarshan26.53Database System Concepts - 6th Edition

Cursor StabilityCursor Stability
 Form of degree-two consistency designed for programs written in

general-purpose, record-oriented languages (e.g., Pascal, C,
Cobol, PL/I, Fortran).

 Rather than locking the entire relation, cursor stability ensures that
 The tuple that is currently being processed by the iteration is

locked in shared mode.
 Any modified tuples are locked in exclusive mode until the

transaction commits.
 Used on heavily accessed relations as a means of increasing

concurrency and improving system performance.
 Use is limited to specialized situations with simple consistency

constraints.

	Chapter 26: Advanced Transaction Processing
	Slide 2
	Transaction Processing Monitors
	TP Monitor Architectures
	TP Monitor Architectures (Cont.)
	Slide 6
	Detailed Structure of a TP Monitor
	Slide 8
	Application Coordination Using TP Monitors
	Workflow Systems
	Transactional Workflows
	Examples of Workflows
	Loan Processing Workflow
	Slide 14
	Workflow Specification
	Workflow Specification (Cont.)
	Failure-Automicity Requirements
	Execution of Workflows
	Workflow Management System Architectures
	Workflow Scheduler
	Recovery of a Workflow
	Recovery of a Workflow (Cont.)
	High Performance Transaction Systems
	High-Performance Transaction Systems
	Main-Memory Database
	Main-Memory Database Optimizations
	Group Commit
	Real-Time Transaction Systems
	Long Duration Transactions
	Long-Duration Transactions
	Concurrency Control
	Concurrency Control (Cont.)
	Nested and Multilevel Transactions
	Nested and Multilevel Transactions (Cont.)
	Example of Nesting
	Compensating Transactions
	Implementation Issues
	Transaction Management in Multidatabase Systems
	Transaction Management
	Two-Level Serializability
	Two-Level Serializability (Cont.)
	Global Serializability
	Ensuring Global Serializability
	End of Chapter 26
	Figure 26.01
	Figure 26.02
	Figure 26.03
	Figure 26.04
	Figure 26.05
	Extra slides
	Weak Levels Consistency
	Example Schedule with Degree-Two Consistency
	Cursor Stability

