End semester Examination (Monsoon 2023-24)

Department of Computer Science & Engineering, IIT (ISM), Dhanbad

Discipline: M.Tech. (CSE) & Research Scholar

Subject: Algorithmic Graph Theory (CSC503)  Time: 3 hours, Marks: 100

Instructions: Answer all questions

Q. Ma
No rks
1 . Prove that for every graph G, X (G) <= V(G) +1. (Here X(G) is the 5
chromatic number of G)
. Prove that G is bipartite iff the chromatic number of G is 2. 5
2 . The Prufer sequence S of a labelled tree Tis S={1, 7, 6, 6, 1}. Draw the 5
tree T describing all the intermediate steps pictorially during the
rocess.
P 5
. Write the algorithm of the same.
3 . Prove by method of induction that a graph G is a tree iff G is acyclicand | 5
the number of edges m in G is equal to n-1, where n is the number of
vertices in G.
. Deduce that clique decision problem is NP-Hard using Satisfiability 5
problem.
4 . Prove that for a simple graph G with n number of vertices (n >=4),and | 5
E number of edges and genus g satisfies
g > K(E|=3n)+11
5

. “A necessary and sufficient condition for a graph G to be planar is that

for every circuit C of G the auxiliary graph G+(C) is bipartite”, prove it.
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a. Suppose want to schedule some final exams for CS courses with

following call numbers:

CSE001, CSE002, CSE003, CSE004, CSE005, CSE006, CSEO07, CSE008
and also suppose also that there are no common students in the
following pairs of courses because of prerequisites:

CSEO01 - CSE002

CSEO0O01 - CSE004

CSEO0O01 - CSE003, CSE002- CSE003

CSEO001- CSE007, CSE002 - CSE0Q7

CSEOO01 - CSE008, CSE002 - CSE008, CSE003 - CSE008

CSE001 - CSE005, CSE002 - CSE005, CSE004 - CSE0O05,

CSEO01 - CSE006, CSE002 - CSE006, CSE004 - CSE006, CSEOOS - CSE006

How many exam slots are necessary to schedule exams?

. Illustrate with an example that any graph is a subgraph of a r-regular
graph.

. If a graph G is maximal planar graph with n vertices (n>=3) and m edges
then show that m =3n - 6.

. For a polyhedron with N number of vertices, E number of edges and F
number of faces, prove by method of induction that N—E + F = 2.

. Why running time measurement is important to study? Mention some
of the factors affecting the running time of a program.

. Prove that every planar graph has a dual.

2+

. Discuss the merits and demits of Dijkstra’s Algorithm and Bellman-Ford
Algorithm with examples.
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b. Use Prim's algorithm to find a minimum spanning tree that takes the
following graph as input.

a. Find the all pairs shortest paths among all vertices for the following

graph using Floyd-Warshall Algorithm (showing all intermediate steps)

S

a. Prove that Peterson Graph is non-planar using Kuratowski’s and
Wagner’s Theorem as well.
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https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree#minimum-spanning

10

a. Find the maximum flow through the given network using Ford-Fulkerson

algorithm.

@

AN

\<>

8

b. Consider the following graph to find the minimum connected

dominating set showing all the intermediate steps during the

constructions.

2 3 4
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Aique Decision Pacblem (€ DP)
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Aigque Decrsion Problem @ P)
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Q4a

Corollary 3.5. The genus g of a simple graph with n (> 4) vertices and |E|
edges satisfies:

g > (E|=3nm)+11

Proof. Every face of an embedding of the graph is bound by at least
three edges each of which separates two faces, therefore 3f < 2.|E|.

From theorem 3.4, g = ¥{|E|—n—f)+1) and so the result follows by
substitution. ]

Specific results for thickness and genps are known for special cases (e.g.,
complete graphs, complete bipartite graphs (see exercise 3.11)) and involve

lengthy proofs. In the case of complete graphs |E| = 4n(n—1) and the
above corollaries then give:

g 2 (-3 (n—-4)

n(n—1) —1)+(6n—14
> [Ga3] = || - e

It is known that in the result for g equality holds. Similarly, equality holds
in the expression for T except for n = 9 and for n = 10, in both cases
T = 3. These refinements required the considerable efforts of mathe-
maticians over many years. Beineke & Wilson™ provides a reference list
of primary sources.

Filotti et al. "8 have described an O(n®@)-algorithm which takes as input
a graph G and a positive integer g and which then finds an embedding of
G on a surface of genus g if such an embedding exists.

and

XXXXHXXXHXXKHXXKXXKXXKXXKXXX
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Q4.b

Theorem 3.6. A necessary and sufficient condition for a graph G to be
planar is that for every circuit C of G the auxiliary graph G+(C) is bipartite.

Proof. The condition is necessary because for any circuit C of a planar
graph G, we can form a bipartition (B, B) of the bridge vertices of G relative
to C, such that bridges in B lie in one face of C for G, and the bridges of B
lie in the other face. Clearly, G+(C) is bipartite because no edge of G+(C)
connects two vertices in B or connects two vertices in B.

That the condition is sufficient can be seen as follows. If G is not planar
then according to Kuratowski’s theorem G contains a subgraph homeo-
morphic to Kj or to K; ;. We suppose that G contains K; or K33 as a
subgraph, the generalisation to G containing proper homeomorphisms is
obvious. In either case (see figure 3.12, in which the chosen circuits are

G (%
GRC

Ks s K,

indicated by heavily scored edges), we can choose C of the subgraph such
that Gt(C) is not bipartite. For Kj 4 there are three bridges B,, B, and Bj,
each of which is a single edge and any two of which are incompatible. In
the case of Kj there are again three bridges B,, B, and B,. B, and B, are
single edges while B, is a vertex of K plus its edges of attachment to C.
Again any two of the bridges are incompatible. Thus for both K; and
Kj g, for the circuits chosen, G+(C) = Kj which is not bipartite. ]
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Q8. b
How Prim's algorithm works

It falls under a class of algorithms called greedy algorithms that find the
local optimum in the hopes of finding a global optimum.

We start from one vertex and keep adding edges with the lowest weight
until we reach our goal.

The steps for implementing Prim's algorithm are as follows:

. Initialize the minimum spanning tree with a vertex chosen at random.

. Find all the edges that connect the tree to new vertices, find the minimum
and add it to the tree

. Keep repeating step 2 until we get a minimum spanning tree

Example of Prim's algorithm
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https://www.programiz.com/dsa/greedy-algorithm

Step: 1

Start with a weighted graph

Step: 2

Choose a vertex

Step: 3

Choose the shortest edge from this vertex and add it
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Step: 4
Choose the nearest vertex not yet in the solution
2 2 3
Step: 5

Choose the nearest edge not yet in the solution, if there are multiple choices, choose one at
random
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Step: 6

Repeat until you have a spanning tree

KXXXHXXXXXXXXXXXXX

Q5a.
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~Graph Coloring and Schedules

'EG: Suppose want to schedule some final exams for CS
courses with following call numbers:

1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156

Suppose also that there are no common students in the
ollowing pairs of courses because of prerequisites:

1007-3137

1007-3157, 3137-3157

1007-3203

1007-3261, 3137-3261, 3203-3261

1007-4115, 3137-4115, 3203-4115, 3261-4115
1007-4118, 3137-4118

1007-4156, 3137-4156, 3157-4156

How many exam slots are necessary to schedule exams?

L25 128

Graph Coloring and Schedules

‘Turn this into a graph coloring problem. Vertices
are courses, and edges are courses which
cannot be scheduled simultaneously because of
possible students in common:

3203 (3261)

3137 a115)
—e, \:_-__;J./
(1007) (4118)
(3157) (4156
L25 129
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Graph Coloring and Schedules

One way to do this is to put edges down
where students mutually excluded...

r
.

-,

L25 130

Graph Coloring and Schedules

'Is 3-colorable. Try to color by Red, Green,
Blue.

L25 136
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Graph Coloring and Schedules
'S0 4156 must be Blue:

L25 138
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~Graph Coloring and Schedules

...and then compute the complementary
graph:

L25 i3

Graph Coloring and Schedules
13137 and 1007 easy to color.

L25 140
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Graph Coloring and Schedules
So need 3 exam slots:

Slot 2

Slot 3

141

XXXXXXXXXXXXXXXXX
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Ans. 5.b
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Ans. 6a. If a graph G is maximal planar graph with n vertices (n>=3) and m
edges then show that m = 3n - 6.
Answer:
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ANSWER: 6. b
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Q8a.

Successful D.A.

/

Un Successful D.A.

/

For Negative weights

Situation for which Bellman ford will fail

M

po K -
(] I ¢
o
=
5 ‘ s -0
N
ZH——=1(3
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Ans.9.a &b
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froo®@® The Terersen qmgh @IS o sulogragh
ok s a =wodivision & Ks 3

L B Kacokouadhi's Thm ; The. Riesen gragh 1o nm@um:
4

Prove that Peterson Graph is non-planar using Wagner’s Theorem.

Mention def. of Minor

?’3&)’ The Pedessen Egh has a Ks - minor

T do&um*\msm
¢d¢a¢.’> Q\,Qa €y €y, Qs

The resu\H oA 15 VOMOTPAIC
Dol Ty
o\ Bﬂ') \A\ogmr\aﬁ\r\m, e Retersen
QaQn 1o oA Quvas ®

Then draw the resulting graph.
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Q 7. a open guestion to answer

Q7. b Prove that every planar graph has a dual.
Answer: Solved as theorem in Alan Gibson Book

Q.10 b . Describe a method for finding a minimum connected dominating

set and also illustrate the same with suitable example.

Answer:
Bipartite Graph & Set Covering Problem

« The Connected Dominating Set (CDS) problem is
to find a minimum connected dominating set.

+ Finding a minimum connected dominating set is
known to be an NP-complete problem.

 This essentially means that these class of

problems cannot be solved quickly (in polynomial

time).

« Several authors have proposed algorithms for
obtaining approximate minimal connected
dominating sets.

Connected Dominating Sets

« The problem of finding a minimum connected
dominating set can be mapped into a
Set Covering Problem.

« The Set Covering Problem is essentially a problem
concerning bipartite graphs that can be stated as

follows.

Bipartite Graph & Set Covering Problem

+ Suppose that H is a bipartite graph, consisting of
two sets of nodes A and B, where edges only make
connections between A and B.

+ Also assume that for each node in B, there is at
least one edge connecting it to a node in A.

« The goal is to find a minimal subset C of A such
that every node in B is covered by (i.e., adjacent
to) some node in C.
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Bipartite Graph Vertex Covering Problem

The bipartite graph vertex covering problem
can be addressed using a greedy algorithm,
which will be explained in the next lecture.

At each stage, a vertex from A is elected that
covers as many vertices from B as possible
that are not yet covered by an elected vertex.

Let us look at the following example.

Bipartite Graph Example

Let G be a connected graph

(V.E). 2 3 4
Let A and B are copies of

vertices of E.

Construct a bipartite graph 1

H by putting an edge between

vertices v of A and u of B if

they are adjacent to each 5 6
other.

G =(V,p)
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Bipartite Graph Example (Contd.)

A Bipartite Graph H

G =(V,p)

Bipartite Graph Example (Contd.)

A Bipartite Graph H

2 3 4
1@
5 6

G=(VE)
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Bipartite Graph Example (Contd.)

A  Bipartite Graph H B

1 1

2 3 4 [, >

1 3 5;5 3

40= o4

) §) . .
G=(Vp

6 6

Greedy Algorithm Example (Contd.)

A Bipartite GaphH B Compute the degree of all

- = nodes in the set A in the
bipartite graph H, i.e. compute
the covering numbers.

Covering no. of vertex 1 (in A)
' Covering no. of vertex 2 (in A)
| Covering no. of vertex 3 (in A)
Covering no. of vertex 4 (in A)
Covering no. of vertex 5 (in A)
Covering no. of vertex 6 (in A)

LI | | | B | O |
WHENBADMW

52/4



Greedy Algorithm Example (Contd.)

A Bipartite Graph H B

* Elect a node v from set A such
that v has the highest covering
number and add it to the output
set C.

* If there is a tie, then the highest
ID is used to break the tie.

* Remove all vertices in the set B
that are covered by the node v.

* Also remove v from A.

« After the first round, C = {5} as
vertex 5 from A has the highest
covering no. as well as the
highest ID.

Greedy Algorithm Example (Contd.)
A Bipartite Graph B
* During the second round, re-
compute the covering no. of all l®
remaining vertices in A.

* Although vertices 3 & 4 in A have

the same covering no., vertex 4 2

is selected because it has the

highest id. 3 @< 3
¢ After the second round, all ><

vertices in B are exhausted and 4 3 4

the algorithm converges.

* The final output set C = {4,5} is
a minimal dominating set.

Covering no. of vertex 1 (in A)=0
Covering no. of vertex 2 (in A) = 1 6
Covering no. of vertex 3 (in A) = 2
Covering no. of vertex 4 (in A) = 2
Covering no. of vertex 6 (in A) = 1
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Greedy Algorithm For MCDS

A  Bipartite Graph B
1@

2 3 4

Z
5 6

G=(V,E) 30 3
+ We can adapt the same greedy .J><
algorithm to find a minimal connected 4 o 4

dominating set.
+ It will be helpful to identify the vertices
of A with vertices of G.

» After we select vertex 5 from A, only a
vertex adjacent to 5 in G can be 6
selected next.

Greedy Algorithm For MCDS (Contd.)

A  Bipartite Graph B
2 3 4
l®

2
5 6

G=Wp 3@ g
* 1,2 and 6 are adjacent to 5 in G.
* 2 and 6 have the same covering no. 4 = 4

*  We select 6 from A as it has the highest id.

* Then we remove vertex 6 from A and vertex 3
from B.

* Now the output set C = {5,6}

Covering no. of vertex 1 =0 6
Covering no. of vertex 2 =1
Covering no. of vertex 6 =1
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Greedy Algorithm For MCDS (Contd.)

A  Bipartite Graph B

2 3 4
1 @_O Covering no. of vertex 1 =0
Covering no. of vertex 2 =0
5 6 Covering no. of vertex 3 =1
G=(Vp)
We must choose a vertex in A with highest
covering no.

* 4is not eligible as it neither adjacent to 5 or 6
in G. ~

The eligible vertices are 1, 2 and 3.

We select 3 as it has the highest covering no.
+  Now the output set C = {3,5,6} is a minimal

connected dominating set.

2 3 4
1
5 6
________________ XX =mmmmmmmmmmmmmm e
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Q 6 a. Answer:
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6b. For a planar graph G with n number of vertices and e number of edges with
r regions, prove by method of inductionthatn—-e+r=2.0Or N-E +f=2.

Q 6 b. ANSWER:
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Q10 a Find the maximum flow through the given network using Ford-Fulkerson
algorithm.
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Solution, :
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