
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2464973

A System for Video Surveillance and Monitoring

Article · June 2000

Source: CiteSeer

CITATIONS

953
READS

9,625

10 authors, including:

Takeo Kanade

Carnegie Mellon University

531 PUBLICATIONS 91,191 CITATIONS

SEE PROFILE

Hironobu Fujiyoshi

Chubu University

275 PUBLICATIONS 6,729 CITATIONS

SEE PROFILE

David Duggins

QinetiQ

8 PUBLICATIONS 1,241 CITATIONS

SEE PROFILE

Osamu Hasegawa

SOINN Inc.

184 PUBLICATIONS 3,182 CITATIONS

SEE PROFILE

All content following this page was uploaded by Osamu Hasegawa on 08 February 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2464973_A_System_for_Video_Surveillance_and_Monitoring?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2464973_A_System_for_Video_Surveillance_and_Monitoring?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Takeo-Kanade?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Takeo-Kanade?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carnegie-Mellon-University?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Takeo-Kanade?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hironobu-Fujiyoshi?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hironobu-Fujiyoshi?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chubu-University?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hironobu-Fujiyoshi?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Duggins-2?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Duggins-2?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/QinetiQ?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Duggins-2?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Osamu-Hasegawa-2?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Osamu-Hasegawa-2?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Osamu-Hasegawa-2?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Osamu-Hasegawa-2?enrichId=rgreq-67be811831a58d8cc4ac98553cadcf91-XXX&enrichSource=Y292ZXJQYWdlOzI0NjQ5NzM7QVM6MTAzMjk3NTI0NDM3MDA0QDE0MDE2Mzk0NTc5OTY%3D&el=1_x_10&_esc=publicationCoverPdf

A System for Video Surveillance and Monitoring�

Robert T. Collins, Alan J. Lipton, Takeo Kanade,
Hironobu Fujiyoshi, David Duggins, Yanghai Tsin,

David Tolliver, Nobuyoshi Enomoto, Osamu Hasegawa,
Peter Burt1 and Lambert Wixson1

CMU-RI-TR-00-12

The Robotics Institute, Carnegie Mellon University, Pittsburgh PA
1 The Sarnoff Corporation, Princeton, NJ

Abstract

Under the three-year Video Surveillance and Monitoring (VSAM) project (1997–1999), the
Robotics Institute at Carnegie Mellon University (CMU) and the Sarnoff Corporation devel-
oped a system for autonomous Video Surveillance and Monitoring. The technical approach
uses multiple, cooperative video sensors to provide continuous coverage of people and vehi-
cles in a cluttered environment. This final report presents an overview of the system, and of
the technical accomplishments that have been achieved.

c
2000 Carnegie Mellon University

�This work was funded by the DARPA Image Understanding under contract DAAB07-97-C-J031, and by the
Office of Naval Research under grant N00014-99-1-0646.

1 Introduction

The thrust of CMU research under the DARPA Video Surveillance and Monitoring (VSAM)
project is cooperative multi-sensor surveillance to support battlefield awareness [17]. Under our
VSAM Integrated Feasibility Demonstration (IFD) contract, we have developed automated video
understanding technology that enables a single human operator to monitor activities over a com-
plex area using a distributed network of active video sensors. The goal is to automatically collect
and disseminate real-time information from the battlefield to improve the situational awareness of
commanders and staff. Other military and federal law enforcement applications include providing
perimeter security for troops, monitoring peace treaties or refugee movements from unmanned air
vehicles, providing security for embassies or airports, and staking out suspected drug or terrorist
hide-outs by collecting time-stamped pictures of everyone entering and exiting the building.

Automated video surveillance is an important research area in the commercial sector as well.
Technology has reached a stage where mounting cameras to capture video imagery is cheap, but
finding available human resources to sit and watch that imagery is expensive. Surveillance cameras
are already prevalent in commercial establishments, with camera output being recorded to tapes
that are either rewritten periodically or stored in video archives. After a crime occurs – a store
is robbed or a car is stolen – investigators can go back after the fact to see what happened, but of
course by then it is too late. What is needed is continuous 24-hour monitoring and analysis of video
surveillance data to alert security officers to a burglary in progress, or to a suspicious individual
loitering in the parking lot, while options are still open for avoiding the crime.

Keeping track of people, vehicles, and their interactions in an urban or battlefield environment
is a difficult task. The role of VSAM video understanding technology in achieving this goal is to
automatically “parse” people and vehicles from raw video, determine their geolocations, and insert
them into a dynamic scene visualization. We have developed robust routines for detecting and
tracking moving objects. Detected objects are classified into semantic categories such as human,
human group, car, and truck using shape and color analysis, and these labels are used to improve
tracking using temporal consistency constraints. Further classification of human activity, such as
walking and running, has also been achieved. Geolocations of labeled entities are determined from
their image coordinates using either wide-baseline stereo from two or more overlapping camera
views, or intersection of viewing rays with a terrain model from monocular views. These computed
locations feed into a higher level tracking module that tasks multiple sensors with variable pan, tilt
and zoom to cooperatively and continuously track an object through the scene. All resulting object
hypotheses from all sensors are transmitted as symbolic data packets back to a central operator
control unit, where they are displayed on a graphical user interface to give a broad overview of
scene activities. These technologies have been demonstrated through a series of yearly demos,
using a testbed system developed on the urban campus of CMU.

This is the final report on the three-year VSAM IFD research program. The emphasis is on
recent results that have not yet been published. Older work that has already appeared in print is
briefly summarized, with references to the relevant technical papers. This report is organized as

Robotics Institute, CMU – 1 – VSAM Final Report

follows. Section 2 contains a description of the VSAM IFD testbed system, developed as a testing
ground for new video surveillance research. Section 3 describes the basic video understanding
algorithms that have been demonstrated, including moving object detection, tracking, classifica-
tion, and simple activity recognition. Section 4 discusses the use of geospatial site models to aid
video surveillance processing, including calibrating a network of sensors with respect to the model
coordinate system, computation of 3D geolocation estimates, and graphical display of object hy-
potheses within a distributed simulation. Section 5 discusses coordination of multiple cameras to
achieve cooperative object tracking. Section 6 briefly lists the milestones achieved through three
VSAM demos that were performed in Pittsburgh, the first at the rural Bushy Run site, and the
second and third held on the urban CMU campus, and concludes with plans for future research.
The appendix contains published technical papers from the CMU VSAM research group.

2 VSAM Testbed System

We have built a VSAM testbed system to demonstrate how automated video understanding tech-
nology described in the following sections can be combined into a coherent surveillance system
that enables a single human operator to monitor a wide area. The testbed system consists of multi-
ple sensors distributed across the campus of CMU, tied to a control room (Figure 1a) located in the
Planetary Robotics Building (PRB). The testbed consists of a central operator control unit (OCU)

(a) (b)

Figure 1: a) Control room of the VSAM testbed system on the campus of Carnegie Mellon Uni-
versity. b) Close-up of the main rack.

which receives video and Ethernet data from multiple remote sensor processing units (SPUs) (see
Figure 2). The OCU is responsible for integrating symbolic object trajectory information accu-
mulated by each of the SPUs together with a 3D geometric site model, and presenting the results
to the user on a map-based graphical user interface (GUI). Each logical component of the testbed
system architecture is described briefly below.

Robotics Institute, CMU – 2 – VSAM Final Report

CMUPA CMUPA

DIS
SPUs

OCU

GUI

VISSensor
Fusion

 Site
Model

Figure 2:Schematic overview of the VSAM testbed system.

2.1 Sensor Processing Units (SPUs)

The SPU acts as an intelligent filter between a camera and the VSAM network. Its function is to
analyze video imagery for the presence of significant entities or events, and to transmit that infor-
mation symbolically to the OCU. This arrangement allows for many different sensor modalities
to be seamlessly integrated into the system. Furthermore, performing as much video processing
as possible on the SPU reduces the bandwidth requirements of the VSAM network. Full video
signals do not need to be transmitted; only symbolic data extracted from video signals.

The VSAM testbed can handle a wide variety of sensor and SPU types (Figure 3). The list of
IFD sensor types includes: color CCD cameras with active pan, tilt and zoom control; fixed field
of view monochromatic low-light cameras; and thermal sensors. Logically, each SPU combines a
camera with a local computer that processes the incoming video. However, for convenience, most
video signals in the testbed system are sent via fiber optic cable to computers located in a rack
in the control room (Figure 1b). The exceptions are SPU platforms that move: a van-mounted
relocatable SPU; an SUO portable SPU; and an airborne SPU. Computing power for these SPUs is
on-board, with results being sent to the OCU over relatively low-bandwidth wireless Ethernet links.
In addition to the IFD in-house SPUs, two Focussed Research Effort (FRE) sensor packages have
been integrated into the system: a Columbia-Lehigh CycloVision ParaCamera with a hemispher-
ical field of view; and a Texas Instruments indoor surveillance system. By using a pre-specified
communication protocol (see Section 2.4), these FRE systems were able to directly interface with
the VSAM network. Indeed, within the logical system architecture, all SPUs are treated identi-
cally. The only difference is at the hardware level where different physical connections (e.g. cable
or wireless Ethernet) may be required to connect to the OCU.

The relocatable van and airborne SPU warrant further discussion. The relocatable van SPU
consists of a sensor and pan-tilt head mounted on a small tripod that can be placed on the vehicle
roof when stationary. All video processing is performed on-board the vehicle, and results from
object detection and tracking are assembled into symbolic data packets and transmitted back to
the operator control workstation using a radio Ethernet connection. The major research issue
involved in demonstrating the redeployable van unit involves how to rapidly calibrate sensor pose
after redeployment, so that object detection and tracking results can be integrated into the VSAM
network (via computation of geolocation) for display at the operator control console.

Robotics Institute, CMU – 3 – VSAM Final Report

Figure 3: Many types of sensors and SPUs have been incorporated into the VSAM IFD testbed
system: a) color PTZ; b) thermal; c) relocatable van; d) airborne. In addition, two FRE sensors
have been successfully integrated: e) Columbia-Lehigh omnicamera; f) Texas Instruments indoor
activity monitoring system.

Robotics Institute, CMU – 4 – VSAM Final Report

The airborne sensor and computation packages are mounted on a Britten-Norman Islander
twin-engine aircraft operated by the U.S. Army Night Vision and Electronic Sensors Directorate.
The Islander is equipped with a FLIR Systems Ultra-3000 turret that has two degrees of freedom
(pan/tilt), a Global Positioning System (GPS) for measuring position, and an Attitude Heading
Reference System (AHRS) for measuring orientation. The continual self-motion of the aircraft
introduces challenging video understanding issues. For this reason, video processing is performed
using the Sarnoff PVT-200, a specially designed video processing engine.

2.2 Operator Control Unit (OCU)

Figure 4 shows the functional architecture of the VSAM OCU. It accepts video processing results
from each of the SPUs and integrates the information with a site model and a database of known
objects to infer activities that are of interest to the user. This data is sent to the GUI and other
visualization tools as output from the system.

info

site
model

info arbiter
sensortrigger

OCU FUNCTIONAL MODEL

SPU

geolocation
triggers

classification
recognition

tracking
MTD behaviour

analysis
footprint

activity

DB
footprint

target DB

site model
DB

target

dynamic

analysis
trajectory

maintenance

modeling

multi-tasking)
(handoff,
control
sensor

target

info
sensor

idle
SPU

tracking)
loiterer detection

car park monitoring
riot monitoring

(HVI,

definition
trigger

USER

GUI

Figure 4:Functional architecture of the VSAM OCU.

One key piece of system functionality provided by the OCU is sensor arbitration. Care must
be taken to ensure that an outdoor surveillance system does not underutilize its limited sensor
assets. Sensors must be allocated to surveillance tasks in such a way that all user-specified tasks
get performed, and, if enough sensors are present, multiple sensors are assigned to track important
objects. At any given time, the OCU maintains a list of known objects and sensor parameters, as
well as a set of “tasks” that may need attention. These tasks are explicitly indicated by the user
through the GUI, and may include specific objects to be tracked, specific regions to be watched,
or specific events to be detected (such as a person loitering near a particular doorway). Sensor

Robotics Institute, CMU – 5 – VSAM Final Report

arbitration is performed by an arbitration cost function. The arbitration function determines the
cost of assigning each of the SPUs to each of the tasks. These costs are based on the priority of
the tasks, the load on the SPU, and visibility of the objects from a particular sensor. The system
performs a greedy optimization of the cost to determine the best combination of SPU tasking to
maximize overall system performance requirements.

The OCU also contains a site model representing VSAM-relevant information about the area
being monitored. The site model representation is optimized to efficiently support the following
VSAM capabilities:

� object geolocation via intersection of viewing rays with the terrain.

� visibility analysis (predicting what portions of the scene are visible from what sensors) so
that sensors can be efficiently tasked.

� specification of the geometric location and extent of relevant scene features. For example,
we might directly task a sensor to monitor the door of a building, or to look for vehicles
passing through a particular intersection.

2.3 Graphical User Interface (GUI)

(a) (b)

Figure 5: a) Operator console located in the control room. Also shown is a laptop-based portable
operator console. b) Close-up view of the visualization node display screen.

One of the technical goals of the VSAM project is to demonstrate that a single human operator
can effectively monitor a significant area of interest. Keeping track of multiple people, vehicles,
and their interactions, within a complex urban environment is a difficult task. The user obviously
shouldn’t be looking at two dozen screens showing raw video output. That amount of sensory
overload virtually guarantees that information will be ignored, and requires a prohibitive amount
of transmission bandwidth. Our approach is to provide an interactive, graphical user interface
(GUI) that uses VSAM technology to automatically place dynamic agents representing people and

Robotics Institute, CMU – 6 – VSAM Final Report

vehicles into a synthetic view of the environment (Figure 5). This approach has the benefit that
visualization of scene events is no longer tied to the original resolution and viewpoint of a single
video sensor. The GUI currently consists of a map of the area, overlaid with all object locations,
sensor platform locations, and sensor fields of view (Figure 5b). In addition, a low-bandwidth,
compressed video stream from one of the sensors can be selected for real-time display.

The GUI is also used for sensor suite tasking. Through this interface, the operator can task
individual sensor units, as well as the entire testbed sensor suite, to perform surveillance operations
such as generating a quick summary of all object activities in the area. The lower left corner of
the control window contains a selection of controls organized as tabbed selections. This allows the
user to move fluidly between different controls corresponding to the entity types Objects, Sensors,
and Regions of Interest.

� Object Controls. Track directs the system to begin actively tracking the current object.
Stop Tracking terminates all active tracking tasks in the system.Trajectory displays the
trajectory of selected objects.Error displays geolocation error bounds on the locations and
trajectories of selected objects.

� Sensor Controls.Show FOV displays sensor fields of view on the map, otherwise only a
position marker is drawn.Move triggers an interaction allowing the user to control the pan
and tilt angle of the sensor.Request Imageryrequests either a continuous stream or single
image from the currently selected sensor, andStop Imagery terminates the current imagery
stream.

� ROI controls This panel contains all the controls associated with Regions of Interest (ROIs)
in the system. ROIs are tasks that focus sensor resources at specific areas in the session
space.Create triggers the creation of a ROI, specified interactively by the user as a polygon
of boundary points. The user also selects from a set of object types (e.g. human, vehicle)
that will trigger events in this ROI, and from a set of event types (e.g. enter, pass through,
stop in) that are considered to be trigger events in the ROI.

2.4 Communication

The nominal architecture for the VSAM network allows multiple OCUs to be linked together, each
controlling multiple SPUs (Figure 6). Each OCU supports exactly one GUI through which all user
related command and control information is passed. Data dissemination is not limited to a single
user interface, however, but is also accessible through a series of visualization nodes (VIS).

There are two independent communication protocols and packet structures supported in this
architecture: the Carnegie Mellon University Packet Architecture (CMUPA) and the Distributed
Interactive Simulation (DIS) protocols. The CMUPA is designed to be a low bandwidth, highly
flexible architecture in which relevant VSAM information can be compactly packaged without

Robotics Institute, CMU – 7 – VSAM Final Report

GUI

SPU

SPU

GUI

GUI

SPU
SPU

VIS

VIS

VIS

VIS
VIS

SPU
SPU

SPU

OCU

VISOCU

OCU

SPU

Figure 6:A nominal architecture for expandable VSAM networks.

Event
block

Event
block

Target

Target

bitmask

position

block

bitmask
Header

ROI

ROI

block

block

EventComm.

Sensor

block
Sensor

Comm.

block
Comm.

block

block
Comm.

block

bounding

block
Target

Imagery

box

template
image

Sensor

block
Imagery

Figure 7:CMUPA packet structure. A bitmask in the header describes which sections are present.
Within each section, multiple data blocks can be present. Within each data block, bitmasks describe
what information is present.

redundant overhead. The concept of the CMUPA packet architecture is a hierarchical decompo-
sition. There are six data sections that can be encoded into a packet: command; sensor; image;
object; event; and region of interest. A short packet header section describes which of these six
sections are present in the packet. Within each section it is possible to represent multiple instances
of that type of data, with each instance potentially containing a different layout of information.
At each level, short bitmasks are used to describe the contents of the various blocks within the
packets, keeping wasted space to a minimum. All communication between SPUs, OCUs and
GUIs is CMUPA compatible. The CMUPA protocol specification document is accessible from
http://www.cs.cmu.edu/ �vsam.

VIS nodes are designed to distribute the output of the VSAM network to where it is needed.
They provide symbolic representations of detected activities overlaid on maps or imagery. Infor-
mation flow to VIS nodes is unidirectional, originating from an OCU. All of this communication
uses the DIS protocol, which is described in detail in [15]. An important benefit to keeping VIS
nodes DIS compatible is that it allows us to easily interface with synthetic environment visualiza-
tion tools such as ModSAF and ModStealth (Section 4.4).

Robotics Institute, CMU – 8 – VSAM Final Report

2.5 Current Testbed Infrastructure

This section describes the VSAM testbed on the campus of Carnegie Mellon University, as of Fall
1999 (see Figure 8). The VSAM infrastructure consists of 14 cameras distributed throughout cam-
pus. All cameras are connected to the VSAM Operator Control Room in the Planetary Robotics
Building (PRB): ten are connected via fiber optic lines, three on PRB are wired directly to the
SPU computers, and one is a portable Small Unit Operations (SUO) unit connected via wireless
Ethernet to the VSAM OCU. The work done for VSAM 99 concentrated on increasing the density
of sensors in the Wean/PRB area. The overlapping fields of view (FOVs) in this area of campus
enable us to conduct experiments in wide baseline stereo, object fusion, sensor cuing and sensor
handoff.

Monochrome

Color

Smith

Wean

PRB

Figure 8: Placement of color and monochrome cameras in current VSAM testbed system. Not
shown are two additional cameras, a FLIR and the SUO portable system, which are moved to
different places as needed.

The backbone of the CMU campus VSAM system consists of six Sony EVI-370 color zoom
cameras installed on PRB, Smith Hall, Newell-Simon Hall, Wean Hall, Roberts Hall, and Porter
Hall. Five of these units are mounted on Directed Perception pan/tilt heads. The most recent
camera, on Newell-Simon, is mounted on a Sagebrush Technologies pan/tilt head. This is a more
rugged outdoor mount being evaluated for better performance specifications and longer term usage.
Two stationary fixed-FOV color cameras are mounted on the peak of PRB, on either side of the

Robotics Institute, CMU – 9 – VSAM Final Report

pan/tilt/zoom color camera located there. These PRB “left” and “right” sensors were added to
facilitate work on activity analysis, classification, and sensor cuing. Three stationary fixed-FOV
monochrome cameras are mounted on the roof of Wean Hall in close proximity to one of the
pan/tilt/zoom color cameras. These are connected to the Operator Control Room over a single
multimode fiber using a video multiplexor. The monochrome cameras have a vertical resolution
of 570 TV lines and perform fairly well at night with the available street lighting. A mounting
bracket has also been installed next to these cameras for the temporary installation of a Raytheon
NightSight thermal (FLIR) sensor. A fourth stationary fixed FOV monochrome camera is mounted
on PRB pointing at the back stairwell. A SUO portable unit was built to allow further software
development and research at CMU in support of the SUO program. This unit consists of the same
hardware as the SPUs that were delivered to Fort Benning, Georgia in November, 1999.

The Operator Control Room in PRB houses the SPU, OCU, GUI and development work-
stations – nineteen computers in total. The four most recent SPUs are Pentium III 550 MHz
computers. Dagwood, a single “compound SPU”, is a quad Xeon 550 MHz processor computer,
purchased to conduct research on classification, activity analysis, and digitization of three simulta-
neous video streams. Also included in this list of machines is a Silicon Graphics Origin 200, used
to develop video database storage and retrieval algorithms as well as designing user interfaces for
handling VSAM video data.

Two auto tracking Leica theodolites (TPS1100) are installed on the corner of PRB, and are
hardwired to a data processing computer linked to the VSAM OCU. This system allows us to do
real-time automatic tracking of objects to obtain ground truth for evaluating the VSAM geolocation
and sensor fusion algorithms. This data can be displayed in real-time on the VSAM GUI.

An Office of Naval Research DURIP grant provided funds for two Raytheon NightSight ther-
mal sensors, the Quad Xeon processor computer, the Origin 200, an SGI Infinite Reality Engine
and the Leica theodolite surveying systems.

3 Video Understanding Technologies

Keeping track of people, vehicles, and their interactions in a complex environment is a difficult
task. The role of VSAM video understanding technology in achieving this goal is to automatically
“parse” people and vehicles from raw video, determine their geolocations, and automatically insert
them into a dynamic scene visualization. We have developed robust routines for detecting moving
objects and tracking them through a video sequence using a combination of temporal differencing
and template tracking. Detected objects are classified into semantic categories such as human,
human group, car, and truck using shape and color analysis, and these labels are used to improve
tracking using temporal consistency constraints. Further classification of human activity, such as
walking and running, has also been achieved. Geolocations of labeled entities are determined from
their image coordinates using either wide-baseline stereo from two or more overlapping camera
views, or intersection of viewing rays with a terrain model from monocular views. The computed

Robotics Institute, CMU – 10 – VSAM Final Report

geolocations are used to provide higher-level tracking capabilities, such as tasking multiple sensors
with variable pan, tilt and zoom to cooperatively track an object through the scene. Results are
displayed to the user in real-time on the GUI, and are also archived in web-based object/event
database.

3.1 Moving Object Detection

Detection of moving objects in video streams is known to be a significant, and difficult, research
problem [26]. Aside from the intrinsic usefulness of being able to segment video streams into
moving and background components, detecting moving blobs provides a focus of attention for
recognition, classification, and activity analysis, making these later processes more efficient since
only “moving” pixels need be considered.

There are three conventional approaches to moving object detection: temporal differencing
[1]; background subtraction [13, 29]; and optical flow (see [3] for an excellent discussion). Tem-
poral differencing is very adaptive to dynamic environments, but generally does a poor job of
extracting all relevant feature pixels. Background subtraction provides the most complete feature
data, but is extremely sensitive to dynamic scene changes due to lighting and extraneous events.
Optical flow can be used to detect independently moving objects in the presence of camera mo-
tion; however, most optical flow computation methods are computationally complex, and cannot
be applied to full-frame video streams in real-time without specialized hardware.

Under the VSAM program, CMU has developed and implemented three methods for mov-
ing object detection on the VSAM testbed. The first is a combination of adaptive background
subtraction and three-frame differencing (Section 3.1.1). This hybrid algorithm is very fast, and
surprisingly effective – indeed, it is the primary algorithm used by the majority of the SPUs in
the VSAM system. In addition, two new prototype algorithms have been developed to address
shortcomings of this standard approach. First, a mechanism for maintaining temporal object layers
is developed to allow greater disambiguation of moving objects that stop for a while, are occluded
by other objects, and that then resume motion (Section 3.1.2). One limitation that affects both
this method and the standard algorithm is that they only work for static cameras, or in a ”step-
and-stare” mode for pan-tilt cameras. To overcome this limitation, a second extension has been
developed to allow background subtraction from a continuously panning and tilting camera (Sec-
tion 3.1.3). Through clever accumulation of image evidence, this algorithm can be implemented
in real-time on a conventional PC platform. A fourth approach to moving object detection from
a moving airborne platform has also been developed, under a subcontract to the Sarnoff Corpora-
tion. This approach is based on image stabilization using special video processing hardware. It is
described later, in Section 3.6.

Robotics Institute, CMU – 11 – VSAM Final Report

Car moves"Hole" left in
background model

parked car
Long-term

Detection

Car moves

(a) (b)

Figure 9: problems with standard MTD algorithms. (a) Background subtraction leaves “holes”
when stationary objects move. (b) Frame differencing does not detect the entire object

3.1.1 A Hybrid Algorithm for Moving Object Detection

We have developed a hybrid algorithm for detecting moving objects, by combining an adaptive
background subtraction technique[18] with a three-frame differencing algorithm. As discussed in
[26], the major drawback of adaptive background subtraction is that it makes no allowances for
stationary objects in the scene that start to move. Although these are usually detected, they leave
behind “holes” where the newly exposed background imagery differs from the known background
model (see Figure 9a). While the background model eventually adapts to these “holes”, they gen-
erate false alarms for a short period of time. Frame differencing is not subject to this phenomenon,
however, it is generally not an effective method for extracting the entire shape of a moving object
(Figure 9b). To overcome these problems, we have combined the two methods. A three-frame dif-
ferencing operation is performed to determine regions of legitimate motion, followed by adaptive
background subtraction to extract the entire moving region.

Consider a video stream from a stationary (or stabilized) camera. LetIn(x) represent the
intensity value at pixel positionx, at timet = n. The three-frame differencing rule suggests that
a pixel is legitimately moving if its intensity has changed significantly between both the current
image and the last frame, and the current image and the next-to-last frame. That is, a pixelx is
moving if

(jIn(x)� In�1(x)j> Tn(x)) and (jIn(x)� In�2(x)j> Tn(x))

whereTn(x) is a threshold describing a statistically significant intensity change at pixel positionx
(described below). The main problem with frame differencing is that pixels interior to an object
with uniform intensity aren’t included in the set of “moving” pixels. However, after clustering
moving pixels into a connected region, interior pixels can be filled in by applying adaptive back-
ground subtraction to extract all of the “moving” pixels within the region’s bounding boxR. Let
Bn(x) represent the current background intensity value at pixelx, learned by observation over time.
Then the blobbn can be filled out by taking all the pixels inR that are significantly different from
the background modelBn. That is

bn = fx : jIn(x)�Bn(x)j> Tn(x); x2 Rg

Robotics Institute, CMU – 12 – VSAM Final Report

Both the background modelBn(x) and the difference thresholdTn(x) are statistical properties
of the pixel intensities observed from the sequence of imagesfIk(x)g for k < n. B0(x) is initially
set to the first image,B0(x) = I0(x), andT0(x) is initially set to some pre-determined, non-zero
value.B(x) andT(x) are then updated over time as:

Bn+1(x) =

�
α Bn(x) + (1�α) In(x); x is non-moving
Bn(x); x is moving

Tn+1(x) =

�
α Tn(x) + (1�α) (5�jIn(x)�Bn(x)j); x is non-moving
Tn(x); x is moving

whereα is a time constant that specifies how fast new information supplants old observations.
Note that each value is only changed for pixels that are determined to be non-moving, i.e. part of
the stationary background. If each non-moving pixel position is considered as a time series,Bn(x)
is analogous to a local temporal average of intensity values, andTn(x) is analogous to 5 times the
local temporal standard deviation of intensity, both computed using an infinite impulse response
(IIR) filter. Figure 10 shows a result of this detection algorithm for one frame.

(a) (b)

Figure 10: Result of the detection algorithm. (a) Original image. (b) Detected motion regions.

3.1.2 Temporal Layers for Adaptive Background Subtraction

A robust detection system should be able to recognize when objects have stopped and even dis-
ambiguate overlapping objects — functions usually not possible with traditional motion detection
algorithms. An important aspect of this work derives from the observation that legitimately moving
objects in a scene tend to cause much faster transitions than changes due to lighting, meteorolog-
ical, and diurnal effects. This section describes a novel approach to object detection based on
layered adaptive background subtraction.

Robotics Institute, CMU – 13 – VSAM Final Report

The Detection Algorithm

Layered detection is based on two processes: pixel analysis and region analysis. The purpose of
pixel analysis is to determine whether a pixel isstationaryor transientby observing its intensity
value over time. Region analysis deals with the agglomeration of groups of pixels into moving
regions and stopped regions. Figure 11 graphically depicts the process. By observing the intensity
transitions of a pixel, different intensity layers, connected by transient periods, can be postulated.

B

pixel

D

color

region

spatial

L1
time

L2
D

MO

SO

MO

SO

Sationary : Background

Moving Object

Stop Object

Sationary : Layer 1
Transient

Transient
Sationary : Layer 2

Figure 11: The concept — combining pixel statistics with region analysis to provide a layered
approach to motion detection.

I(t-2k)

I(t-k)

I(t)
M(t-k)

D(t-k)

S(t-k)

transient regions

stationary regions

im
ag

e
bu

ffe
r

pixel analysis region analysis
video stream

Time
Diff.

Spatio-
temporal
Analysis

Layer management

Creation
Ordering
Deletion

Pixel
Diff.

S
el

ec
tiv

e
A

da
pt

at
io

n

moving target

stopped target

B(t-k)

L1(t-k)

Lm(t-k)

layer images

background

motion

different

similar

Figure 12: Architecture of the detection process. Temporal analysis is used on a per pixel basis
to determine whether pixels are transient or stationary. Transient pixels are clustered into groups
and assigned to spatio-temporal layers. A layer management process keeps track of the various
background layers.

Figure 12 shows the architecture of the detection processes. A key element of this algorithm is
that it needs to observe the behavior of a pixel for some time before determining if that pixel is un-
dergoing a transition. It has been observed that a pixel’s intensity value displays three characteristic
profiles depending on what is occurring in the scene at that pixel location

� A legitimate object moving through the pixel displays a profile that exhibits a step change

Robotics Institute, CMU – 14 – VSAM Final Report

t

I

t

Ambient illumination changesHuman moves through pixel Human stops on pixel

(c)(b)(a)

I

t

I

Figure 13: Characteristic pixel intensity profiles for common events. Moving objects passing
through a pixel cause an intensity profile step change, followed by a period of instability. If the
object passes through the pixel (a), the intensity returns to normal. If the object stops (b), the
intensity settles to a new value. Variations in ambient lighting (c) exhibit smooth intensity changes
with no large steps.

in intensity, followed by a period of instability, then another step back to the original back-
ground intensity. Figure 13(a) shows this profile.

� A legitimate object moving through the pixel and stopping displays a profile that exhibits a
step change in intensity, followed by a period of instability, then it settles to a new intensity
as the object stops. Figure 13(b) shows this profile.

� Changes in intensity caused by lighting or meteorological effects tend to be smooth changes
that don’t exhibit large steps. Figure 13(c) shows this profile.

To capture the nature of changes in pixel intensity profiles, two factors are important: the exis-
tence of a significant step change in intensity, and the intensity value to which the profile stabilizes
after passing through a period of instability. To interpret the meaning of a step change (e.g. ob-
ject passing through, stopping at, or leaving the pixel), we need to observe the intensity curve
re-stabilizing after the step change. This introduces a time-delay into the process. In particular,
current decisions are made about pixel eventsk frames in the past. In our implementationk is set
to correspond to one second of video.

Let It be some pixel’s intensity at a timet occurringk frames in the past. Two functions
are computed: a motion triggerT just prior to the frame of interestt, and a stability measureS
computed over thek frames from timet to the present. The motion trigger is simply the maximum
absolute difference between the pixel’s intensityIt and its value in the previous five frames

T = max
�
jIt � I(t� j)j ; 8 j 2 [1;5]

	

Robotics Institute, CMU – 15 – VSAM Final Report

The stability measure is the variance of the intensity profile from timet to the present:

S=

k
k

∑
j=0

I(t+ j)
2� (

k

∑
j=0

I(t+ j))
2

k(k�1)

At this point a transience mapM can be defined for each pixel, taking three possible values: back-
ground=0; transient=1 and stationary=2.

if ((M = stationary or background) AND (T > Threshold))
M = transient

else {
if ((M = transient) AND (S < Threshold)) {

if (stabilized intensity value = background intensity)
M = background

else
M = stationary

}
}

Non-background pixels in the transience mapM are clustered into regionsRi using a nearest neigh-
bor spatial filter with clustering radiusrc. This process is similar to performing a connected com-
ponents segmentation, however gaps up to a distance ofrc pixels can be tolerated within a compo-
nent. Choice ofrc depends upon the scale of the objects being tracked. Each spatial regionR is
then analyzed according to the following algorithm:

if (R = transient) { %all pixels in R are labeled as transient
R -> moving object

}
elseif (R = stationary) { %all pixels in R are labeled as stationary

%remove all pixels already assigned to any layer
R = R - (L(0) + L(1) + .. + L(j))
%if anything is left, make a new layer out of it
if (R != 0) {

make new layer L(j+1) = R
R -> stopped object

}
else { %R contains a mixture of transient and stationary pixels

perform spatial clustering on R - (L(0) + L(1) + .. + L(j)
for each region SR produced by that spatial clustering

if (SR = transient) {
SR -> moving object

Robotics Institute, CMU – 16 – VSAM Final Report

}
if (SR = stationary) {

make new layer L(j+1) = SR
SR -> stopped object

}
if (SR = (stationary + transient)) {

SR -> moving object
}

}

Regions that consist of stationary pixels are added as a layer over the background. A layer manage-
ment process is used to determine when stopped objects resume motion or are occluded by other
moving or stationary objects. Stationary layered regions and the scene backgroundB are updated
by an IIR filter, as described in the last section, to accommodate slow lighting changes and noise
in the imagery, as well as to compute statistically significant threshold values.

Detection Results

Figure 14 shows an example of the analysis that occurs at a single pixel. The video sequence
contains the following activities at the pixel:

1. A vehicle drives through the pixel and stops

2. A second vehicle occludes the first and stops

3. A person, getting out of the second vehicle, occludes the pixel

4. The same person, returning to the vehicle, occludes the pixel again

5. The second car drives away

6. The first car drives away

As can be seen, each of these steps is clearly visible in the pixel’s intensity profile, and the algo-
rithm correctly identifies the layers that accumulate.

Figure 15 shows the output of the region-level layered detection algorithm. The detected
regions are shown surrounded by bounding boxes — note that all three overlapping objects are
independently detected. Each stopped car is depicted as a temporary background layer, and the
person is determined to be a moving foreground region overlayed on them. The pixels belonging
to each car and to the person are well disambiguated.

Robotics Institute, CMU – 17 – VSAM Final Report

Backgroundstationary :

Frame

transient :

In
te

ns
ity

V
ar

ia
nc

e
S

(t
)

Tr
ig

ge
r

T
(t

)

Layer 1 Layer 2 L2 L2 L1 B

D D D D D D

200

160

120

80

40

0

60

40

20

0

120

80

40

0 50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

Figure 14: Example pixel analysis of the scene shown in figure 15. A car drives in and stops. Then
a second car stops in front of the first. A person gets out and then returns again. The second car
drives away, followed shortly by the first car.

Layer 1

Layer 2

stopped

stopped

moving

Figure 15: Detection result. Here one stopped vehicle partially occludes another, while a person in
moving in the foreground. Displayed on the right are the layers corresponding to the stopped vehi-
cles and the moving foreground person, together with bitmaps denoting which pixels are occluded
in each layer.

Robotics Institute, CMU – 18 – VSAM Final Report

3.1.3 Background Subtraction from a Continuously Panning Camera

Pan-tilt camera platforms can maximize the virtual field of view of a single camera without the loss
of resolution that accompanies a wide-angle lens. They also allow for active tracking of an object
of interest through the scene. However, moving object detection using background subtraction is
not directly applicable to a camera that is panning and tilting, since all image pixels are moving .
It is well known that camera pan/tilt is approximately described as a pure camera rotation, where
apparent motion of pixels depends only on the camera motion, and not on the 3D scene structure.
In this respect, the problems associated with a panning and tilting camera are much easier than if
the camera were mounted on a moving vehicle traveling through the scene.

We ultimately seek to generalize the use of adaptive background subtraction to handle panning
and tilting cameras, by representing a full spherical background model. There are two algorithmic
tasks that need to be performed: 1) background subtraction: as the camera pans and tilts, different
parts of the full spherical model are retrieved and subtracted to reveal the independently moving
objects. 2) background updating: as the camera revisits various parts of the full field of view,
the background intensity statistics in those areas must be updated. Both of these tasks depend
on knowing the precise pointing direction of the sensor, or in other words, the mapping between
pixels in the current image and corresponding pixels in the background model. Although we can
read the current pan and tilt angles from encoders on the pan-tilt mechanism, this information
is only reliable when the camera is stationary (due to unpredictable communication delays, we
can not precisely know the pan-tilt readings for a given image while the camera is moving). Our
solution to the problem is to register each image to the current spherical background model, thereby
inferring the correct pan-tilt values, even while the camera is rotating.

Figure 16: Set of background reference images for a panning and tilting camera.

Maintaining a background model larger than the camera’s physical field of view entails repre-
senting the scene as a collection of images. In our case, an initial background model is constructed
by methodically collecting a set of images with known pan-tilt settings. An example view set is

Robotics Institute, CMU – 19 – VSAM Final Report

shown in Figure 16. One approach to building a background model from these images would be
to stitch them together into a spherical or cylindrical mosaic, however we use the set of images
directly, determining which is the appropriate one based on the distance in pan-tilt space. The
warping transformation between the current image and a nearby reference image is therefore a
simple planar projective transform.

The main technical challenge is how to register incoming video frames to the appropriate
background reference image in real-time. Most image registration techniques are difficult to im-
plement in real time without the use of special video processing hardware. We have developed
a novel approach to registration that relies on selective integration of information from a small
subset of pixels that contain the most information about the state variables to be estimated (the 2D
projective transformation parameters). The dramatic decrease in the number of pixels to process
results in a substantial speedup of the registration algorithm, to the point that it runs in real-time on
a modest PC platform. More details are presented in [8]. Results from a sample frame registration
and background subtraction are shown in Figure 17.

Figure 17: Results of background subtraction from a panning and tilting camera. From left to right:
1) current video frame, 2) closest background reference image, 3) warp of current frame into ref-
erence image coordinates, 4) absolute value of difference between warped frame and background
reference image.

3.2 Object Tracking

To begin to build a temporal model of activity, individual object blobs generated by motion detec-
tion are tracked over time by matching them between frames of the video sequence. Many systems
for object tracking are based on Kalman filters. However, pure Kalman filter approaches are of
limited use because they are based on unimodal Gaussian densities that cannot support simulta-
neous alternative motion hypotheses [14]. We extend the basic Kalman filter notion to maintain
a list of multiple hypotheses to handle cases where there is matching ambiguity between multiple
moving objects. Object trajectories are also analyzed to help reduce false alarms by distinguishing
between legitimate moving objects and noise or clutter in the scene.

An iteration of the basic tracking algorithm is

1) Predict positions of known objects
2) Associate predicted objects with current objects

Robotics Institute, CMU – 20 – VSAM Final Report

3) If tracks split, create new tracking hypothesis
4) If tracks merge, merge tracking hypotheses
5) Update object track models
6) Reject false alarms

Each object in each frame is represented by the following parameters: 1)p = position in image
coordinates; 2)δp = position uncertainty; 3)~v = image velocity; 4)δ~v = uncertainty in velocity; 5)
object bounding box in image coordinates; 6) image intensity template; 7) a numeric confidence
measure and 8) a numeric salience measure.

Predicting Future Object Positions

Both for computational simplicity and accurate tracking, it is important to estimate the position
of an object at each iteration of the tracker. The estimated position is used to cull the number of
moving regions that need to be tested. An object’s future position in the image is estimated in the
typical manner. Given a time interval∆t between two samples, the position is extrapolated as

pn+1 = pn + ~vn ∆t

And the uncertainty in the position is assumed to be the original position uncertainty plus the
velocity uncertainty, grown as a function of time

δpn+1 = δpn + δ~vn ∆t

These values are used to choose candidate moving regions from the current frame. This is done by
extrapolating the bounding box of the object by~vn ∆t and growing it byδpn+1. Any moving region
Rn+1 whose centroid falls in this predicted bounding box is considered a candidate for matching.

Object Matching

Given an object regionR in the current frame, we determine the best match in the next frame by
performed image correlation matching, computed by convolving the object’s intensity template
over candidate regions in the new image. That is, to evaluate a potential object displacementd
for image regionR, we accumulate a weighted sum of absolute intensity differences between each
pixel x in regionR and the corresponding pixelx+ d in the next frame, yielding a correlation
functionC(d) as:

C(d) = ∑
x2R

W(i; j) jIn(x) � In+1(x+d)j
jjWjj

(1)

HereW is the weighting function, which will be described shortly, andjjWjj is a normalization
constant given by

jjWjj= ∑
x2R

W(x) (2)

Robotics Institute, CMU – 21 – VSAM Final Report

0

2

4

6

8

10

12

0
2

4
6

8
10

12

−80

−60

−40

−20

0

Negative Correlation Surface [−D(x;d)]

N
or

m
al

is
ed

 C
or

re
la

tio
n

Figure 18: A typical correlation surface (inverted for easier viewing)

Graphically, the results ofC(d) for all offsetsd can be thought of as a correlation surface (Figure
18), the minimum of which provides both the position of the best match, and a measure of the
quality of the match. The position of the best matchd̂ is given by the argmin of the of correlation
surface

d̂ = min
d

C(d)

which can be refined to sub-pixel accuracy using bi-quadratic interpolation aroundd̂. The new
position of the object corresponding to this match ispn+1 = pn + d, and the new velocity estimate
is given byv̂n+1 =

d
∆t . The quality of the matchQ(R) is the value of minC(d).

Due to real-time processing constraints in the VSAM testbed system, this basic correlation
matching algorithm is modified in two ways to improve computational efficiency. First, correlation
is only computed for “moving” pixels [18]. This is achieve by setting the weighting functionW to
zero for pixels that are not moving, and thus not performing any computation for these pixels. For
moving pixels, a radial, linear weighting function is used:

W(x) =
1
2
+

1
2

�
1 �

r(x)
rmax

�
;

wherer(x) is the radial distance, in pixels, fromx to the center of the regionR, andrmax is the
largest radial distance inR. This has the effect of putting more weight on pixels in the center of
the object.

Second, and more significantly, imagery is dynamically sub-sampled to ensure a constant
computational time per match. When matching ann�m size image template, the computation is
O(n2m2) which rapidly becomes unwieldy for large templates. The notion, then, is to fix a thresh-
old above which size, an image is sub-sampled. Furthermore, we treat thex andy dimensions
separately, so that no data is lost in one dimension if it is already small enough for efficient match-
ing. In this case, the threshold is set at 25 pixels, determined empirically to provide a reasonable
quantity of data for correlation matching without over-stressing the computational engine. The
algorithm is:

Robotics Institute, CMU – 22 – VSAM Final Report

while (n > 25)
sub-sample in ‘x’ direction by 2;

while (m > 25)
sub-sample in ‘y’ direction by 2;

Of course, physically sub-sampling the imagery is almost as computationally expensive as
correlation matching, so this is implemented by counting the number of times sub-sampling should
be performed in each direction and selecting pixels at this spacing during the correlation process.
For example, an 80�45 image would be sub-sampled twice in thex direction and once in they
direction making it a 20�22 image. So, in the correlation process, every 4th pixel in thex direction
and every 2nd pixel in they direction are chosen for matching. The loss in resolution is (almost)
made up by the sub-pixel accuracy of the method. This method ensures that the computational
complexity of the matching process is< O(254). The complexity of the matching as a function of
n andm is shown in Figure 19.

Figure 19: The computational complexity of the correlation matching algorithm with a threshold
of 25. Clearly, the complexity is bounded atO(254).

Hypothesis Tracking and Updating

Tracking objects in video is largely a matter of matching. The idea is, at each frame, to match
known objects in one frame with moving regions in the next. There are 5 simple scenarios which
might arise:

� A moving region exists that does not match with any known object. In this case, a new object
is hypothesized and it’s confidence is set to a nominal low value.

� An object does not match any moving region. Either the object has left the field of view, has
been occluded, or has not been detected. In this case, the confidence measure of the object
is reduced. If the confidence drops below a threshold, the object is considered lost.

Robotics Institute, CMU – 23 – VSAM Final Report

� An object matches exactly one moving region. This is the best case for tracking. Here, the
trajectory of the object is updated with the information from the new moving region and the
confidence of the object is increased.

� An object matches multiple moving regions. This could occur if the object breaks into
several independent objects (such as a group of people breaking up or a person getting out of
a car), or the detection algorithm does not cluster the pixels from an object correctly. In this
case, the best region (indicated by the correlation matching value) is chosen as the new object
position, its confidence value is increased, and any other moving regions are considered as
new object hypotheses and updated accordingly.

� Multiple objects match a single moving region. This might occur if two objects occlude each
other, two objects merge (such as a group of people coming together), or an erroneously split
object is clustered back together. This case is a special exception. Here, an analysis must
be done of the object trajectories to determine how to update the object hypotheses. Objects
merging into a single moving region are each tracked separately. Their trajectories are then
analyzed. If they share the same velocity for a period of time, they are merged into a single
object. If not, they are tracked separately. This allows the system to continue to track objects
that are occluding each other and yet merge ones that form a single object.

Object parameters are updated based on the parameters of the matched new observations (the
moving regions). The updated position estimatepn+1 of the object is the position calculated to
sub-pixel accuracy by the correlation matching process The new velocity estimate ˆvn+1 calculated
during matching is filtered through an IIR filter to provide~vn+1

~vn+1 = α v̂n+1 + (1�α)~vn

and the new velocity uncertainty estimate is generated using an IIR filter in the same way

δ~vn+1 = α j~vn+1� v̂n+1j + (1�α)~vn

In most cases, the template of the object is taken as the template of the moving region, and
the confidence is increased. However, if multiple objects are matched to a single moving region,
the templates are not updated. If two objects have come together and are occluding, the template
of each could be corrupted by the other if they were updated. The philosophy behind this deci-
sion is that, hopefully, two occluding objects will not change their appearance greatly during the
occlusion, and tracking will still be possible after the occlusion is finished. Note that even though
multiple objects may match to the same moving region, they will not necessarily get the same po-
sition estimate because the correlation matching process will match them to different parts of the
region.

Any object that has not been matched maintains its position and velocity estimates, and current
image template. Its confidence is then reduced. If the confidence of any object drops below a
certain threshold, it is considered lost, and dropped from the list. High confidence objects (ones

Robotics Institute, CMU – 24 – VSAM Final Report

that have been tracked for a reasonable period of time) will persist for several frames; so if an
object is momentarily occluded, but then reappears, the tracker will reacquire it. Recent results
from the system are shown in Figure 20.

Figure 20: Tracking two objects simultaneously.

False Alarm Rejection

A serious issue with moving object tracking is the disambiguation of legitimate objects from “mo-
tion clutter” such as trees blowing in the wind, moving shadows, or noise in the video signal. One
cue to the legitimacy of an object track is persistence: an intermittent contact is less likely to be a
valid object than a persistent one. Another cue is the purposefulness or salience of the trajectory:
trees blowing in the wind tend to exhibit oscillatory motion whereas people and vehicles tend to
move with a purpose.

The tracking scheme described above automatically deals with the persistence of objects, but
special consideration must be made as to the salience of objects. The motion salience algorithm
used is based on a cumulative flow technique due to Wixson. Here, the optic flow of moving objects
is accumulated over time. However, when the flow changes direction, the accumulation is set to
zero. This way, insalient motion, such as that from blowing trees, never accumulates significantly,
whereas purposeful motion, such as a car driving along a road, accumulates a large flow.

Because optic flow is computationally expensive, a short cut is used. At each iteration, the
displacementd computed by the correlation matching process is taken as an average flow for the
object. Initially, three parameters, frame countc, cumulative flowdsumand maximum flowdmax

are set to zero. The algorithm for determining motion salience is to cumulatively add the displace-
ments at each frame to the cumulative flow, and increment the frame count. If, at any frame, the
cumulative displacement falls to< 90% of the maximum value (indicating a change in direction),
everything is set to zero again. Then, only objects whose displacements accumulate for several
frames are considered to be salient. The algorithm is displayed in Figure 21

Robotics Institute, CMU – 25 – VSAM Final Report

dsum = dsum+ d
c = c + 1
if (dsum > dmax)

dmax = dsum
if (dsum < 0:9 � dmax)

dsum = 0
c = 0
dmax = 0

if (c > Threshold)
Salient

else
Not salient

Figure 21: Moving object salience algorithm.

3.3 Object Type Classification

The ultimate goal of the VSAM effort is to be able to identify individual entities, such as the
“FedEx truck”, the “4:15pm bus to Oakland” and “Fred Smith”. Two object classification algo-
rithms have been developed. The first uses view dependent visual properties to train a neural
network classifier to recognize four classes: single human; human group; vehicles; and clutter
(Section 3.3.1). The second method uses linear discriminant analysis to determine provide a finer
distinction between vehicle types (e.g. van, truck, sedan) and colors (Section 3.3.2). This method
has also been successfully trained to recognize specific types of vehicles, such as UPS trucks and
campus police cars.

3.3.1 Classification using Neural Networks

The VSAM testbed classifies moving object blobs into general classes such as “humans” and “ve-
hicles” using viewpoint-specific neural networks, trained for each camera. Each neural network
is a standard three-layer network (Figure 22). Learning in the network is accomplished using the
backpropagation algorithm. Input features to the network are a mixture of image-based and scene-
based object parameters: image blob dispersedness (perimeter2/area (pixels)); image blob area
(pixels); apparent aspect ratio of the blob bounding box; and camera zoom. There are three output
classes: human; vehicle; and human group. When teaching the network that an input blob is a
human, all outputs are set to 0.0 except for “human”, which is set to 1.0. Other classes are trained
similarly. If the input does not fit any of the classes, such as a tree blowing in the wind, all outputs
are set to 0.0.

Results from the neural network are interpreted as follows:

Robotics Institute, CMU – 26 – VSAM Final Report

Input Layer (4)

Hidden
Layer (16)

Output Layer (3)

Teach pattern

AreaDispersedness

Vehicle
Single
human

1.0 0.0

Multiple
human

0.0

Aspect
ratio

Reject target

single human

0.0 0.00.0

Zoom
magnification

Target Camera

Figure 22:Neural network approach to object classification.

Class Samples % Classified
Human 430 99.5

Human group 96 88.5
Vehicle 508 99.4

False alarms 48 64.5
Total 1082 96.9

Table 1:Results of neural net classification on VSAM data

if (output > THRESHOLD)
classification = maximum NN output

else
classification = REJECT

This neural network classification approach is fairly effective for single images; however, one
of the advantages of video is its temporal component. To exploit this, classification is performed
on each blob at every frame, and the results of classification are kept in a histogram. At each time
step, the most likely class label for the blob is chosen, as described in [20]. The results for this
classification scheme are summarized in Table 1.

We have experimented with other features that disambiguate human from vehicle classes.
These could also be incorporated into the neural network classification, at the expense of having
to perform the extra feature computation. Given the geolocation of an object, as estimated from its
image location and a terrain map (see Section 4.3), its actual widthw and heighth in meters can be
estimated from its image projection. A simple heuristic based on the ratio of these values performs

Robotics Institute, CMU – 27 – VSAM Final Report

surprisingly well:
w< 1:1 h2 [0:5;2:5]) human
w2 [1:1;2:2] h2 [0:5;2:5]) group
w2 [2:2;20] h2 [0:7;4:5]) vehicle
ELSE) reject

(3)

Another promising classification feature for a moving object is to determine whether it is
rigid or non-rigid by examining changes in its appearance over multiple frames [28]. This is most
useful for distinguishing rigid objects like vehicles from non-rigid walking humans and animals.
In [21] we describe an approach based on local computation of optic flow within the boundaries
of a moving object region. Given the gross displacementd of a moving blobR, as calculated in
Section 3.2, and the flow fieldv(x) computed for all pixelsx in that blob, it is possible to determine
the velocity of the pixels relative to the body’s motiond by simply subtracting off the gross motion

r(x) = v(x)�d

to find theresidual flow r(x). It is expected that rigid objects will have little residual flow, whereas
a non-rigid object such as a human being will exhibit more independent motion. When the average
absolute residual flow per pixel

A= ∑
x2R

kr(x)k= ∑
x2R

1 :

is calculated, the magnitude of its value provides a clue to the rigidity of the object’s motion,
and over time its periodicity. Rigid objects such as vehicles display extremely low values ofA
whereas moving objects such as humans display significantly more residual flow, with a periodic
component (Figure 23).

60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8
Rigidity

Frame Number

A
ve

ra
ge

 R
es

id
ua

l F
lo

w

Human
Vehicle

Figure 23:Average magnitude of residual flow for a person (top curve) and a car (bottom curve),
plotted over time. Clearly, the human has a higher average residual flow at each frame, and is thus
less rigid. The curve also exhibits the periodicity of the non-rigid human gait.

Robotics Institute, CMU – 28 – VSAM Final Report

3.3.2 Classification using Linear Discriminant Analysis

We have developed a method for classifying vehicle types and people using linear discriminant
analysis. The method has two sub-modules: one for classifying object “shape”, and the other for
determining “color”. Each sub-module computes an independent discriminant classification space,
and calculates the most likely class in that space using a weightedk-class nearest-neighbor (k-NN)
method.

To calculate both discriminant spaces, Linear Discriminant Analysis (LDA) is used. LDA is
a statistical tool for discriminating among groups, or clusters, of points in multidimensional space.
LDA is often called supervised clustering. In LDA, feature vectors computed on training examples
of different object classes are considered to be labeled points in a high-dimensional feature space.
LDA then computes a set of discriminant functions, formed as linear combinations of feature
values, that best separate the clusters of points corresponding to different object labels. LDA has
the following desirable properties: 1) it reduces the dimensionality of the data, and 2) the classes
in LDA space are separated as well as possible, meaning that the variance (spread of points) within
each class is minimized, while the variance between the classes (spread of cluster centroids) is
maximized.

LDA calculations proceed as follows. First, calculate the average covariance matrix of points
within each class (W) and between different classes (B)

W =
C

∑
c=1

nc

∑
i=1

(xic� x̄c)(xic� x̄c)
T (4)

B=
C

∑
c=1

nc(x̄c� x̄)(x̄c� x̄)T (5)

whereC is the number of object classes,nc is the number of training examples in classc, xic is
the feature vector of theith example in classc, andxc is the centroid vector of classc. Then,
compute the eigenvaluesλi and eigenvectorsbi of the separation matrixW�1B by solving the
generalized eigenvalue problem(B� λiW)� bi = 0. Assume without loss of generality that the
eigenvalues have been been sorted so thatλ1 � λ2 � �� � � λN, whereN is the dimensionality of
the feature space. The eigenvectorbi associated with each eigenvalueλi provides the coefficients
of the ith discriminant function, which maps feature vectorx into a coordinate in discriminant
space. Dimensionality reduction is achieved by only considering theM < N largest eigenvalues
(and eigenvectors), thus mappingN-dimensional feature vectorx into anM-dimensional vectory
as

M�1 M�N N�1
y = [b1b2 : : :bn]

T x

In practice, we chooseM to be the first integer such that

M

∑
i=1

λi � :99
N

∑
i=1

λi :

Robotics Institute, CMU – 29 – VSAM Final Report

During on-line classification, feature vectorx is measured for a detected object, and trans-
formed into a pointy in discriminant space. To determine the class of the object, the distance from
pointy to points representing each labeled training example is examined, and thek closest labeled
examples are chosen. These are thek nearest neighbors toy. According to thek-NN classification
rule, the labels of these nearest neighbors provide votes for the label (class) of the new object, and
their distance fromy provides a weight for each vote. The class ofy is chosen as the class that
receives the highest weighted vote. Due to the disparity in numbers of training samples for each
class, we also normalize the number of votes received for each class by the total number of training
examples from that class.

Shape classification, off-line learning process

The supervised learning process for object type classification based on shape is performed through
the following steps:

1. Human operators collect sample shape images and assign class labels to them. In this exper-
iment, we specify six shape-classes: human (single and group), sedan (including 4WD), van,
truck, Mule (golf carts used to transport physical plant workers) and other (mainly noise).
We also labeled three “special” objects: FedEx vans, UPS vans, and Police cars. Figures on
the following pages show sample input image chips for each of these object types. In total,
we collected approximately 2000 sample shape images.

2. The system calculates area, center of gravity, and width and height of the motion blob in
each sample image. The system also calculates 1st, 2nd and 3rd order image moments of
each blob, along the x-axis and y-axis of the images. Together, these features comprise an
11-dimensional sample vector of calculated image features.

3. The system calculates a discriminant space for shape classification using the LDA method
described above.

Shape classification, on-line classification process

In the on-line classification phase, the system executes all steps automatically.

1. The system calculates area, center of gravity, width and height of an input image, and 1st,
2nd and 3rd order image moments along the x-axis and y-axis, forming an 11-dimensional
vector for the motion blob.

2. The corresponding point in discriminant space is computed as a linear combination of feature
vector values.

3. Votes for each class are determined by consulting the 10 nearest neighbor point labels dis-
criminant space, as described above.

Robotics Institute, CMU – 30 – VSAM Final Report

Color classification, off-line learning process

In addition to the type of object determined by blob shape, the dominant color of the object is
also classified using LDA. Observed color varies according to scene lighting conditions, and for
this reason, a discrete set of color classes is chosen that are fairly invariant (class-wise) to outdoor
lighting changes, and the variation in each class is learned using LDA.

1. Human operators segment color samples from training images and divide them into six
classes: 1) red-orange-yellow, 2) green, 3) blue-lightblue, 4) white-silver-gray, 5) darkblue-
darkgreen-black, and 6) darkred-darkorange. We collected approximately 1500 images un-
der fine weather conditions and 1000 images under cloudy conditions.

2. The system samples RGB intensity values of 25 pixels on each sample image. The system
then maps sampled RGB values into (I1,I2,I3) color space values according to the following
equations

I1=
(R+G+B)

3:0
�10:0 (6)

I2=
(R�B)

2:0
�100:0 (7)

I3=
(2:0�G�R�B)

4:0
�100:0 (8)

The system averages the calculated (I1,I2,I3) values to get a single 3-dimensional color fea-
ture vector for the that image.

3. The system calculates a discriminant space for color classification using the LDA method
described above.

Color classification, on-line classification process

In the on-line classification phase, the system executes all steps automatically.

1. The system measures RGB samples every 2 pixels along the x and y axes of the input motion
blob.

2. RGB values are converted to (I1,I2,I3) color space.

3. The corresponding points in discriminant space are computed as a linear combination of
feature vector values, and the Euclidean distance to each color class is summed up.

4. Votes for each class are determined by consulting the 10 nearest neighbor point labels in
discriminant space, as described above.

5. The color class associated with the shortest total Euclidean distance is chosen as the output
color class.

Robotics Institute, CMU – 31 – VSAM Final Report

Table 2:Cross-validation results for LDA classification.

Human Sedan Van Truck Mule Others Total Errors %
Human 67 0 0 0 0 7 74 7 91%
Sedan 0 33 2 0 0 0 35 2 94%
Van 0 1 24 0 0 0 25 1 96%
Truck 0 2 1 12 0 0 15 3 80%
Mule 0 0 0 0 15 1 16 1 94%
Others 0 2 0 0 0 13 15 2 87%

Avg. 90%

Results

The following pages show some sample training image chips for different object types, and some
sample output from the classification procedure. Table 2 shows a cross-validation evaluation be-
tween objects (columns) and classified results (rows).

The recognition accuracy has been found to be roughly 90%, under both sunny and cloudy
weather conditions. Currently, the system does not work well when it is actually raining or snow-
ing, because the raindrops and snowflakes interfere with the measured RGB values in the images.
For the same reason, the system does not work well in early mornings and late evenings, due to the
non-representativeness of the lighting conditions. The system is also foiled by backlighting and
specular reflection from vehicle bodies and windows. These are open problems to be solved.

Robotics Institute, CMU – 32 – VSAM Final Report

Trucks: Left

Trucks: Right

Sample images used for LDA learning : Trucks

Robotics Institute, CMU – 33 – VSAM Final Report

Vans : Right

Vans : Left 1

Vans : Left 2

Sample images used for LDA learning : Vans

Robotics Institute, CMU – 34 – VSAM Final Report

Sedans : Right

Sedans : Left 1

Sedans : Left 2

Sample images used for LDA learning : Sedans

Robotics Institute, CMU – 35 – VSAM Final Report

(d) 4WDs

(e) Mules Sample images used for LDA learning : 4WDs and Mules

Robotics Institute, CMU – 36 – VSAM Final Report

UPS 1

UPS 2

FedEx

Police cars

Sample images used for LDA learning : Special objects

Robotics Institute, CMU – 37 – VSAM Final Report

Some final results of the classification process.

Robotics Institute, CMU – 38 – VSAM Final Report

3.4 Activity Analysis

After detecting objects and classifying them as people or vehicles, we would like to determine
what these objects are doing. In our opinion, the area of activity analysis is one of the most
important open areas in video understanding research. We have developed two prototype activity
analysis procedures. The first uses the changing geometry of detected motion blobs to perform gait
analysis of walking and running human beings (Section 3.4.1). The second uses Markov model
learning to classify simple interactions between multiple objects, such as two people meeting, or a
vehicle driving into the scene and dropping someone off (Section 3.4.2).

3.4.1 Gait Analysis

Detecting and analyzing human motion in real-time from video imagery has only recently become
viable, with algorithms likePfinder[29] andW4 [13]. These algorithms represent a good first step
to the problem of recognizing and analyzing humans, but they still have drawbacks. In general,
they work by detecting features (such as hands, feet and head), tracking them, and fitting them to
a prior human model, such as thecardboard modelof Juet al [16].

We have developed a “star” skeletonization procedure for analyzing human gaits [10]. The
key idea is that a simple, fast extraction of the broad internal motion features of an object can
be employed to analyze its motion. A simple method is employed to robustly detect extremal
points on the boundary of the object, to produce a “star” skeleton. The star skeleton consists of the
centroid of a motion blob, and all of the local extremal points that are recovered when traversing
the boundary of the blob (see Figure 24).

0,end

distance

border position

di
st

an
ce

di
st

an
ce

i
DFT

LPF

Inverse DFT

0 end

a b c d e

a

b c

d

e

"star" skeleton of the shape

d(
i)

d(
i)

^

centroid

Figure 24:The boundary is “unwrapped” as a distance function from the centroid. This function
is then smoothed and extremal points are extracted.

Figure 25 shows star skeletons extracted for various objects. It is clear that, while this form of
skeletonization provides a sparse set of points, it can nevertheless be used to classify and analyze

Robotics Institute, CMU – 39 – VSAM Final Report

the motion of different types of moving object.

(a) Human

(b) Vehicle

(c) Polar bear

video image motion detection skeleton

Figure 25:Skeletonization of different moving objects. It is clear the structure and rigidity of the
skeleton is significant in analyzing object motion.

One technique often used to analyze the motion or gait of an individual is the cyclic motion of
individual joint positions. However, in our implementation, the person may be a fairly small blob in
the image, and individual joint positions cannot be determined in real-time, so a more fundamental
cyclic analysis must be performed. Another cue to the gait of the object is its posture. Using
only a metric based on the star skeleton, it is possible to determine the posture of a moving human.
Figure 26 shows how these two properties are extracted from the skeleton. The uppermost skeleton
segment is assumed to represent the torso, and the lower left segment is assumed to represent a leg,
which can be analyzed for cyclic motion.

θ
- +0

x

y

x ,yc c

l ,lx y

(a) (b)

φ

x ,yc c

Figure 26:Determination of skeleton features. (a)θ is the angle the left cyclic point (leg) makes
with the vertical, and (b)φ is the angle the torso makes with the vertical.

Figure 27 shows human skeleton motion sequences for walking and running, and the values
of θn for the cyclic point. This data was acquired from video at a frame rate of 8Hz. Comparing
the average valuesφn in Figures 27(e)-(f) shows that the posture of a running person can easily be

Robotics Institute, CMU – 40 – VSAM Final Report

frame

11 12 13 14 15 16 17 18 19 20

0.125 [sec]

(a) skeleton motion of a walking person

1 2 3 4 5 6 7 8 9 10

(b) skeleton motion of a running person

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

frame
[r

ad
]

frame

-1

-0.5

0

0.5

1

0 5 10 15 20 25
-1

-0.5

0

0.5

1

0 5 10 15 20 25
θ

[r
ad

]
θ

(d) leg angle of a running personθ(c) leg angle of a walking personθ

0

0.1

0.2

0.3

0.4

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0 5 10 15 20 25
frameframe

[r
ad

]
|φ

|[r
ad

]
|φ

|

(f) torso angle of a running personφ(e) torso angle of a walking personφ

Figure 27: Skeleton motion sequences. Clearly, the periodic motion ofθn provides cues to the
object’s motion as does the mean value ofφn.

distinguished from that of a walking person, using the angle of the torso segment as a guide. Also,
the frequency of cyclic motion of the leg segments provides cues to the type of gait.

3.4.2 Activity Recognition of Multiple Objects using Markov Models

We have developed a prototype activity recognition method that estimates activities of multiple
objects from attributes computed by low-level detection and tracking subsystems. The activity
label chosen by the system is the one that maximizes the probability of observing the given attribute
sequence. To obtain this, a Markov model is introduced that describes the probabilistic relations
between attributes and activities.

We tested the functionality of our method with synthetic scenes which have human-vehicle
interaction. In our test system, continuous feature vector output from the low-level detection and
tracking algorithms is quantized into the following discrete set of attributes and values for each
tracked blob

Robotics Institute, CMU – 41 – VSAM Final Report

� object class: Human, Vehicle, HumanGroup

� object action: Appearing, Moving, Stopped, Disappearing

� Interaction: Near, MovingAwayFrom, MovingTowards, NoInteraction

The activities to be labeled are 1) A Human entered a Vehicle, 2) A Human got out of a Vehicle,
3) A Human exited a Building, 4) A Human entered a Building, 5) A Vehicle parked, and 6)
Human Rendezvous. To train the activity classifier, conditional and joint probabilities of attributes
and actions are obtained by generating many synthetic activity occurrences in simulation, and
measuring low-level feature vectors such as distance and velocity between objects, similarity of
the object to each class category, and a noise-corrupted sequence of object action classifications.
Figure 28 shows the results for two scenes that were not used for joint probability calculation.

Figure 28: Results of Markov activity recognition on synthetic scenes. Left: A person leaves a
building and enters a vehicle. Right: A vehicle parks and a person gets out.

3.5 Web-page Data Summarization

We have developed a web-based data logging system (see Figure 29). In a high-traffic area, data on
dozens of people can be collected in just a few minutes of observation. Each observation consists
of color or thermal video from multiple cameras, best view image chips, collateral information
such as date and time, weather conditions, temperature, estimated 3D subject trajectory, camera
acquisition parameters, and object classification results. In addition to storing data for evaluation
and debugging, a data logging system will be necessary when VSAM systems begin 24/7 site
monitoring operation.

In our data logging prototype, all observations can be explored by web browsing via CGI
through an HTTP server, so that VSAM researchers can access the data from anywhere. There are
two ways to view object and activity information. Figure 30 shows a example activity report. The
activity report shows labeled events such as a “Car Parked”, or “A Human Entered a Building”,

Robotics Institute, CMU – 42 – VSAM Final Report

Target
Detection

Target ClassificationActivity Monitoring

Tracker

10:25 am A Human(#001) got out of a Vehicle(#002)
10:30 am A Vehicle parked(#003)

11:19 am A Human(#013) exited a Building

#001 Human red
#002 Vehicle sedan blue
#003 Vehilce sedan red

#013 Human yellow

link

Activity Database

VSAM Database

Super SPU

camera A

HTTP Server

(dagwood.vsam.ri.cmu.edu)

User (web browser)

remote

Target Database

CGI

camera B

Figure 29: Web-page data summarization system.

sorted by time. If a user wants more detail, a hypertext link brings up a page showing an image
chip of the object, along with its class and color information. Figure 31 shows an example object
report. All of the objects seen by the system, and the activities to which they are related, are shown
on a page, sorted by time of observation. To cut down on information overload, the user can select
specific subsets of object classes to view. When the user selects an object, the system automatically
brings up a page showing other objects of the same class having similar color features. In this way,
it might be possible for a user to detect the same vehicle or person being observed at different
places and times around the surveillance site.

click

more
detail

Figure 30: Activity report for web page.

Robotics Institute, CMU – 43 – VSAM Final Report

click search

Figure 31: Object report for web page.

3.6 Airborne Surveillance

Fixed ground-sensor placement is fine for defensive monitoring of static facilities such as depots,
warehouses or parking lots. In those cases, sensor placement can be planned in advance to get
maximum usage of limited VSAM resources. However, the battlefield is a large and constantly
shifting piece of real-estate, and it may be necessary to move sensors around in order to maximize
their utility as the battle unfolds. While airborne sensor platforms directly address this concern,
the self-motion of the aircraft itself introduces challenging video understanding issues. During
the first two years of this program, the Sarnoff Corporation developed surveillance technology to
detect and track individual vehicles from a moving aircraft, keep the camera turret fixated on a
ground point, and multitask the camera between separate geodetic ground positions.

3.6.1 Airborne Object Tracking

Object detection and tracking is a difficult problem from a moving sensor platform. The difficulty
arises from trying to detect small blocks of moving pixels representing independently moving ob-
ject objects when the whole image is shifting due to self-motion. The key to success with the
airborne sensor is characterization and removal of self-motion from the video sequence using the
Pyramid Vision Technologies PVT-200 real-time video processor system. As new video frames
stream in, the PVT processor registers and warps each new frame to a chosen reference image,
resulting in a cancelation of pixel movement, and leading to a “stabilized” display that appears
motionless for several seconds. During stabilization, the problem of moving object detection from
a moving platform is ideally reduced to performing VSAM from a stationary camera, in the sense

Robotics Institute, CMU – 44 – VSAM Final Report

that moving objects are readily apparent as moving pixels in the image. Object detection and track-
ing is then performed using three-frame differencing after using image alignment to register frame
It�2 to It and frameIt�1 to It , performed at 30 frames/sec. Sample results are shown in Figure 32.
Under some circumstances, there is some remaining residual pixel motion due to parallax caused
by significant 3D scene structure such as trees and smokestacks. Removing parallax effects is a
subject of on-going research in the vision community.

Figure 32:Detection of small moving objects from a moving airborne sensor.

3.6.2 Camera Fixation and Aiming

It is well known that human operators fatigue rapidly when controlling cameras on moving airborne
and ground platforms. This is because they must continually adjust the turret to keep it locked on
a stationary or moving object. Additionally, the video is continuously moving, reflecting the self-
motion of the camera. The combination of these factors often leads to operator confusion and
nausea. Sarnoff has built image alignment techniques [4, 12] to stabilize the view from the camera
turret and to automate camera control, thereby significantly reducing the strain on the operator. In
particular, real-time image alignment is used to keep the camera locked on a stationary or moving
point in the scene, and to aim the camera at a known geodetic coordinate for which reference
imagery is available. More details can be found in [27]. Figure 33 shows the performance of
the stabilization/fixation algorithm on two ground points as the aircraft traverses an approximate
ellipse over them. The field of view in these examples is 3�, and the aircraft took approximately 3
minutes to complete each orbit.

3.6.3 Air Sensor Multi-Tasking

Occasionally, a single camera resource must be used to track multiple moving objects, not all of
which fit within a single field of view. This problem is particularly relevant for high-altitude air
platforms that must have a narrow field of view in order to see ground objects at a reasonable

Robotics Institute, CMU – 45 – VSAM Final Report

Fixation on target point A.

Fixation on target point B.

Figure 33:Fixation on two target points. The images shown are taken 0, 45, 90 and 135 seconds
after fixation was started. The large center cross-hairs indicate the center of the stabilized image,
i.e. the point of fixation

resolution. Sensor multi-tasking is employed to switch the field of view periodically between
two (or more) target areas that are being monitored. This process is illustrated in Figure 34 and
described in detail in [27].

Figure 34:Footprints of airborne sensor being autonomously multi-tasked between three disparate
geodetic scene coordinates.

4 Site Models, Calibration and Geolocation

An automated surveillance system can benefit greatly from the scene-specific knowledge provided
by a site model. Some of the many VSAM tasks supported by an accurate 3D site model are:

� computation of object geolocation (Section 4.3);

Robotics Institute, CMU – 46 – VSAM Final Report

� visibility analysis (predicting what portions of the scene are visible from which cameras) to
allow more effective sensor tasking;

� geometric focus of attention, for example to task a sensor to monitor the door of a building,
or specify that vehicles should appear on roads;

� suppression of false alarms in areas of foliage;

� prediction of visual effects like shadows;

� visualization of the scene to enable quick comprehension of geometric relationships between
sensors, objects, and scene features;

� simulation for planning best sensor placement and for debugging algorithms; and

� landmark-based camera calibration.

4.1 Scene Representations

Figure 35 illustrates the wide variety of scene representations that have been used in the VSAM
testbed system over the past three years. Most of the variety is due to work in our first year
of effort (1997), where we bootstrapped a representation of the Bushy Run site largely by hand.
During the second and third years of the project, performed on the campus of CMU, we used a
Compact Terrain Data Base (CTDB) model of campus, which ended up supporting almost all of
our algorithmic needs.

A) USGS orthophoto. The United States Geological Survey (USGS) produces several digital
mapping products that can be used to create an initial site model. These include1) Digital Or-
thophoto Quarter Quad (DOQQ) - a nadir (down-looking) image of the site as it would look
under orthographic projection (Figure 35a). The result is an image where scene features appear in
their correct horizontal positions.2) Digital Elevation Model (DEM) - an image whose pixel val-
ues denote scene elevations at the corresponding horizontal positions. Each grid cell of the USGS
DEM shown encompasses a 30-meter square area.3) Digital Topographic Map (DRG) - a digital
version of the popular USGS topo maps.4) Digital Line Graph (DLG) - vector representations of
public roadways and other cartographic features. Many of these can be ordered directly from the
USGS EROS Data Center web site, located at URLhttp://edcwww.cr.usgs.gov/ . The
ability to use existing mapping products from USGS or National Imagery and Mapping Agency
(NIMA) to bootstrap a VSAM site model demonstrates that rapid deployment of VSAM systems
to monitor trouble spots around the globe is a feasible goal.

B) Custom DEM. The Robotics Institute autonomous helicopter group mounted a high precision
laser range finder onto a remote-control Yamaha helicopter to create a high-resolution (half-meter
grid spacing) DEM of the Bushy Run site for VSAM DEMO I (Figure 35b). Raw radar returns
were collected with respect to known helicopter position and orientation (using on-board altimetry
data) to form a cloud of points representing returns from surfaces in the scene. These points were
converted into a DEM by projecting into LVCS horizontal-coordinate bins, and computing the
mean and standard deviation of height values in each bin.

Robotics Institute, CMU – 47 – VSAM Final Report

Figure 35:A variety of site model representations have been used in the VSAM IFD testbed system:
A) USGS orthophoto; B) custom DEM; C) aerial mosaic; D) VRML model; E) CTDB site model;
and F) spherical representations.

Robotics Institute, CMU – 48 – VSAM Final Report

C) Mosaics.A central challenge in surveillance is how to present sensor information to a human
operator. The relatively narrow field of view presented by each sensor makes it very difficult for
the operator to maintain a sense of context outside the camera’s immediate image. Image mosaics
from moving cameras overcome this problem by providing extended views of regions swept over
by the camera. Figure 35c displays an aerial mosaic of the Demo I Bushy Run site. The video
sequence was obtained by flying over the demo site while panning the camera turret back and
forth and keeping the camera tilt constant[12, 24, 23]. The VSAM IFD team also demonstrated
coarse registration of this mosaic with a USGS orthophoto using a projective warp to determine
an approximate mapping from mosaic pixels to geographic coordinates. It is feasible that this
technology could lead to automated methods for updating existing orthophoto information using
fresh imagery from a recent fly-through. For example, seasonal variations such as fresh snowfall
(as in the case of VSAM Demo I) can be integrated into the orthophoto.

D) VRML models. Figure 35d shows a VRML model of one of the Bushy Run buildings and
its surrounding terrain. This model was created by theK2T company using the factorization
method [25] applied to aerial and ground-based video sequences.

E) Compact Terrain Data Base (CTDB).During the last two years, the VSAM testbed system
has used a Compact Terrain Data Base (CTDB) model of campus as its primary site model rep-
resentation. The CTDB was originally designed to represent large expanses of terrain within the
context of advanced distributed simulation, and has been optimized to efficiently answer geometric
queries such as finding the elevation at a point in real-time. Terrain can be represented as either a
grid of elevations, or as a Triangulated Irregular Network (TIN), and hybrid data bases containing
both representations are allowed. The CTDB also represents relevant cartographic features on top
of the terrain skin, including buildings, roads, bodies of water, and tree canopies. Figure 35e shows
a small portion of the Schenley Park / CMU campus CTDB. An important benefit to using CTDB
as a site model representation for VSAM processing is that it allows us to easily interface with the
synthetic environment simulation and visualization tools provided by ModSAF and ModStealth.

F) Spherical Representations.During the second year (1998), VSAM testbed SPU’s used the
Microsoft Windows NT operating system, which is not supported by CTDB software. For that
reason, we explored the use of spherical lookup tables for each fixed-mount SPU. Everything
that can be seen from a stationary camera can be represented on the surface of a viewing sphere
(Figure 35f). This is true even if the camera is allowed to pan and tilt about the focal point, and
to zoom in and out – the image at any given (pan,tilt,zoom) setting is essentially a discrete sample
of the bundle of light rays impinging on the camera’s focal point. We used this idea to precompile
and store a spherical lookup table containing the 3D locations and surface material types of the
points of intersection of camera viewing rays with the CTDB site model. During the third year,
we changed from Windows to the Linux operating system, a variant of Unix, and could then use
CTDB directly on each SPU. This made the spherical lookup tables obsolete.

Three geospatial site coordinate systems are used interchangeably within the VSAM testbed.
The WGS84 geodetic coordinate system provides a reference frame that is standard, unambiguous
and global (in the true sense of the word). Unfortunately, even simple computations such as the

Robotics Institute, CMU – 49 – VSAM Final Report

distance between two points become complicated as a function of latitude, longitude and elevation.
For this reason, site-specific Cartesian coordinate systems are typically established to handle the
bulk of the geometric model computations that must be performed. We have used a Local Vertical
Coordinate System (LVCS) [2] with its origin at the base of the PRB operator control center for
representing camera positions and for providing an operator display map coordinate system. The
CTDB model of campus is based on Universal Transverse Mercator (UTM) coordinates, which
provide an alternative Cartesian coordinate system, and which are related to the LVCS by a rotation
and translation. Conversion between geodetic, LVCS, and UTM coordinates is straightforward, so
that each can be used interchangeably in the system.

4.2 Camera Calibration

For a VSAM system to make full use of a geometric site model requires calibrating the cameras
with respect to the model. We have developed a set of calibration procedures specifically de-
signed forin-situ (meaning “in place”) camera calibration. We believe that all cameras should
be calibrated in an environment that resembles their actual operating conditions. This philoso-
phy is particularly relevant for outdoor camera systems. Cameras get jostled during transport and
installation, and changes in temperature and humidity can affect a camera’s intrinsic parameters.
Furthermore, it is impossible to recreate the full range of zoom and focus settings that are useful
to an outdoor camera system within the confines of an indoor lab.

Some amount of on-site calibration is always necessary, if only for determining the extrinsic
parameters (location and orientation) of the camera placement. Unfortunately, outdoors is not an
ideal environment for careful camera calibration. It can be cold, rainy, or otherwise unpleasant.
Simple calibration methods are needed that can be performed with minimal human intervention.

Figure 36:GPS landmarks measurements for extrinsic camera calibration on the CMU campus.

Robotics Institute, CMU – 50 – VSAM Final Report

We have developed methods for fitting a projection model consisting of intrinsic (lens) and
extrinsic (pose) parameters of a camera with active pan, tilt and zoom control. Intrinsic parameters
are calibrated by fitting parametric models to the optic flow induced by rotating and zooming the
camera. These calibration procedures are fully automatic and do not require precise knowledge
of 3D scene structure. Extrinsic parameters are calculated by sighting a sparse set of measured
landmarks in the scene (see Figure 36). Actively rotating the camera to measure landmarks over
a virtual hemispherical field of view leads to a well-conditioned exterior orientation estimation
problem. Details of the calibration procedures are presented in [7].

4.3 Model-based Geolocation

The video understanding techniques described in Section 3 operate primarily in image space. A
large leap in terms of descriptive power can be made by transforming image blobs and measure-
ments into 3D scene-based objects and descriptors. In particular, determination of object location
in the scene allows us to infer the proper spatial relationships between sets of objects, and between
objects and scene features such as roads and buildings. Furthermore, we believe that computation
of 3D spatial geolocation is the key to coherently integrating a large number of object hypotheses
from multiple, widely-spaced sensors.

Elev(X0+kU, Y0+kV) > Z0 + kW

11

X0, Y0, Z0

X

01

2

10

8

7

4

6

9

3

5

12

13

Projection

X0, Y0

Ray: (X0,Y0) + k(U,V)

Ray: (X0,Y0,Z0) + k(U,V,W)

Vertical

X

(a) (b)

Figure 37: (a) Estimating object geolocations by intersecting backprojected viewing rays with a
terrain model. (b) A Bresenham-like traversal algorithm determines which DEM cell contains the
first intersection of a viewing ray and the terrain.

In regions where multiple sensor viewpoints overlap, object locations can be determined very
accurately by wide-baseline stereo triangulation. However, regions of the scene that can be simul-

Robotics Institute, CMU – 51 – VSAM Final Report

taneously viewed by multiple sensors are likely to be a small percentage of the total area of regard
in real outdoor surveillance applications, where it is desirable to maximize coverage of a large area
using finite sensor resources. Determining object locations from a single sensor requires domain
constraints, in this case the assumption that the object is in contact with the terrain. This con-
tact location is estimated by passing a viewing ray through the bottom of the object in the image
and intersecting it with a model representing the terrain (see Figure 37a). Sequences of location
estimates over time are then assembled into consistent object trajectories.

Previous uses of the ray intersection technique for object localization in surveillance research
have been restricted to small areas of planar terrain, where the relation between image pixels
and terrain locations is a simple 2D homography [5, 9, 19]. This has the benefit that no camera
calibration is required to determine the back-projection of an image point onto the scene plane,
provided the mappings of at least four coplanar scene points are known beforehand. However,
large outdoor scene areas may contain significantly varied terrain. To handle this situation, we
perform geolocation using ray intersection with a full terrain model provided, for example, by a
digital elevation map (DEM).

Given a calibrated sensor, and an image pixel corresponding to the assumed contact point
between an object and the terrain, a viewing ray(x0+ ku;y0+ kv;z0+ kw) is constructed, where
(x0;y0;z0) is the 3D sensor location,(u;v;w) is a unit vector designating the direction of the view-
ing ray emanating from the sensor, andk� 0 is an arbitrary distance. General methods for de-
termining where a viewing ray first intersects a 3D scene (for example, ray tracing) can be quite
involved. However, when scene structure is stored as a DEM, a simple geometric traversal al-
gorithm suggests itself, based on the well-known Bresenham algorithm for drawing digital line
segments. Consider the vertical projection of the viewing ray onto the DEM grid (see Figure 37b).
Starting at the grid cell(x0;y0) containing the sensor, each cell(x;y) that the ray passes through
is examined in turn, progressing outward, until the elevation stored in that DEM cell exceeds the
z-component of the 3D viewing ray at that location. Thez-component of the view ray at location
(x;y) is computed as either

z0+
(x�x0)

u
w or z0+

(y�y0)

v
w (9)

depending on which direction cosine,u or v, is larger. This approach to viewing ray intersection
localizes objects to lie within the boundaries of a single DEM grid cell. A more precise sub-cell
location estimate can then be obtained by interpolation. If multiple intersections with the terrain
beyond the first are required, this algorithm can be used to generate them in order of increasing
distance from the sensor, out to some cut-off distance. See [6] for more details.

Geolocation Evaluation

We have evaluated geolocation accuracy for two cameras (PRB and Wean) on the CMU cam-
pus using a Leica laser-tracking theodolite to generate ground truth. The experiment was run by
having a person carry the theodolite prism for two loops around the PRB parking lot, while the
system logged time-stamped horizontal (X,Y) positions estimated by the Leica theodolite. The

Robotics Institute, CMU – 52 – VSAM Final Report

system also simultaneously tracked the person using the PRB and Wean cameras, while logging
time-stamped geolocation estimates from each camera.

(a) (b) (c)

Figure 38:Ground truth trajectory overlaid with geolocation estimates from a) PRB camera, b)
Wean camera, and c) an average of PRB and Wean estimates. Scales are in meters.

Figure 38 shows the ground truth trajectory curve, overlaid with geolocation estimates from
(a) the PRB camera, (b) the Wean camera, and (c) an average of the PRB and Wean camera esti-
mates for corresponding time stamps. Both cameras track the overall trajectory fairly well. The
PRB camera geolocation estimates have large errors at the lower portions and upper right arc of
the loop, because the person’s feet were occluded by parked vehicles when walking through those
areas. The higher elevation and direction of view of Wean camera allowed it to see the person’s feet
at the lower portion of the loop, so the trajectory is correctly followed there. An error still occurs
at the top right of the loop, as the person comes close to two vehicles and is reflected from their
shiny surfaces. This pulls the bounding box off the person’s feet, and causes an underestimation of
their position. Geolocation estimates were only averaged for points with time stamps agreeing to
within a small threshold, so there are far fewer points shown in Figure 38c. The effect of averaging
is to smooth out many of the high variance portions of both curves, although the overall distance
accuracy does not noticeably improve.

Geolocation estimates are computed by backprojecting a point located at the center of the
lowest side of the bounding box enclosing a moving blob. The system maintains a running estimate
of the variance of this point – the variance is high when the position or shape of the bounding
box changes greatly during tracking. The system computes an internal estimate of horizontal
geolocation error by projecting an error box of one standard deviation around the image point used
for estimation, until it intersects the terrain, thus providing a bound on the error of the geolocation
estimate. A subsampling of this set of error boxes is shown in Figure 39, for both cameras. It is
interesting to note that during portions of the trajectory where errors are large due to occlusions or
reflections, the system is aware that the variance of the geolocation estimate is high.

To determine actual geolocation accuracy, the time stamp of each geolocation estimate was
compared to the list of ground truth time stamps to find a suitably close correspondence. For cases
where a corresponding ground truth point was found, the horizontal displacement error is plotted
in Figure 40, for a) PRB camera, b) Wean camera, and c) the average geolocation computed from
PRB and Wean. The mean and covariance of each point cloud were estimated, and the major and

Robotics Institute, CMU – 53 – VSAM Final Report

(a) (b)

Figure 39:Geolocation error boxes computed by the system for trajectory estimates from a) PRB
camera and b) Wean camera. Scales are in meters. Compare with Figures 38a and b.

minor axes of the covariance ellipse is overlaid on each plot, with the length of the axes scaled
to represent 1.5 times the standard deviation of the point spread along that direction. Numeric
standard deviations along each axis are displayed in the following table.

Geolocation Estimatesmax std (meters) min std (meters)
PRB 0.6520 0.3139
Wean 0.5232 0.1628
Avg of PRB and Wean 0.7184 0.3337

These numbers confirm the observation that averaging geolocation estimates from both cameras
is not improving accuracy. It is actually getting slightly worse. Referring again to Figure 40, we
see that the center of each error point spread is not at (0,0). We are therefore averaging biased
geolocation estimates from each camera, and the noise in each estimate is therefore not cancelling
out properly, but rather intensifying. Removing the geolocation bias from each sensor will be
necessary to achieve more accurate results from averaging. Possible sources of error are the camera
calibration parameters, the terrain model, and small biases in the time stamps produced by each
SPU. Nonetheless, standard deviation of geolocation estimates from each camera are roughly on
the order of .6 meters along the axis of maximum spread, and roughly .25 meters at minimum.
We have confirmed that the axis of maximum error for each camera is oriented along the direction
vector from the camera to the object being observed.

4.4 Model-based Human-Computer Interface

Keeping track of people, vehicles, and their interactions, over a chaotic area such as the battlefield,
is a difficult task. The commander obviously shouldn’t be looking at two dozen screens showing

Robotics Institute, CMU – 54 – VSAM Final Report

(a) (b) (c)

Figure 40:Plotted covariances of the horizontal displacement errors between estimate geoloca-
tions and ground truth locations for corresponding time stamps. a) PRB camera, b) Wean camera,
and c) average of PRB and Wean estimates with corresponding time stamps. Scales are in meters.

raw video output – that amount of sensory overload virtually guarantees that information will be
ignored, and requires a prohibitive amount of transmission bandwidth. Our suggested approach is
to provide an interactive, graphical visualization of the battlefield by using VSAM technology to
automatically place dynamic agents representing people and vehicles into a synthetic view of the
environment.

This approach has the benefit that visualization of the object is no longer tied to the original
resolution and viewpoint of the video sensor, since a synthetic replay of the dynamic events can
be constructed using high-resolution, texture-mapped graphics, from any perspective. Particularly
striking is the amount of data compression that can be achieved by transmitting only symbolic geo-
registered object information back to the operator control unit instead of raw video data. Currently,
we can process NTSC color imagery with a frame size of 320x240 pixels at 10 frames per second
on a Pentium II computer, so that data is streaming into the system through each sensor at a rate of
roughly 2.3Mb per second per sensor. After VSAM processing, detected object hypotheses contain
information about object type, location and velocity, as well as measurement statistics such as a
time stamp and a description of the sensor (current pan, tilt, and zoom for example). Each object
data packet takes up roughly 50 bytes. If a sensor tracks 3 objects for one second at 10 frames per
second, it ends up transmitting 1500 bytes back to the OCU, well over a thousandfold reduction in
data bandwidth.

Ultimately, the key to comprehending large-scale, multi-agent events is a full, 3D immersive
visualization that allows the human operator to fly at will through the environment to view dynamic
events unfolding in real-time from any viewpoint. We envision a graphical user interface based
on cartographic modeling and visualization tools developed within the Synthetic Environments
(SE) community. The site model used for model-based VSAM processing and visualization is
represented using the Compact Terrain Database (CTDB). Objects are inserted as dynamic agents
within the site model and viewed by Distributed Interactive Simulation clients such as the Modular
Semi-Automated Forces (ModSAF) program and the associated 3D immersive ModStealth viewer.

We first demonstrated proof-of-concept of this idea at the Dismounted Battle Space Battle

Robotics Institute, CMU – 55 – VSAM Final Report

Lab (DBBL) Simulation Center at Fort Benning Georgia as part of the April 1998 VSAM work-
shop. On April 13, researchers from CMU set up a portable VSAM system at the Benning Mobile
Operations in Urban Terrain (MOUT) training site. The camera was set up at the corner of a build-
ing roof whose geodetic coordinates had been measured by a previous survey [11], and the height
of the camera above that known location was measured. The camera was mounted on a pan-tilt
head, which in turn was mounted on a leveled tripod, thus fixing the roll and tilt angles of the
pan-tilt-sensor assembly to be zero. The yaw angle (horizontal orientation) of the sensor assembly
was measured by sighting through a digital compass. After processing several troop exercises, log
files containing camera calibration information and object hypothesis data packets were sent by
FTP back to CMU and processed using the CTDB to determine a time-stamped list of moving
objects and their geolocations. Later in the week, this information was brought back to the DBBL
Simulation Center at Benning where, with the assistance of colleagues from BDM, it was played
back for VSAM workshop attendees using custom software that broadcast time-sequenced simu-
lated entity packets to the network for display by both ModSAF and ModStealth. Some processed
VSAM video data and screen dumps of the resulting synthetic environment playbacks are shown
in Figure 41.

Figure 41:Sample synthetic environment visualizations of data collected at the Benning MOUT
site. A) Automated tracking of three people. B) ModSAF 2D orthographic map display of estimated
geolocations. C) Tracking of a soldier walking out of town. D) Immersive, texture-mapped 3D
visualization of the same event, seen from a user-specified viewpoint.

We have also demonstrated that this visualization process can form the basis for a real-time
immersive visualization tool. First, we ported object geolocation computation using the CTDB
onto the VSAM SPU platforms. This allowed estimates of object geolocation to be computed
within the frame-to-frame tracking process, and to be transmitted in data packets back to the OCU.
At the OCU, incoming object identity and geolocation data is repackaged into Distributed Inter-
active Simulation (DIS) packets understood by ModSAF and ModStealth clients, and re-broadcast
(multicast) on the network. At that point, objects detected by the SPUs are viewable, after a short
lag, within the context of the full 3D site model using the ModStealth viewer (Figure 42).

Robotics Institute, CMU – 56 – VSAM Final Report

Figure 42:Real-time, 3D ModStealth visualization of objects detected and classified by the VSAM
testbed system and transmitted via DIS packets on the network.

5 Sensor Coordination

In most complex outdoor scenes, it is impossible for a single sensor to maintain its view of an
object for long periods of time. Objects become occluded by environmental features such as trees
and buildings, and sensors have limited effective fields of regard. A promising solution to this
problem is to use a network of video sensors to cooperatively track objects through the scene.
We have developed and demonstrated two methods of sensor coordination in the VSAM testbed.
First, objects are tracked long distances through occlusion byhanding-offbetween cameras situated
along the object’s trajectory. Second, wide-angle sensors keeping track of all objects in a large area
are used to task active pan, tilt and zoom sensors to get a better view of selected objects, using a
process known assensor slaving.

5.1 Multi-Sensor Handoff

There has been little work done on autonomously coordinating multiple active video sensors to
cooperatively track a moving object. One approach is presented by Matsuyama for a controlled
indoor environment where four cameras lock onto onto a particular object moving across the floor
[22]. We approach the problem more generally by using the object’s 3D geolocation (as computed
in the last section) to determine where each sensor should look. The pan, tilt and zoom of the
closest sensors are then controlled to bring the object within their fields of view, while a viewpoint
independent cost function is used to determine which of the moving objects they find are the
specific object of interest. These steps are described below.

Assume that at timet0 a sensor with pan, tilt value(θ0;φ0) has been tasked to track a par-
ticular object with 3D ground locationX0 and velocityẊ. Given a functionG(X) that converts a
ground coordinate to a pan, tilt point (determined by camera calibration), the object’s locationX0

is converted to a desired sensor pan, tilt value(θd;φd) = G(X0). The behavior of the pan, tilt unit

Robotics Institute, CMU – 57 – VSAM Final Report

is approximated by a linear system with infinite acceleration and maximum velocity(�θ̇;�φ̇) as

θ(t) = θ0� θ̇(t� t0)
φ(t) = φ0� φ̇(t� t0)

(10)

Substituting the desired sensor pan, tilt(θd;φd) into the left hand side of this equation and solving
for (t� t0) yields a prediction of the acquisition time, that is, how long it would take for the pan,
tilt device to point at the object’s current location. However, the object will have moved further
along its trajectory by that time. This new object position is estimated as

X(t) = X0+ Ẋ(t� t0) (11)

This predicted object position is then converted into a new desired sensor pan, tilt, and the whole
procedure iterates until the time increments(t�t0) become small (convergence) or start to increase
(divergence). This algorithm guarantees that if it converges, the sensor will be able to reacquire
the object.

An appropriate camera zoom setting can be determined directly given a desired size of the
object’s projection in the image. Knowing the classification of the objectC (as determined from
Section 3.3), we employ the heuristic that humans are approximately 6 feet (2m) tall and vehicles
are approximately 15 feet (5m) long. Given the position of the object and the sensor, and therefore
the ranger to the object, the angleρ subtended by the image of the object is approximately

ρ =

�
tan�1 2

r ; human
tan�1 5

r ; vehicle

Knowing the focal length of the sensor as a function of zoom, as determined from camera calibra-
tion, the appropriate zoom setting is easily chosen.

Once the sensor is pointing in the right direction at the right zoom factor, all moving objects
extracted are compared to the specific object of interest to see if they match. This need to re-acquire
a specific object is a key feature necessary for multi-camera cooperative surveillance. Obviously
viewpoint-specific appearance criteria are not useful, since the new view of the object may be
significantly different from the previous view. Therefore, recognition features are needed that are
independent of viewpoint. In our work we use two such criteria: the object’s 3D scene trajectory
as determined from geolocation, and a normalized color histogram of the object’s image region.
Candidate motion regions are tested by applying a matching cost function in a manner similar to
that described in Section 3.2.

An example of using multi-sensor hand-off to track a vehicle as it travels through campus is
shown in Figure 43. This diagram shows the continuous, autonomous tracking of a single object
for a distance of approximately 400m and a time of approximately 3 minutes. In Figure 43(a) two
sensors cooperatively track the object. At the time shown in Figure 43(b) the object is occluded
from sensor 2, but is still visible from sensor 1, which continues to track it. When the object moves
out of the occlusion area, sensor 2 is automatically retasked to track it, as shown in Figure 43(c).

Robotics Institute, CMU – 58 – VSAM Final Report

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
��� Object

Sensor 2

Sensor 1

Sensor 3

(a)

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

ObjectSensor 2

Sensor 1

Sensor 3

(b)

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

Object

Sensor 2

Sensor 1

Sensor 3

(c)

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

Object

Sensor 1

Sensor 2Sensor 3

(d)

Figure 43:Cooperative, multi-sensor tracking (see text for description).

Robotics Institute, CMU – 59 – VSAM Final Report

Finally, when the object moves out of the field of regard of both sensors, a third sensor is auto-
matically tasked to continue surveillance, as shown in Figure 43(d). By automatically managing
multiple, redundant camera resources, the vehicle is continuously tracked through a complex urban
environment.

5.2 Sensor Slaving

A second form of sensor cooperation is sensor slaving. We use the termsensor slavingto denote
using one wide field of view camera to control a second, active camera to zoom in and actively
follow the subject to generate a better view. The motivation is to keep track of all objects in the
scene while simultaneously gathering high-resolution views of selected objects. A camera slaving
system has at least one master camera and one slave camera. The master camera is set to have
a global view of the scene so that it can track objects over extended areas using simple tracking
methods such as adaptive background subtraction. The object trajectory generated by the master
camera is relayed to the slave camera in real time. The slave camera, which is highly zoomed in,
can then follow the trajectory to generate close-up imagery of the object.

Slaving is a relatively simple exercise if both cameras are calibrated with respect to a local
3D terrain model. We have shown in Section 4.3 that a person’s 3D trajectory can be determined
to reasonable accuracy (roughly 1 meter of error for a person 50 meters away) by intersecting
backprojected viewing rays with the terrain. After estimating the 3D location of a person from the
first camera’s viewpoint, it is an easy matter to transform the location into a pan-tilt command to
control the second camera. Figure 44 shows an example of camera slaving. A person has been
detected automatically in the wide-angle view shown in the left image, and a second camera has
been tasked to move slightly ahead of the person’s estimated 3D trajectory, as shown in the right
image.

For cameras located far apart geographically, it is obvious that we need to have very good cam-
era calibration, and an accurate 3D site model. We have also developed a sensor slaving method
that works for closely located cameras. This method requires only image-based computations (no
geolocation computation or extrinsic camera calibration). Furthermore, intrinsic parameters are
needed only by the slave camera, which has to determine the pan/tilt angles needed to point to-
wards each pixel in the image. The basic idea is to form a mosaic by warping the master camera
view into the pixel coordinate system of the slave camera view (Figure 45). Image trajectories of
objects detected in the master view can then be transformed into trajectories overlaid on the slave
camera view. The slave camera can then compute the pan-tilt angles necessary to keep the object
within its zoomed field of view.

Robotics Institute, CMU – 60 – VSAM Final Report

Figure 44: Example of camera slaving. Left: wide-angle view in which a person is detected.
Right:a better view from a second camera, which has been tasked to intercept the person’s esti-
mated 3D path.

(a) (b)

(c)

Figure 45:(a) and (b) are images taken from a slave camera and master camera, respectively. (c)
shows the master camera view warped into the pixel coordinate system of the slave camera view,
to form an image mosaic. Image pixels are averaged directly in overlapping region.

Robotics Institute, CMU – 61 – VSAM Final Report

6 Three Years of VSAM Milestones

The current VSAM IFD testbed system and suite of video understanding technologies are the
end result of a three-year, evolutionary process. Impetus for this evolution was provided by a
series of yearly demonstrations. The following tables provide a succinct synopsis of the progress
made during the last three years in the areas of video understanding technology, VSAM testbed
architecture, sensor control algorithms, and degree of user interaction.

Although the program is over now, the VSAM IFD testbed continues to provide a valuable
resource for the development and testing of new video understanding capabilities. Future work
will be directed towards achieving the following goals:

� better understanding of human motion, including segmentation and tracking of articulated
body parts;

� improved data logging and retrieval mechanisms to support 24/7 system operations;

� bootstrapping functional site models through passive observation of scene activities;

� better detection and classification of multi-agent events and activities;

� better camera control to enable smooth object tracking at high zoom; and

� acquisition and selection of “best views” with the eventual goal of recognizing individuals
in the scene.

Robotics Institute, CMU – 62 – VSAM Final Report

Table 3: Progression of Video Understanding Technology
Video Understanding 1997 Demo Results 1998 Demo Results 1999 Demo Results

Ground-based
moving target
detection (MTD) and
tracking

Multiple target detection,
single target step and stare
tracking, temporal change,
adaptive template matching

Multi-target MTD and
trajectory analysis, motion
salience via temporal
consistency, adaptive
background subtraction

Layered and adaptive
background subtraction for
robust detection, MTD while
panning, tilting and zooming
using optic flow and image
registration, target tracking by
multi-hypothesis Kalman filter

Airborne MTD and
tracking

Stabilization / temporal
change using correlation

Real-time camera pointing
based on motion plus
appearance, drift free
fixation

(N/A)

Ground-based target
geolocation

Ray intersection with DEM Ray intersection with
SEEDS model

Geolocation uncertainty
estimation by Kalman filtering,
domain knowledge

Airborne target
geolocation

Video to reference image
registration

Fine aiming using video to
reference image registration
in real-time

(N/A)

Target recognition Temporal salience
(predicted trajectory)

Spatio-temporal salience,
color histogram,
classification

Target patterns and/or
spatio-temporal signature

Target classification
technique

Aspect ratio Dispersedness,
motion-based
skeletonization, neural
network, spatio-temporal
salience

Patterns inside image chips,
spurious motion rejection,
model-based recognition, Linear
Discriminant Analysis

Target classification
categories

Human, vehicle Human, human group,
vehicle

Human, human group, sedan,
van, truck, mule, FedEx van,
UPS van, police car

Target classification
accuracy (percentage
correctly identified)

87% Vehicle, 83% Human
(small sample)

85% (large sample) > 90% (large sample)

Activity monitoring Any motion Individual target behaviors Multiple target behaviors:
parking lot monitoring, getting
in/out of cars, entering buildings

Ground truth
verification

None Off-line On-line (one target)

Geolocation accuracy 5 meters 2 meters < 1 meter
Camera calibration Tens of pixels Fives of pixels Ones of pixels
Domain knowledge Elevation map and

hand-drawn road network
SEEDS model used to
generate ray occlusion tables
off-line

Parking area, road network,
occlusion boundaries

Robotics Institute, CMU – 63 – VSAM Final Report

Table 4: Progression of VSAM Architecture Goals
VSAM Architecture 1997 Demo Results 1998 Demo Results 1999 Demo Results

Number of SPUs 3 8 12
Types of Sensors Standard video camera with

fixed focal length
Standard video camera with
zoom, omnicamera

Static color and B/W cameras,
color video cameras with pan,
tilt and zoom, omnicamera,
thermal

Types of SPU and
VSAM nodes

Slow relocatable, airborne Fast relocatable,
fixed-mount, airborne,
visualization clients

Super-SPU handling multiple
cameras, web-based VIS-node

System coverage Rural, 0.1 km2 area
ground-based, 3 km2

airborne coverage

University campus, 0.3 km2

area ground-based, airborne
coverage over 9 km2 urban
area

Dense coverage of university
campus, 0.3km2 ground-based
area of interest

Communcation
architecture

Dedicated OCU/SPU Variable-packet protocol

Table 5: Progression of VSAM Sensor Control
Sensor Control 1997 Demo Results 1998 Demo Results 1999 Demo Results

Ground sensor aiming
(hand-off and
multitasking)

Predetermined handoff
regions

3D coordinates and
signatures, epipolar
constraints, occlusion and
footprint databases

Camera-to-camera handoff,
wide-angle slaving

Air sensor aiming Video to reference image
registration for landmark
points

Video to reference image
registration for landmark
points

(N/A)

Ground / Air
interaction

Human-directed to
predetermined locations

OCU-directed to target
geolocation

(N/A)

SPU behavior Single supervised task (track
target) with primitive
unsupervised behavior (look
for target)

Single-task supervision
(track activity) with
unsupervised behavior
(loiter detection)

Multi-task supervision for
activity monitoring and complex
unsupervised behavior (parking
lot monitoring)

Robotics Institute, CMU – 64 – VSAM Final Report

Table 6: Progression of User Interaction
User Interaction 1997 Demo Results 1998 Demo Results 1999 Demo Results

Site model USGS orthophoto and DEM,
LIDAR, real-time mosaics

Compact Terrain DataBase
(CTDB), spherical mosaics,
aerial mosaic

Improved CTDB model

Site model function Visualization and
geolocation

Off-line: Demo scenario
planning, after-action
review, algorithm
evaluation, ground-truth
verification.On-line:
Relocatable sensor planning
and geolocation, occlusion
analysis, target geolocation

Off-line: Sensor placement and
planning, virtual SPU for
scenario perturbation analysis.
On-line: Ground-truth
verification, dynamic
visualization and system tasking

System tasking by
user (user interface)

2D point-and-click camera
control for sensor-based
tasking

2D point-and-click camera
control for region and
target-based tasking.

Tracked-object specification, 3D
interactive activity and
event-based tasking

Visualization Overlay current target and
sensor positions on
orthophoto, live video feeds

Target and sensor
information shown on GUI
display, computer
switchable live video feeds,
ModStealth

ModStealth visualization of
sensor network, video archiving
and replaying of significant
events

WebVSAM None Java-based visualization
nodes

Indexed web access to activity
report, live internet access to
VSAM network via Web
visualization nodes

Robotics Institute, CMU – 65 – VSAM Final Report

Acknowledgments

The authors would like to thank the U.S. Army Night Vision and Electronic Sensors Directorate
Lab team at Davison Airfield, Ft. Belvoir, Virginia for their help with the airborne operations. We
would also like to thank Chris Kearns and Andrew Fowles for their assistance at the Fort Benning
MOUT site, and Steve Haes and Joe Findley at BDM/TEC for their help with the the CTDB site
model and distributed simulation visualization software.

References

[1] C. Anderson, Peter Burt, and G. van der Wal. Change detection and tracking using pyramid
transformation techniques. InProceedings of SPIE - Intelligent Robots and Computer Vision,
volume 579, pages 72–78, 1985.

[2] American Society of Photogrammetry ASP.Manual of Photogrammetry. Fourth Edition,
American Society of Photogrammetry, Falls Church, 1980.

[3] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques.Interna-
tional Journal of Computer Vision, 12(1):42–77, 1994.

[4] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani. Hierarchical model-based motion esti-
mation. InProceedings of the European Conference on Computer Vision, 1992.

[5] K. Bradshaw, I. Reid, and D. Murray. The active recovery of 3d motion trajectories and
their use in prediction.IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(3):219–234, March 1997.

[6] R. Collins, Y. Tsin, J.R. Miller, and A. Lipton. Using a DEM to determine geospatial object
trajectories. InProceedings of the 1998 DARPA Image Understanding Workshop, pages 115–
122, November 1998.

[7] R.T. Collins and Y. Tsin. Calibration of an outdoor active camera system. InProceedings
of the 1999 Conference on Computer Vision and Pattern Recognition, pages 528–534. IEEE
Computer Society, June 1999.

[8] F. Dellaert and R.T. Collins. Fast image-based tracking by selective pixel integration. In
ICCV99 Workshop on Frame-Rate Applications, September 1999.

[9] B. Flinchbaugh and T. Bannon. Autonomous scene monitoring system. InProc. 10th Annual
Joint Government-Industry Security Technology Symposium. American Defense Prepared-
ness Association, June 1994.

[10] H. Fujiyoshi and A. Lipton. Real-time human motion analysis by image skeletonization. In
Proceedings of the 1998 Workshop on Applications of Computer Vision, 1998.

Robotics Institute, CMU – 66 – VSAM Final Report

[11] Geometric Geodesy Branch GGB.Geodetic Survey. Publication SMWD3-96-022, Phase II,
Interim Terrain Data, Fort Benning, Georgia, May 1996.

[12] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and P. Burt. Real-time scene stabilization
and mosaic construction. InProc. Workshop on Applications of Computer Vision, 1994.

[13] I. Haritaoglu, Larry S. Davis, and D. Harwood. W4 who? when? where? what? a real time
system for detecing and tracking people. InFGR98, 1998.

[14] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density. In
Proceedings of the 1996 European Conference on Computer Vision, pages 343–356, 1996.

[15] Institute for Simulation & Training IST.Standard for Distributed Interactive Simulation –
Application Protocols, Version 2.0. University of Central Florida, Division of Sponsored
Research, March 1994.

[16] S. Ju, M. Black, and Y. Yacoob. Cardboard people: A parameterized model of articulated
image motion. InProceedings of International Conference on Face and Gesture Analysis,
1996.

[17] T. Kanade, R. Collins, A. Lipton, P. Anandan, and P. Burt. Cooperative multisensor video
surveillance. InProceedings of the 1997 DARPA Image Understanding Workshop, volume 1,
pages 3–10, May 1997.

[18] T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson. Advances in cooperative multi-
sensor video surveillance. InProceedings of the 1998 DARPA Image Understanding Work-
shop, volume 1, pages 3–24, November 1998.

[19] D. Koller, K. Daniilidis, and H. Nagel. Model-based object tracking in monocular image
sequences of road traffic scenes.International Journal of Computer Vision, 10(3):257–281,
June 1993.

[20] A. Lipton, H. Fujiyoshi, and R.S. Patil. Moving target detection and classification from real-
time video. InProceedings of the 1998 Workshop on Applications of Computer Vision, 1998.

[21] Alan J. Lipton. Local application of optic flow to analyse rigid versus non-rigid motion. In
ICCV99 Workshop on Frame-Rate Applications, September 1999.

[22] T. Matsuyama. Cooperative distributed vision. InProceedings of DARPA Image Understand-
ing Workshop, volume 1, pages 365–384, November 1998.

[23] H. S. Sawhney, S. Hsu, and R. Kumar. Robust video mosaicing through topology inference
and local to global alignment. InProc. European Conference on Computer Vision, 1998.

[24] H. S. Sawhney and R. Kumar. True multi-image alignment and its application to mosaicing
and lens distortion. InProc. IEEE Conference on Computer Vision and Pattern Recognition,
1997.

Robotics Institute, CMU – 67 – VSAM Final Report

[25] C. Tomasi and T. Kanade. Shape and motion from image streams: factorization method.
International Journal of Computer Vision, 9(2), 1992.

[26] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice
of background maintenance. InProc. International Conference on Computer Vision, pages
255–261, 1999.

[27] L. Wixson, J. Eledath, M. Hansen, R. Mandelbaum, and D. Mishra. Image alignment for
precise camera fixation and aim. InProc. IEEE Conference on Computer Vision and Pattern
Recognition, 1998.

[28] L. Wixson and A. Selinger. Classifying moving objects as rigid or non-rigid. InProc. DARPA
Image Understanding Workshop, 1998.

[29] C. Wren, A. Azarbayejani, T. Darrell, and Alex Pentland. Pfinder: Real-time tracking of the
human body.IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):780–
785, 1997.

Robotics Institute, CMU – 68 – VSAM Final Report

View publication stats

https://www.researchgate.net/publication/2464973

