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Chapter 26: Advanced Transaction ProcessingChapter 26: Advanced Transaction Processing

 Transaction-Processing Monitors
 Transactional Workflows
 High-Performance Transaction Systems

 Main memory databases
 Real-Time Transaction Systems

 Long-Duration Transactions
 Transaction management in multidatabase systems
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Transaction Processing MonitorsTransaction Processing Monitors
 TP monitors initially developed as multithreaded servers to support 

large numbers of terminals from a single process.
 Provide infrastructure for building and administering complex transaction 

processing systems with a large number of clients and multiple servers.
 Provide services such as:

 Presentation facilities to simplify creating user interfaces
 Persistent queuing of client requests and server responses 
 Routing of client messages to servers
 Coordination of two-phase commit when transactions access 

multiple servers.
 Some commercial TP monitors: CICS from IBM, Pathway from Tandem, 

Top End from NCR, and Encina from Transarc
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TP Monitor ArchitecturesTP Monitor Architectures
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TP Monitor Architectures (Cont.)TP Monitor Architectures (Cont.)
 Process per client model - instead of individual login session per 

terminal, server process communicates with the terminal, handles 
authentication, and executes actions.
 Memory requirements are high
 Multitasking- high CPU overhead for context switching between 

processes
 Single process model - all remote terminals connect to a single 

server process.
 Used in client-server environments
 Server process is multi-threaded; low cost for thread switching
 No protection between applications
 Not suited for parallel or distributed databases
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TP Monitor Architectures (Cont.)TP Monitor Architectures (Cont.)
 Many-server single-router model - multiple  application server 

processes access a common database; clients communicate with the 
application through a single communication process that routes 
requests.
 Independent server processes for multiple applications
 Multithread server process
 Run on parallel or distributed database

 Many server many-router model - multiple processes communicate 
with clients.
 Client communication processes interact with router processes 

that route their requests to the appropriate server.
 Controller process starts up and supervises other processes.
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Detailed Structure of a TP MonitorDetailed Structure of a TP Monitor
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Detailed Structure of a TP MonitorDetailed Structure of a TP Monitor
 Queue manager handles incoming messages
 Some queue managers provide persistent or durable message 

queueing contents of queue are safe even if systems fails.
 Durable queueing of outgoing messages is important

 application server writes message to durable queue as part of a 
transaction

 once the transaction commits, the TP monitor guarantees 
message is eventually delivered, regardless of crashes.

 ACID properties are thus provided even for messages sent 
outside the database

 Many TP monitors provide locking, logging and recovery services, 
to enable application servers to implement ACID properties by 
themselves.
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Application Coordination Using Application Coordination Using 
TP MonitorsTP Monitors

 A TP monitor treats each subsystem as a resource manager that 
provides transactional access to some set of resources.

 The interface between the TP monitor and the resource manager is 
defined by a set of transaction primitives

 The resource manager interface is defined by the X/Open Distributed 
Transaction Processing standard.

 TP monitor systems provide a transactional remote procedure call 
(transactional RPC) interface to their service
 Transactional RPC provides calls to enclose a series of RPC calls 

within a transaction.
 Updates performed by an RPC are carried out within the scope of the 

transaction, and can be rolled back if there is any failure.
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Transactional WorkflowsTransactional Workflows
 Workflows are activities that involve the coordinated execution of 

multiple tasks performed by different processing entities.
 With the growth of networks, and the existence of multiple autonomous 

database systems, workflows provide a convenient way of carrying out 
tasks that involve multiple systems.

 Example of a workflow delivery of an email message, which goes 
through several mails systems to reach destination.
 Each mailer performs a tasks: forwarding of the mail to the next 

mailer.
 If a mailer cannot deliver mail, failure must be handled semantically 

(delivery failure message).
 Workflows usually involve humans: e.g. loan processing, or purchase 

order processing.
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Examples of WorkflowsExamples of Workflows
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Loan Processing WorkflowLoan Processing Workflow

 In the past, workflows were handled by creating and forwarding paper forms
 Computerized workflows aim to automate many of the tasks. But the humans 

still play role e.g., in approving loans.
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Transactional WorkflowsTransactional Workflows

 Must address following issues to computerize a workflow.
 Specification of workflows - detailing the tasks that must be 

carried out and defining the execution requirements.
 Execution of workflows - execute transactions specified in the 

workflow while also providing traditional database safeguards 
related to the correctness of computations, data integrity, and 
durability.

 E.g.: Loan application should not get lost even if system fails.
 Extend transaction concepts to the context of workflows.
 State of a workflow - consists of the collection of states of its 

constituent tasks, and the states (i.e., values) of all variables in the 
execution plan.
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Workflow SpecificationWorkflow Specification

 Static specification of task coordination:
 Tasks and dependencies among them are defined before the 

execution of the workflow starts.
 Can establish preconditions for execution of each task: tasks are 

executed only when their preconditions are satisfied.
 Defined preconditions through dependencies:

  Execution states of other tasks.
   “task ti cannot start until task tj has ended”

  Output values of other tasks.
    “task ti can start if task tj returns a value greater than 

25”
  External variables, that are modified by external events.

   “task ti must be started within 24 hours of the completion of task tj”
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WorkflowWorkflow  Specification (Cont.)Specification (Cont.)

 Dynamic task coordination
E.g., Electronic mail routing system in which the text to be schedule 
for a given mail message depends on the destination address and on 
which intermediate routers are functioning.
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Failure-Automicity RequirementsFailure-Automicity Requirements
 Usual ACID transactional requirements are too strong/ 

unimplementable for workflow applications.
 However, workflows must satisfy some limited transactional 

properties that guarantee a process is not left in an inconsistent 
state.

 Acceptable termination states - every execution of a workflow will 
terminate in a state that satisfies the failure-atomicity requirements 
defined by the designer.
 Committed - objectives of a workflow have been achieved. 
 Aborted - valid termination state in which a workflow has failed to 

achieve its objectives.
 A workflow must reach an acceptable termination state even in the 

presence of system failures.
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Execution of WorkflowsExecution of Workflows

Workflow management systems include:
 Scheduler - program that process workflows by submitting various 

tasks for execution, monitoring various events, and evaluation 
conditions related to intertask dependencies

 Task agents - control the execution of a task by a processing entity.
 Mechanism to query to state of the workflow system.
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Workflow Management System ArchitecturesWorkflow Management System Architectures

 Centralized - a single scheduler schedules the tasks for all concurrently 
executing workflows.
 used in workflow systems where the data is stored in a central 

database.
 easier to keep track of the state of a workflow.

 Partially distributed - has one (instance of a) scheduler for each 
workflow.

 Fully distributed - has no scheduler, but the task agents coordinate their 
execution by communicating with each other to satisfy task dependencies 
and other workflow execution requirements.
 used in simplest workflow execution systems
 based on electronic mail
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Workflow SchedulerWorkflow Scheduler

 Ideally scheduler should execute a workflow only after ensuring that it 
will terminate in an acceptable state.

 Consider a workflow consisting of two tasks S1 and S2. Let the failure-
atomicity requirement be that either both or neither of the 
subtransactions should be committed.
 Suppose systems executing S1 and S2 do not provide prepared-

to-commit states and S1 or S2 do not have compensating 
transactions.

 It is then possible to reach a state where one subtransaction is 
committed and the other aborted. Both cannot then be brought to 
the same state.

 Workflow specification is unsafe, and should be rejected.
 Determination of safety by the scheduler is not possible in general, 

and is usually left to the designer of the workflow.
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Recovery of a WorkflowRecovery of a Workflow

 Ensure that is a failure occurs in any of the workflow-processing 
components, the workflow eventually reaches an acceptable 
termination state.

 Failure-recovery routines need to restore the state information of the 
scheduler at the time of failure, including the information about the 
execution states of each task. Log status information on stable 
storage.

 Handoff of tasks between agents should occur exactly once in spite 
of failure.

 Problem: Repeating handoff on recovery may lead to duplicate 
execution of task; not repeating handoff may lead to task not being 
executed.
 Solution: Persistent messaging systems
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Recovery of a Workflow (Cont.)Recovery of a Workflow (Cont.)
 Persistent messages: messages are stored in permanent message 

queue and therefore not lost in case of failure.
 Described in detail in Chapter 19 (Distributed Databases)

 Before an agent commits, it writes to the persistent message queue 
whatever messages need to be sent out.

 The persistent message system must make sure the messages get 
delivered eventually if and only if the transaction commits.

 The message system needs to resend a message when the site 
recovers, if the message is not known to have reached its destination.

 Messages must be logged in stable storage at the receiving end to 
detect multiple receipts of a message.
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High-Performance Transaction SystemsHigh-Performance Transaction Systems

 High-performance hardware and parallelism help improve the rate 
of transaction processing, but are insufficient to obtain high 
performance:
 Disk I/O is a bottleneck — I/O time (10 milliseconds) has no 

decreased at a rate comparable to the increase in processor 
speeds.

 Parallel transactions may attempt to read or  write the same 
data item,  resulting in data conflicts that reduce effective 
parallelism

 We can reduce the degree to which a database system is disk 
bound by increasing the size of the database buffer.
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Main-Memory DatabaseMain-Memory Database
 Commercial 64-bit systems can support main memories of tens of 

gigabytes.
 Memory resident data allows faster processing of transactions.
 Disk-related limitations:

 Logging is a bottleneck when transaction rate is high.
 Use group-commit to reduce number of output operations (Will 

study two slides ahead.)
 If the update rate for modified buffer blocks is high, the disk 

data-transfer rate could become a bottleneck.
 If the system crashes, all of main memory is lost.
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Main-Memory Database OptimizationsMain-Memory Database Optimizations

 To reduce space overheads, main-memory databases can use 
structures with pointers crossing multiple pages. In disk databases, 
the I/O cost to traverse multiple pages would be excessively high.

 No need to pin buffer pages in memory before data are accessed, 
since buffer pages will never be replaced.

 Design query-processing techniques to minimize space overhead - 
avoid exceeding main memory limits during query evaluation.

 Improve implementation of operations such as locking and latching, 
so they do not become bottlenecks.

 Optimize recovery algorithms, since pages rarely need to be written 
out to make space for other pages.
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Group CommitGroup Commit
 Idea: Instead of performing output of log records to stable storage as 

soon as  a transaction is ready to commit, wait until
 log buffer block is full, or
 a transaction has been waiting sufficiently long after being ready to 

commit
 Results in fewer output operations per committed transaction, and 

correspondingly a higher throughput.
 However, commits are delayed until a sufficiently large group of 

transactions are ready to commit, or a transaction has been waiting 
long enough-leads to slightly increased response time.

 Above delay acceptable in high-performance transaction systems 
since log buffer blocks will fill up quickly.
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Real-Time Transaction SystemsReal-Time Transaction Systems

 In systems with real-time constraints, correctness of execution involves 
both database consistency and the satisfaction of deadlines.
 Hard deadline – Serious problems may occur if task is not 

completed within deadline
 Firm deadline - The task has zero value if it completed after the 

deadline.
 Soft deadline - The task has diminishing value if it is completed 

after the deadline.
 The wide variance of execution times for read and write operations on 

disks complicates the transaction management problem for time-
constrained systems
 main-memory databases are thus often used
 Waits for locks, transaction aborts, contention for resources remain 

as problems even if data is in main memory
 Design of a real-time system involves ensuring that enough processing 

power exists to meet deadline without requiring excessive hardware 
resources.
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Long Duration TransactionsLong Duration Transactions

Traditional concurrency control techniques do not work
well when user interaction is required:

 Long duration: Design edit sessions are very long
 Exposure of uncommitted data: E.g., partial update to a 

design 
 Subtasks: support partial rollback
 Recoverability: on crash state should be restored even for 

yet-to-be committed data, so user work is not lost.
 Performance: fast response time is essential so user time is 

not wasted.
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Long-Duration TransactionsLong-Duration Transactions

 Represent as a nested transaction
  atomic database operations (read/write) at a lowest level.

 If transaction fails, only active short-duration transactions abort.
 Active long-duration transactions resume once any short duration 

transactions have recovered.
 The efficient management of long-duration waits, and the possibility 

of aborts.
 Need alternatives to waits and aborts; alternative techniques must 

ensure correctness without requiring serializability.
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Concurrency ControlConcurrency Control

 Correctness without serializability:
 Correctness depends on the specific consistency constraints for 

the databases.
 Correctness depends on the properties of operations performed 

by each transaction.
 Use database consistency constraints as to split the database into 

subdatabases on which concurrency can be managed separately.
 Treat some operations besides read and write as fundamental low-

level operations and extend concurrency control to deal with them.
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Concurrency Control (Cont.)Concurrency Control (Cont.)
     A non-conflict-serializable 

schedule that preserves 
the sum of A + B
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Nested and Multilevel TransactionsNested and Multilevel Transactions

 A nested or multilevel transaction T is represented by a set  
T = {t1, t2, ..., tn} of subtransactions and a partial order P on T.

 A subtransaction ti in T may abort without forcing T to abort. 
 Instead, T may either restart ti, or simply choose not to run ti.
 If ti commits, this action does not make ti, permanent (unlike the 

situation in Chapter 15). Instead, ti, commits  to T, and may still abort 
(or require compensation) if T aborts.

 An execution of T must not violate the partial order P, i.e., if an edge ti 
 ti appears in the precedence graph, then ti  ti must not be in the 
transitive closure of P.
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Nested and Multilevel Transactions (Cont.)Nested and Multilevel Transactions (Cont.)

 Subtransactions can themselves be nested/multilevel transactions. 
 Lowest level of nesting: standard read and write operations.

 Nesting can create higher-level operations that may enhance 
concurrency.

 Types of nested/ multilevel transactions:
 Multilevel transaction: subtransaction of T is permitted to release 

locks on completion.
 Saga: multilevel long-duration transaction.
 Nested transaction: locks held by a subtransaction ti of T are 

automatically assign to T on completion of ti.
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Example of  NestingExample of  Nesting

 Rewrite transaction T1 using subtransactions Ta and Tb that perform 
increment or decrement operations:
 T1 consists of 

 T1,1, which subtracts 50 from A
 T1,2, which adds 50 to B

 Rewrite transaction T2 using subtransactions Tc and Td that perform 
increment or decrement operations:
 T2 consists of 

 T2,1, which subtracts 10 from B
 T2,2, which adds 10 to A

 No ordering is specified on subtransactions; any execution generates 
a correct result.
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Compensating TransactionsCompensating Transactions

 Alternative to undo operation; compensating transactions deal with the 
problem of cascading rollbacks.

 Instead of undoing all changes made by the failed transaction, action 
is taken to “compensate” for the failure.

 Consider a long-duration transaction Ti representing  a travel 
reservation, with subtransactions Ti,1, which makes airline reservations, 
Ti,2  which reserves rental cars, and Ti,3 which reserves a hotel room.
 Hotel cancels the reservation.
 Instead of undoing all of Ti, the failure of Ti,3 is compensated for by 

deleting the old hotel reservation and making a new one.
 Requires use of semantics of the failed transaction.
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Implementation IssuesImplementation Issues
 For long-duration transactions to survive system crashes, we must log 

not only changes to the database, but also changes to internal system 
data pertaining to these transactions.

 Logging of updates is made more complex by physically large data items 
(CAD design, document text); undesirable to store both old and new 
values.

 Two approaches to reducing the overhead of ensuring the recoverability 
of large data items:
 Operation logging. Only the operation performed on the data item 

and the data-item name are stored in the log.
 Logging and shadow paging. Use logging from small data items; use 

shadow paging for large data items. Only modified pages need to be 
stored in duplicate.
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Transaction Management in Transaction Management in 
Multidatabase SystemsMultidatabase Systems

 Transaction management is complicated in multidatabase systems 
because of the assumption of autonomy
 Global 2PL -each local site uses a strict 2PL (locks are released 

at the end); locks set as a result of a global transaction are 
released only when that transaction reaches the end.  
 Guarantees global serializability

 Due to autonomy requirements, sites cannot cooperate and 
execute a common concurrency control scheme
 E.g., no way to ensure that all databases follow strict 2PL

 Solutions:  
 provide very low level of concurrent execution, or 
 use weaker levels of consistency
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Transaction ManagementTransaction Management

 Local transactions are executed by each local DBMS, outside of the 
MDBS system control.

 Global transactions are executed under multidatabase control.
 Local autonomy - local DBMSs cannot communicate directly to 

synchronize global transaction execution and the multidatabase has 
no control over local transaction execution.
 local concurrency control scheme needed to ensure that DBMS’s 

schedule is serializable
 in case of locking, DBMS must be able to guard against local 

deadlocks.
 need additional mechanisms to ensure global serializability
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Two-Level SerializabilityTwo-Level Serializability

 DBMS ensures local serializability among its local transactions, 
including those that are part of a global transaction.

 The multidatabase ensures serializability among global transactions 
alone- ignoring the orderings induced by local transactions.

 2LSR does not ensure global serializability, however, it can fulfill 
requirements for strong correctness.
1.  Preserve consistency as specified by a given set of constraints
2.  Guarantee that the set of data items read by each transaction is 

consistent
 Global-read protocol: Global transactions can read, but not update, 

local data items; local transactions do not have access to global data. 
There are no consistency constraints between local and global data 
items.
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Two-Level Serializability (Cont.)Two-Level Serializability (Cont.)

 Local-read protocol: Local transactions have read access to global 
data; disallows all access to local data by global transactions.

 A transaction has a value dependency if the value that it writes to a 
data item at one site depends on a value that it read for a data item on 
another site.

 For strong correctness: No transaction may have a value dependency.
 Global-read-write/local-read protocol: Local transactions have read 

access to global data; global transactions may read and write all data;
 No consistency constraints between local and global data items.
 No transaction may have value dependency.
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Global SerializabilityGlobal Serializability

 Even if no information is available concerning the structure of the 
various concurrency control schemes, a very restrictive protocol that 
ensures serializability is available.

 Transaction-graph : a graph with vertices being global transaction 
names and site names.

 An undirected edge (Ti, Sk) exists if Ti is active at site Sk.
 Global serializability is assured if transaction-graph contains no 

undirected cycles.
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Ensuring Global SerializabilityEnsuring Global Serializability

 Each site Si  has a special data item, called ticket
 Every transaction Tj that runs at site Sk writes to the ticket at site Si

 Ensures global transactions are serialized at each site, regardless of 
local concurrency control method, so long as the method guarantees 
local serializability

 Global transaction manager decides serial ordering of global 
transactions by controlling order in which tickets are accessed

 However, above protocol results in low concurrency between global 
transactions.
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Figure 26.01Figure 26.01
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Figure 26.02Figure 26.02
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Figure 26.03Figure 26.03



©Silberschatz, Korth and Sudarshan26.48Database System Concepts - 6th Edition

Figure 26.04Figure 26.04
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Figure 26.05Figure 26.05
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Weak Levels ConsistencyWeak Levels Consistency

 Use alternative notions of consistency that do not ensure serializability, 
to improve performance.

 Degree-two consistency avoids cascading aborts without necessarily 
ensuring serializability.
 Unlike two-phase locking, S-locks may be released at any time, 

and licks may be acquired at any time.
 X-locks be released until the transaction either commits or aborts.
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Example Schedule with Degree-Two ConsistencyExample Schedule with Degree-Two Consistency

Nonserializable schedule with degree-two consistency (Figure 20.5) where 
T3 reads the value if Q before and after that value is written by T4.

T3 T4

lock-S (Q)
read (Q)

unlock (Q)

lock-S (Q)
   read (Q)
unlock (Q)

lock-X (Q)
read (Q)
 write (Q)

unlock (Q)
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Cursor StabilityCursor Stability
 Form of degree-two consistency designed for programs written in 

general-purpose, record-oriented languages (e.g., Pascal, C, 
Cobol, PL/I, Fortran).

 Rather than locking the entire relation, cursor stability ensures that
 The tuple that is currently being processed by the iteration is 

locked in shared mode.
 Any modified tuples are locked in exclusive mode until the 

transaction commits.
 Used on heavily accessed relations as a means of increasing 

concurrency and improving system performance.
 Use is limited to specialized situations with simple consistency 

constraints.
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