End semester Examination (Monsoon 2023-24)

Department of Computer Science & Engineering, IIT (ISM), Dhanbad **Discipline:** M.Tech. (CSE) & Research Scholar

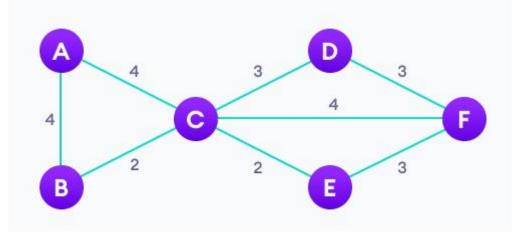
Subject: Algorithmic Graph Theory (CSC503) Time: 3 hours, Marks: 100

Instructions: Answer all questions

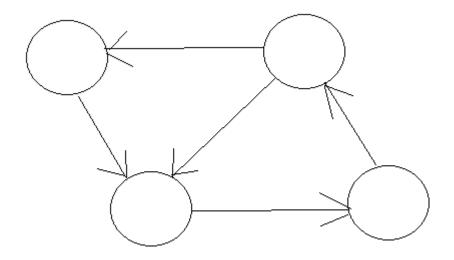
Q. No		Ma rks
1	a. Prove that for every graph G, X (G) <= V(G) +1. (Here X(G) is the	5
	chromatic number of G)	
	b. Prove that G is bipartite iff the chromatic number of G is 2.	5
2	a. The Prufer sequence S of a labelled tree T is S= {1, 7, 6, 6, 1}. Draw the tree T describing all the intermediate steps pictorially during the process.	5
	process.	5
	b. Write the algorithm of the same.	
3	a. Prove by method of induction that a graph G is a tree iff G is acyclic and the number of edges m in G is equal to n-1, where n is the number of vertices in G.	5
	 Deduce that clique decision problem is NP-Hard using Satisfiability problem. 	5
4	 a. Prove that for a simple graph G with n number of vertices (n >= 4), and E number of edges and genus g satisfies 	5
	$g \geqslant \lceil \frac{1}{6}(E - 3n) + 1 \rceil$	
	b. "A necessary and sufficient condition for a graph G to be planar is that for every circuit C of G the auxiliary graph $G^+(C)$ is bipartite", prove it.	5

5	a. Suppose want to schedule some final exams for CS courses with	6
	following call numbers:	
	CSE001, CSE002, CSE003, CSE004, CSE005, CSE006, CSE007, CSE008	
	and also suppose also that there are no common students in the	
	following pairs of courses because of prerequisites:	
	CSE001 - CSE002	
	CSE001 - CSE004	
	CSE001 - CSE003, CSE002- CSE003	
	CSE001- CSE007, CSE002 - CSE007	
	CSE001 - CSE008, CSE002 - CSE008, CSE003 - CSE008	
	CSE001 - CSE005, CSE002 - CSE005, CSE004 - CSE005,	
	CSE001 - CSE006, CSE002 - CSE006, CSE004 - CSE006, CSE005 - CSE006	
	How many exam slots are necessary to schedule exams?	
	b. Illustrate with an example that any graph is a subgraph of a r-regular	4
	graph.	
6	a. If a graph G is maximal planar graph with n vertices ($n \ge 3$) and m edges	5
	then show that $m = 3n - 6$.	
	b. For a polyhedron with N number of vertices, E number of edges and F	
	number of faces, prove by method of induction that $N - E + F = 2$.	5
	namber of faces, prove by method of maddion that it is a	
7	a. Why running time measurement is important to study? Mention some	2+
	of the factors affecting the running time of a program.	3
	b. Prove that every planar graph has a dual.	5
8	a. Discuss the merits and demits of Dijkstra's Algorithm and Bellman-Ford	5
	Algorithm with examples.	

b. Use Prim's algorithm to find a minimum spanning tree that takes the following graph as input.



a. Find the all pairs shortest paths among all vertices for the following graph using Floyd-Warshall Algorithm (showing all intermediate steps)



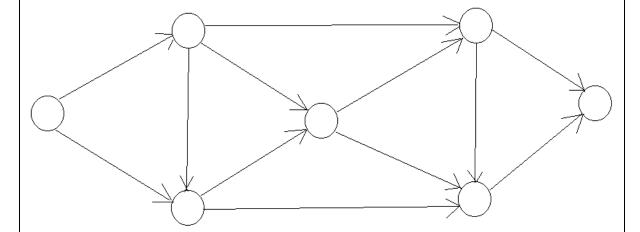
a. Prove that Peterson Graph is non-planar using Kuratowski's and Wagner's Theorem as well.

6

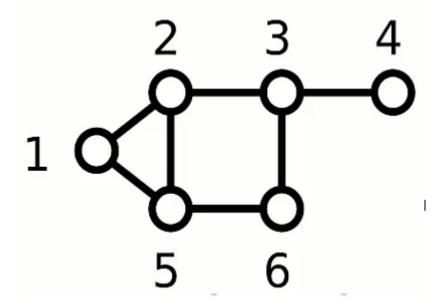
5

4

a. Find the maximum flow through the given network using Ford-Fulkerson algorithm.



 b. Consider the following graph to find the minimum connected dominating set showing all the intermediate steps during the constructions.



5

5

Ans1.a

Theorem: For every graph G, X(G) = A(G)+1

Proof: By induction on n (the # of vertices)

Basis: n=1 $G=K_1$ $\chi(G)=1$ $\chi(G)=0$

Ind Hyp: Assume the result holds for every graph with n-1 vertices (n>2).

Let G be a graph on n vertices. Let ve V(G).

Now G-v is a graph on n-1 vertices

Ind typ $\Rightarrow \chi(G-v) = \Delta(G-v)+1$ So G-v can be coloured with at most $\Delta(G-v)+1$ colours

Note: $\deg_G(v) \leq \Delta(G)$ The reighbours of v use $up \leq \Delta(G)$ colours

Let G be a graph on n vertices. Let ve V(G).

Now G-v is a graph on n-1 vertices

Ind typ $\Rightarrow \chi(G-v) \leq \Delta(G-v) + 1$ So G-v can be coloured with at most $\Delta(G-v) + 1$ colours.

Note: deg (v) & D(G)

The reighbours of v use up = D(G) colours

Case(1): $\triangle(G) = \triangle(G-1)$

Then there is at least one colour of the

D(G-V)+1 = D(G)+1 colours not used by the

neighbours of v, so v can be coloured with that colour.

This gives a (A(G)+1)-colouring of G, so X(G) = A(G)+1

Case(a): D(G) + D(G-V)

Then $\Delta(G-v) < \Delta(G)$

Using a new colour for , we will have a

(DCG-V)+2)-colouring of G

Since D(G-v)+2 < D(G)+1, we have X(G) < D(G)+1

X(G) = D(G)+1

Note: $\chi(\kappa_n) = n$ } equality in the bound $\Delta(\kappa_n) = n-1$

 $\chi(C_{aR+1}) = 3$ } equality in the bound $\Delta(C_{aR+1}) = 2$

odd cycles and complete graphs are the only graphs that have equality in this bound

G + Kn } => X(G) = D(G) Brook's Theorem

Xxxxxxxxxxxxxxx

Ans 1,b

```
Theorem: \chi(G) = \chi \iff G is bipartite (for non-trivial graphs)

(Recall: G is bipartite \iff G has no odd cycle)

Proof:

| Theorem: \chi(G) = \chi \implies G has no odd cycle)

Proof:

| Theorem: \chi(G) = \chi \implies G has no odd cycle)

| Theorem: \chi(G) = \chi \implies G has no odd cycle Contrapositive. G is not bipartite \implies \chi(G) > \chi

| Theorem: \chi(G) = \chi(G) = \chi(G) > \chi
```

Xxxxxxxxxxxxxxxxx

Q2 a.

 • S= (a1, a2, ..., an-2) a: e {1,...,n}

• Find smallest element x ∈ {1,...,n} x ∉ S

Lyoin x to 1st element of S

— delete a, from S, delete x from {1,...,n}

• Find smallest y ∈ L\{x\} not in S\{2a\}

Lyoin y to the 1st element of S\{a\}

— delete a2 from S

delete y from 1: y a2

Join x to 1st element of S

x a.

I delete a. from S, delete x from Elimins

Find smallest ye LIEX3 not in SI Eas J

Lo join y to the 1st element of SIEas J

Odelete as from 9

delete y from 1

Continue until 2 items remain in L

Lo join these two via an edge

delete y from L

Continue until 2 items remain in L

Ly join these two via an edge S = (0.7, 6, 6.1) length $S \Rightarrow (n=7)$ $L = \{1, 2, \dots, 7\}$ $\chi \in L \setminus S$ smallest $\Rightarrow \chi = 2$

delete y from L

Continue until 2 items remain in L

Ly join these two via an edge $S = (97,6,61) \quad |ength 5 \Rightarrow (n=7)$ $L = \{1,0,\dots,7\}$ $\chi \in L \setminus S \quad |snallest \rightarrow x=2$ S = (9,6,6,1) $L = \{1,3,4,5,6,7\}$

delete y from L

Continue until 2 items remain in L

La join these two via on edge S = (37,6,6,1) length $S \Rightarrow (n=7)$ $L = \{1,3,...,7\}$ $\chi \in L \setminus S$ smallest $\Rightarrow \chi = 2$ $\chi \in L \setminus S$ smallest $\Rightarrow \chi = 2$ $\chi \in L \setminus S$ smallest $\Rightarrow \chi = 2$ $\chi \in L \setminus S$ smallest $\Rightarrow \chi = 2$ $\chi \in L \setminus S$ smallest $\Rightarrow \chi = 2$ $\chi \in L \setminus S$ smallest $\Rightarrow \chi = 2$

delete y from L

Continue until 2 items remain in L

Lo join these two via an edge S = (37,6,6,1) length $S \Rightarrow (n=7)$ $L = \{1,3,...,7\}$ $\chi \in L \setminus S$ smallest $\Rightarrow \chi = 2$ S = (3,3,...,7) S = (3,3,...,7) S = (3,3,...,7) S = (3,3,...,7) S = (3,3,...,7)

Continue until 2 items remain in L

La join these two via an edge

S = (\$\frac{1}{7},6,6,1) \quad \text{length } 5 \Rightarrow \text{n=7} \\

L = \{1,\beta,\dots,\dots,\dots\}

\tag{8} \Rightarrow \frac{1}{8} \Rightarrow \text{N=2} \\

\tag{8} \Rightarrow \frac{1}{8} \Rightarrow \text{N=2} \\

\tag{9} \Rightarrow \frac{1}{8} \Rightarrow \text{N=2} \\

\tag{9} \Rightarrow \frac{1}{8} \Rightarrow \text{N=2} \\

\tag{9} \Rightarrow \text{N=1} \\

\tag{1} \Rightarrow \te



```
More about traces "

Connected

Theorem: A googh G is a tree (3) G is acyclic and IE(G) = |V(G) - 1

M = n - 1

The type: Suppose all trees of order n have n - 1 edges (n > 1)

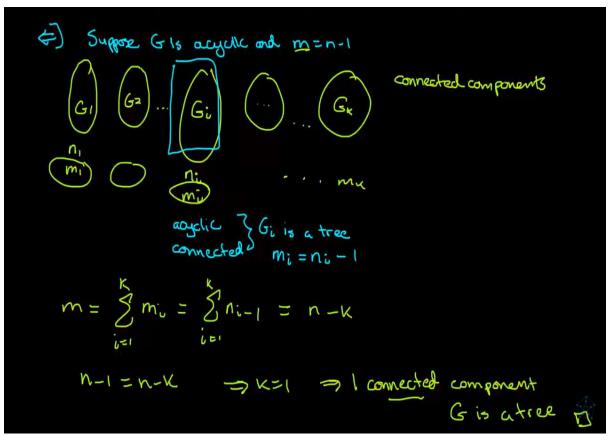
Let T be a tree of order (n+1)

Ve VCT) with degree 1 (leaf)

T = T - V

Thus n - 1 edges

Thas (n - 1) + 1 edges = n edges
```



Xxxxxxxxxxxxxxxxxxxx

Q3 b.

Clique Decision Problem (CDP)

Sal
$$\times$$
 CDP

 x_1, x_2, x_3
 $F = \bigwedge C_i$
 $F = (x, v, x_2) \land (\bar{x}, v, \bar{x}_2) \land (x, v, x_3)$
 C_i
 C_i
 C_i

 Clique Decision Problem (CDP)

Sol \propto CDP x_1, x_2, x_3 $F = (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (x_1 \lor x_3)$ C_1 C_2 C_3 C_4 C_4 C_4 C_5 C_4 C_4 C_5 C_4 C_4 C_5 C_4 C_5 C_4 C_5 C_4 C_5 C_5 C_6 C_7 C_8 C_8

Clique Decision Problem (CDP)

Sat \propto CDP $x_1, x_2, x_3, \qquad k=3$ $F = (x_1, v_1, x_2) \wedge (x_1, v_2) \wedge (x_1, v_3)$ $(x_1, x_2) \wedge (x_2) \wedge (x_3) \wedge (x_4) \wedge (x_5) \wedge (x$

Clique Decision Problem (CDP)

Sol \propto CDP $x_1, x_2, x_3, \qquad k=3$ $F = (x_1, \sqrt{x_2}) \wedge (x_1, \sqrt{x_2}) \wedge (x_1, \sqrt{x_3}) = 1$ $C_1 = 1$ $C_2 = 1$ $C_3 = 1$ $C_4 =$

Q 4.a

Corollary 3.5. The genus g of a simple graph with $n (\ge 4)$ vertices and |E| edges satisfies:

$$g \geqslant \lceil \frac{1}{6}(|E|-3n)+1 \rceil$$

Proof. Every face of an embedding of the graph is bound by at least three edges each of which separates two faces, therefore $3f \le 2 \cdot |E|$. From theorem 3.4, $g = \frac{1}{2}(|E|-n-f)+1)$ and so the result follows by substitution.

Specific results for thickness and genus are known for special cases (e.g., complete graphs, complete bipartite graphs (see exercise 3.11)) and involve lengthy proofs. In the case of complete graphs $|E| = \frac{1}{2}n(n-1)$ and the above corollaries then give:

$$g \ge \lceil \frac{1}{12}(n-3)(n-4) \rceil$$

and

$$T \geqslant \left\lceil \frac{n(n-1)}{6(n-2)} \right\rceil = \left\lfloor \frac{n(n-1) + (6n-14)}{6(n-2)} \right\rfloor = \left\lfloor \frac{1}{6}(n+7) \right\rfloor$$

It is known that in the result for g equality holds. Similarly, equality holds in the expression for T except for n = 9 and for n = 10, in both cases T = 3. These refinements required the considerable efforts of mathematicians over many years. Beineke & Wilson^[7] provides a reference list of primary sources.

Filotti et al. [18] have described an $O(n^{O(g)})$ -algorithm which takes as input a graph G and a positive integer g and which then finds an embedding of G on a surface of genus g if such an embedding exists.

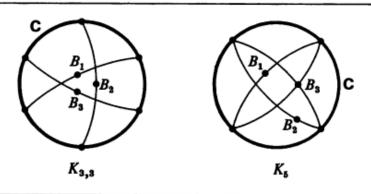
Xxxxxxxxxxxxxxxxxxxx

Theorem 3.6. A necessary and sufficient condition for a graph G to be planar is that for every circuit C of G the auxiliary graph $G^+(C)$ is bipartite.

Proof. The condition is necessary because for any circuit C of a planar graph G, we can form a bipartition (B, \overline{B}) of the bridge vertices of G relative to C, such that bridges in B lie in one face of C for G, and the bridges of B lie in the other face. Clearly, $G^+(C)$ is bipartite because no edge of $G^+(C)$ connects two vertices in B or connects two vertices in \overline{B} .

That the condition is sufficient can be seen as follows. If G is not planar then according to Kuratowski's theorem G contains a subgraph homeomorphic to K_5 or to $K_{3,3}$. We suppose that G contains K_5 or $K_{3,3}$ as a subgraph, the generalisation to G containing proper homeomorphisms is obvious. In either case (see figure 3.12, in which the chosen circuits are

Fig. 3.12



indicated by heavily scored edges), we can choose C of the subgraph such that $G^+(C)$ is not bipartite. For $K_{3,3}$ there are three bridges B_1 , B_2 and B_3 , each of which is a single edge and any two of which are incompatible. In the case of K_5 there are again three bridges B_1 , B_2 and B_3 . B_1 and B_2 are single edges while B_3 is a vertex of K_5 plus its edges of attachment to C. Again any two of the bridges are incompatible. Thus for both K_5 and $K_{3,3}$, for the circuits chosen, $G^+(C) = K_3$ which is not bipartite.

How Prim's algorithm works

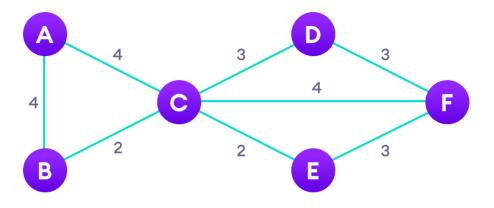
It falls under a class of algorithms called greedy algorithms that find the local optimum in the hopes of finding a global optimum.

We start from one vertex and keep adding edges with the lowest weight until we reach our goal.

The steps for implementing Prim's algorithm are as follows:

- 1. Initialize the minimum spanning tree with a vertex chosen at random.
- 2. Find all the edges that connect the tree to new vertices, find the minimum and add it to the tree
- 3. Keep repeating step 2 until we get a minimum spanning tree

Example of Prim's algorithm

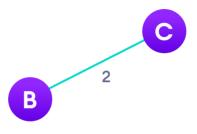


Step: 1

Start with a weighted graph

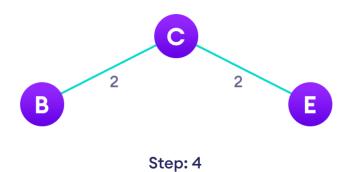
Step: 2

Choose a vertex

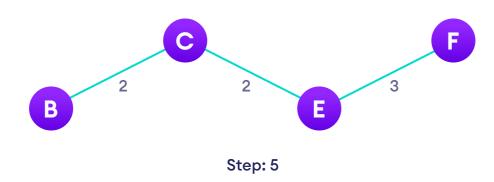


Step: 3

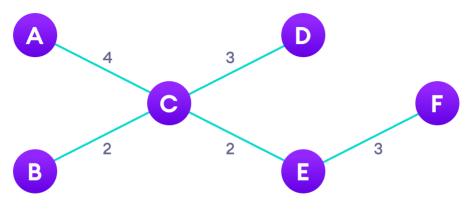
Choose the shortest edge from this vertex and add it



Choose the nearest vertex not yet in the solution



Choose the nearest edge not yet in the solution, if there are multiple choices, choose one at random



Step: 6

Repeat until you have a spanning tree

Xxxxxxxxxxxxx

Q 5 a.

Graph Coloring and Schedules

EG: Suppose want to schedule some final exams for CS courses with following call numbers:

1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156

Suppose also that there are no common students in the following pairs of courses because of prerequisites:

1007-3137

1007-3157, 3137-3157

1007-3203

1007-3261, 3137-3261, 3203-3261

1007-4115, 3137-4115, 3203-4115, 3261-4115

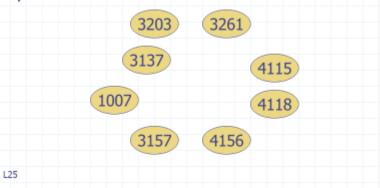
1007-4118, 3137-4118

1007-4156, 3137-4156, 3157-4156

How many exam slots are necessary to schedule exams?

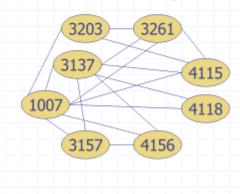
Graph Coloring and Schedules

Turn this into a graph coloring problem. Vertices are courses, and edges are courses which cannot be scheduled simultaneously because of possible students in common:



129

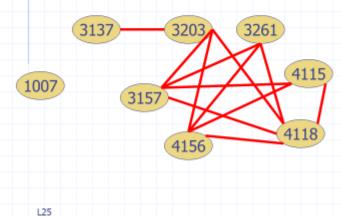
One way to do this is to put edges down where students mutually excluded...

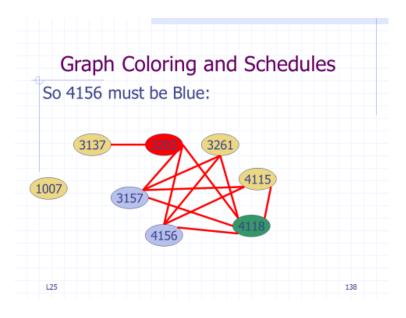


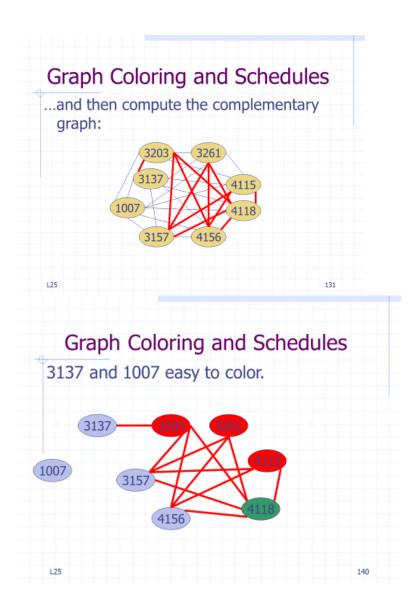
L25 130

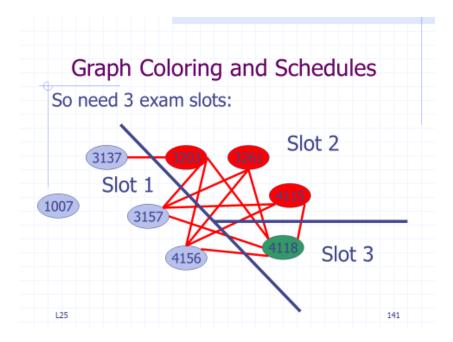
Graph Coloring and Schedules

Is 3-colorable. Try to color by Red, Green, Blue.









Xxxxxxxxxxxxx

Ans. 5.b

Subgraphs of regular graphs

Theorem (König): Every graph G with $\Delta(G) = r$ is an induced subgraph of an r-regular graph.

Proof: If G is r-regular, then we're done.

Suppose G is not r-regular, ie $\delta(G) \leq r$ Let G' be another copy of G and join corresponding vertices of G and G' with an edge if they had degree $\leq r$

Proof: If G is r-regular, then we're done.

Suppose G is not r-regular, ie 5(6) Lr

Let G' be another copy of G and join corresponding vertices of G and G' with an edge if they had degree < r

Call the resulting graph G.

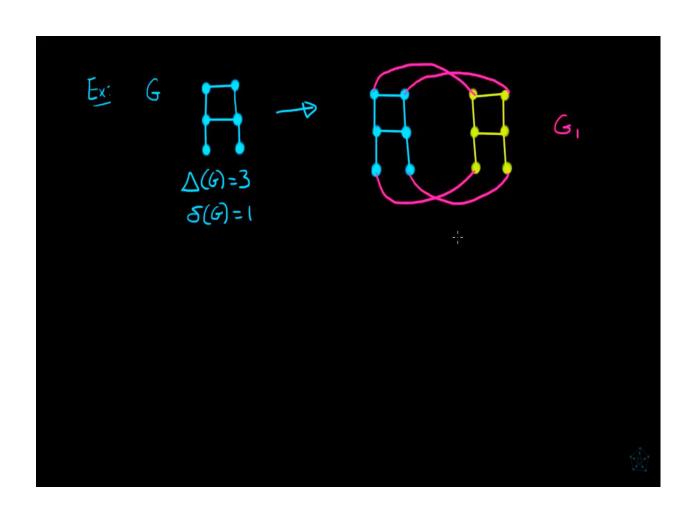
If G is r-regular,

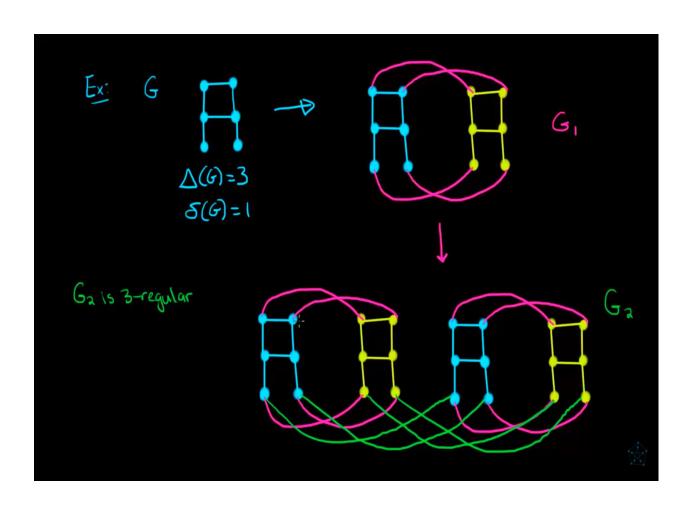
then we're done

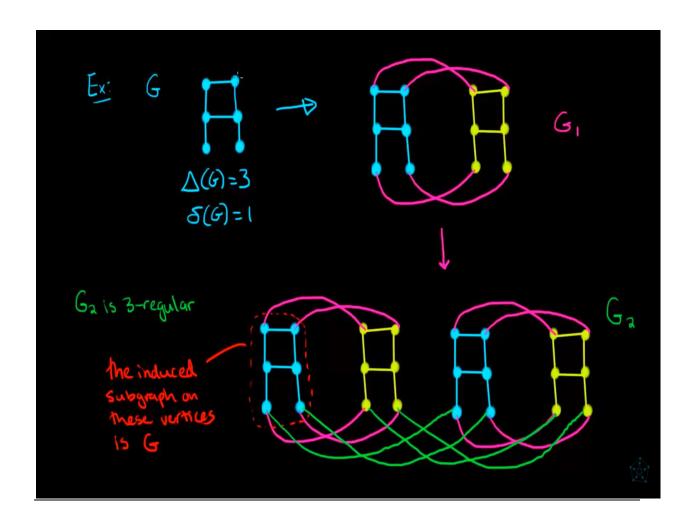
since G is an induced subgraph

of G.

If not, then continue the procedure until arriving at an r-regular graph G, where K=r-5(G)







-----XX------

Ans. 6 a. If a graph G is maximal planar graph with n vertices (n>=3) and m edges then show that m=3n-6.

Answer:

Theorem: If G is a maximal planar graph with n vertices (n,3) and m edges then m=3n-6Take a plane drawing of G with r regions.

The boundary of every region is a triangle.

S (#edges on boundary R) = 3r = 2m each edge is on the boundary of 2 regions

Euler's Formula => n-m+r=2 $n-m+\frac{2m}{3}=2$ $3n-3m+2m=6 \Rightarrow 3n-6=m$

Euler's Formula => n-m+r=2 $n-m+\frac{2m}{3}=2$ $3n-3m+2m=6 \Rightarrow 3n-6=m$

Corollary: If G is a planar graph with 17,3 vertices and m edges then m = 3n-6

ANSWER: 6. b

Theorem: If G is a connected plane graph
with n vertices, medges & r regions, then

N-m+r=2 (Euler's Formula)

Roof (induction on m)

Basis: m=0
Then G=K, so n=1 } n-m+r=1-0+1=2

The Hyp: Suppose the theorem is true for all
connected plane graphs with < m
edges (where mz)

Now consider a connected plane graph G
on medges, n vertices, r regions

Ind. Hyp: Suppose the theorem is true for all connected plane graphs with < m edges (where mai)

Now consider a connected plane graph Go on Medges, n vertices, r regions

• If G is a tree then m=n-1 and r=1so n-m+r=n-(n-1)+1=2

• If G is not a tree then G has a cycle C Let e be an edge of C

Then e is not a bridge ... Gle is connected and planar and has n vertices

m-1 edges 4r-1 regions

By the Ind Hyp. the theorem holds for Gle

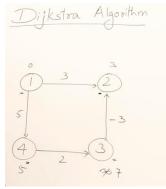
-----XX------

: n-m+r=2 /

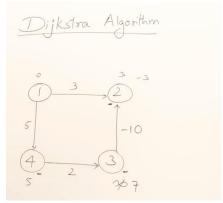
removing
e means
regions
R24R3
join into 1
region

Q 8 a.

Successful D.A.

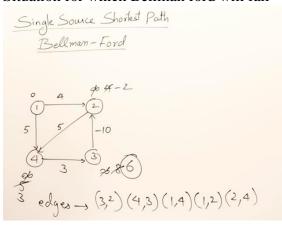


Un Successful D.A.



For Negative weights

Situation for which Bellman ford will fail



-----XX------

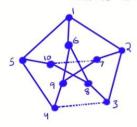
Ans. 9. a & b

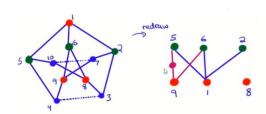
Petersen Graph:

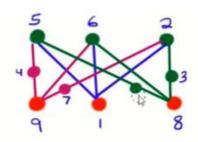
Fact: The Petersen graph is non-planar

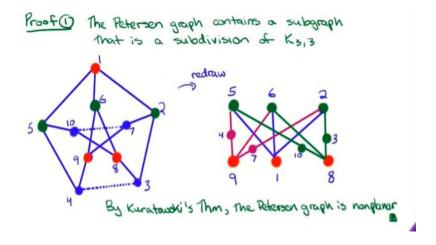
Proof(1) The Petersen graph contains a subgraph that is a subdivision of K313

Proof 1 The Petersen graph contains a subgraph that is a subdivision of K5,3



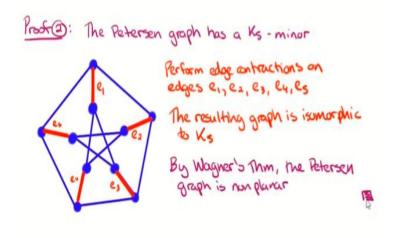






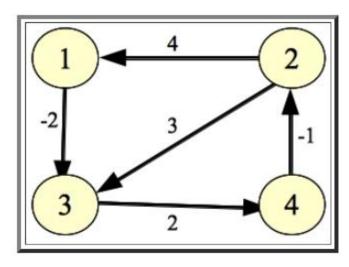
Prove that Peterson Graph is non-planar using Wagner's Theorem.

Mention def. of Minor



Then draw the resulting graph.

9 a. The Floyd-Warshall Algorithm example



-----XX------X

$$A = \begin{bmatrix} 1 & 0 & 3 & \frac{2}{4} & 4 \\ 2 & 8 & 0 & 2 & 15 \\ 3 & 5 & 8 & 0 & 1 \\ 4 & 2 & 5 & \infty & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 3 & \frac{2}{5} & 4 \\ 3 & 5 & 8 & 0 & 1 \\ 4 & 2 & 5 & 7 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 3 & 5 & 4 \\ 2 & 5 & 8 & 0 & 1 \\ 4 & 2 & 5 & 7 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 7 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 7 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 5 & 8 & 0 & 1 \\ 4 & 7 & 0 & 3 & \infty & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 5 & 8 & 0 & 1 \\ 4 & 7 & 0 & 3 & \infty & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 8 & 0 & 2 & \infty \\ 3 & 5 & \infty & 0 & 1 \\ 4 & 2 & \infty & \infty & 0 \end{bmatrix}$$

Q 7. a open question to answer O 7. b Prove that every plana

Q 7. b Prove that every planar graph has a dual.

Answer: Solved as theorem in Alan Gibson Book

-----XX------

Q. 10 b . Describe a method for finding a minimum connected dominating set and also illustrate the same with suitable example. Answer:

Bipartite Graph & Set Covering Problem

- The Connected Dominating Set (CDS) problem is to find a minimum connected dominating set.
- Finding a minimum connected dominating set is known to be an NP-complete problem.
- This essentially means that these class of problems cannot be solved quickly (in polynomial time).
- Several authors have proposed algorithms for obtaining approximate minimal connected dominating sets.

Connected Dominating Sets

- The problem of finding a minimum connected dominating set can be mapped into a Set Covering Problem.
- The Set Covering Problem is essentially a problem concerning bipartite graphs that can be stated as follows.

Bipartite Graph & Set Covering Problem

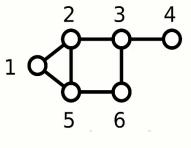
- Suppose that H is a bipartite graph, consisting of two sets of nodes A and B, where edges only make connections between A and B.
- Also assume that for each node in B, there is at least one edge connecting it to a node in A.
- The goal is to find a minimal subset C of A such that every node in B is covered by (i.e., adjacent to) some node in C.

Bipartite Graph Vertex Covering Problem

- The bipartite graph vertex covering problem can be addressed using a greedy algorithm, which will be explained in the next lecture.
- At each stage, a vertex from A is elected that covers as many vertices from B as possible that are not yet covered by an elected vertex.
- Let us look at the following example.

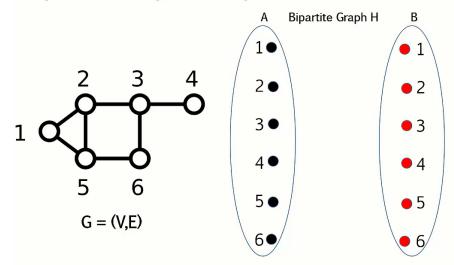
Bipartite Graph Example

- Let G be a connected graph (V,E).
- Let A and B are copies of vertices of E.
- Construct a bipartite graph
 H by putting an edge between
 vertices v of A and u of B if
 they are adjacent to each
 other.

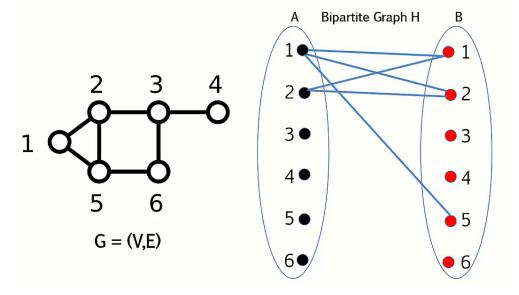


G = (V,E)

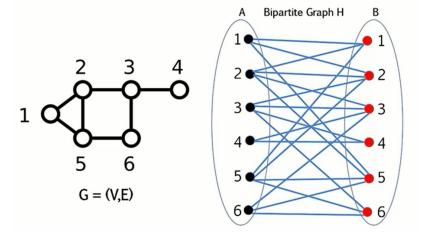
Bipartite Graph Example (Contd.)



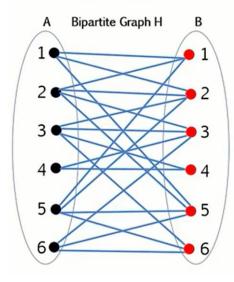
Bipartite Graph Example (Contd.)



Bipartite Graph Example (Contd.)



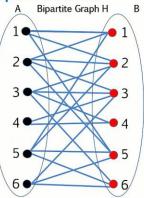
Greedy Algorithm Example (Contd.)



Compute the degree of all nodes in the set A in the bipartite graph H, i.e. compute the *covering numbers*.

Covering no. of vertex 1 (in A) = 3 Covering no. of vertex 2 (in A) = 4 Covering no. of vertex 3 (in A) = 4 Covering no. of vertex 4 (in A) = 2 Covering no. of vertex 5 (in A) = 4 Covering no. of vertex 6 (in A) = 3 Greedy Algorithm Example (Contd.)

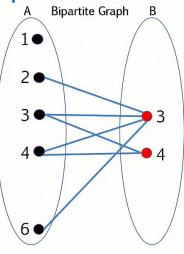
- Elect a node v from set A such that v has the highest covering number and add it to the output set C.
- If there is a tie, then the highest ID is used to break the tie.
- Remove all vertices in the set B that are covered by the node v.
- · Also remove v from A.
- After the first round, C = {5} as vertex 5 from A has the highest covering no. as well as the highest ID.



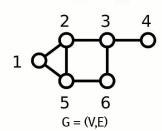
Greedy Algorithm Example (Contd.)

- During the second round, recompute the covering no. of all remaining vertices in A.
- Although vertices 3 & 4 in A have the same covering no., vertex 4 is selected because it has the highest id.
- After the second round, all vertices in B are exhausted and the algorithm converges.
- The final output set C = {4,5} is a minimal dominating set.

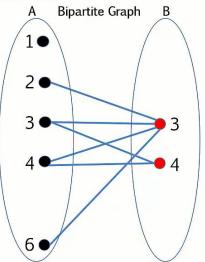
Covering no. of vertex 1 (in A) = 0 Covering no. of vertex 2 (in A) = 1 Covering no. of vertex 3 (in A) = 2 Covering no. of vertex 4 (in A) = 2 Covering no. of vertex 6 (in A) = 1



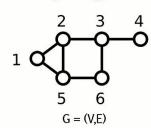
Greedy Algorithm For MCDS



- We can adapt the same greedy algorithm to find a minimal connected dominating set.
- It will be helpful to identify the vertices of A with vertices of G.
- After we select vertex 5 from A, only a vertex adjacent to 5 in G can be selected next.

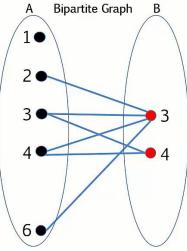


Greedy Algorithm For MCDS (Contd.)

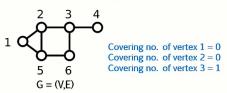


- 1, 2 and 6 are adjacent to 5 in G.
- 2 and 6 have the same covering no.
- We select 6 from A as it has the highest id.
- Then we remove vertex 6 from A and vertex 3 from B.
- Now the output set C = {5,6}

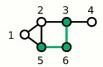
Covering no. of vertex 1 = 0Covering no. of vertex 2 = 1Covering no. of vertex 6 = 1

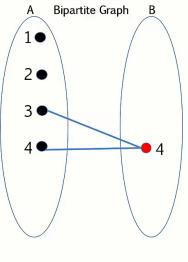


Greedy Algorithm For MCDS (Contd.) A Bipartite Graph



- We must choose a vertex in A with highest covering no.
- 4 is not eligible as it neither adjacent to 5 or 6
- The eligible vertices are 1, 2 and 3.
 We select 3 as it has the highest covering no.
- Now the output set $C = \{3,5,6\}$ is a minimal connected dominating set.





Q 6 a. Answer:

Theorem: If G is a maximal planar graph with n vertices (12,3) and m edges then m=3n-6

Proof:

Take a plane drawing of G with r regions. The boundary of every region is a triangle.

Euler's Formula $\Rightarrow n-m+r=2$ $n-m+\frac{2m}{3}=2$ $3n-3m+2m=6 \Rightarrow 3n-6=m$

Euler's Formula
$$\Rightarrow n-m+r=2$$

 $n-m+\frac{2m}{3}=2$
 $3n-3m+2m=6 \Rightarrow 3n-6=m$

Corollary: If G is a planar graph with 173 vertices and m edges then $m \leq 3n-6$

-----XX------

6b. For a planar graph G with n number of vertices and e number of edges with r regions, prove by method of induction that n - e + r = 2. Or N - E + f = 2.

Q 6 b. ANSWER:

Ind. Hyp: Suppose the theorem is true for all connected plane graphs with < m edges (where mai)

Now consider a connected plane graph Go on medges, n vertices, r regions

• If G is a tree then m=n-1 and r=1so n-m+r=n-(n-1)+1=2

• If G is not a tree then G has a cycle C Let e be an edge of C

Then e is not a bridge

and has in vertices

m-1 edges 4r-1 regions

By the Ind Hyp. the theorem holds for Gle

-----XX------

: n-m+r=2 /

e means regions R24 R3 join into 1 Q10 a Find the maximum flow through the given network using Ford-Fulkerson algorithm.

