9.1, 9.2, 9.3, 9.4 and 9.5

Topic (9.x)Subtopic (9.x.y)Mini-topic (9.x.y.z)
9.6 The Backpropagation Neural Network9.6.1 The BP Network and Error Function
9.6.2 Layer K Weight Estimation and Updating
9.6.3 Layer K - 1 Weight Estimation and Updating
9.6.4 The BP Algorithm
9.7 Convolutional Neural Network9.7.1 CNN Architecture
9.7.2 Input Layer
9.7.3 Convolution Layer 1 (C1)9.7.3.1 2D Convolution
9.7.3.2 Stride and Padding
9.7.3.3 Bias
9.7.3.4 Volume Convolution in Layer C1
9.7.3.5 Depth of the Feature Map Volume
9.7.3.6 ReLU Activation
9.7.3.7 Batch Normalization
9.7.4 Pooling or Subsampling Layer 1 (S1)
9.7.5 Convolution Layer 2 (C2)
9.7.6 Hyperparameters
9.8 Implementation of CNN9.8.1 CNN Architecture (VGGNet Example)
9.8.2 Filters of the Convolution Layers
9.8.3 Filters of the Fully Connected Layers
9.8.4 Feature Maps of Convolution Layers
9.8.5 Matlab Implementation