Computer Vision

Lec 7: Hough Transform (contd.), Corner Detection

Dr. Pratik Mazumder

Content derived from multiple sources
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What is the dimension of the parameter space?



Let’'s assume radius known
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What does a point in image space correspond to in parameter space?



Let’'s assume radius known
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Let’'s assume radius known

Image Space Parameter Space
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Let’'s assume radius known

Image Space Parameter Space




What if radius is unknown?
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What if radius is unknown?

parameters
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If radius is not known: 3D Hough Space!

Use Accumulator array
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The work that needs to be done in parameter space
increases exponentially with the number of unknown
parameters.

In short, as the parametric shape we are looking for
increases in complexity, the Hough transform
becomes less and less practical.



Using Gradient Information

Gradient information can save lot of computation:
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Need to increment only one point in accumulator!



Using Gradient Information
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Using Gradient Information
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Hough Circle Detection Example




Hough Circle Detection Example

Pennie Hough detector Quarter Hough detector




Hough Circle Detection Example

Pennie Hough detector Quarter Hough detector




Hough Circle Detection Example

Penny (r =r,) Quarter (r =r,)

Original Image  Edge (Threshold) Hough Transform Hough Transform
Ay(a, b) Ay(a,b)
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Generalized Hough Transform

GHT helps to find complicated shapes.

The first step is to create a model of the object that can be used by the

Hough transform. This step is done off-line Reference point:  (xc,Yc)

Edge direction: ¢; 0<¢; <2m
Define a reference point (x_, y,) for the shape. Edge location: 7' = (1, ')
For each point on the object’s boundary in the template, we are going to
assume that we have both the edge location and the edge direction.

¢-Table
Then, for each point boundary pomt we represent it using the vector (r F = (1, a)
) which includes the distance r,’ of the point from the reference pomt P Alalal
and the angle «,' the edge makes “with respect to the horizontal axis. 5 ——
2 rn.,n
We use the above approach to create a model of the object in the form of
¢n Flll’r-:zn -.3" -471

a table, called the ¢-table.

The index to the table is the edge direction ¢, and the entry is a list of the
vectors (r L ') corresponding to all the pomts on the object’s boundary
that have that edge direction ¢..



Generalized Hough Transform

7. We will create an accumulator array with parameters x_and y_, initialize it
to zero, and we are going to be voting for the location of the reference poin

of the object.

8. In our input edge pixel image, we have both the location and the direction

of the edge at each edge pixel.

9. So, we use the edge direction ¢, of the point as an index into our ¢-table to

find all the vectors (r,,¢,') associated with it.

10.  We use the vectors to vote for the reference point in the accumulator array.

11. If we get a strong peak in the array, then we have found the object, and its
location in the image is determined by the location of its reference point.

Template Image

Image

; (xi, yir i)

A(xe, ye)

Edge Direction F=(r,a)
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« Create accumulator array A(x.,y.)
« Set A(x.y.) =0 for all (x.,y.)
« For each edge point (x;, v, ),
For each entry ¢; - Fk‘ in ¢ — table
X=Xt rki cos(aki)
Ye = ¥ £ 1 sin(a’)
Alxe,ye) = Alxe, y.) +1

+ Find local maxima in A(x.,y.)




Generalized Hough Transform

Model

Model Detected

d

d
d‘m‘

Hough Transform A(x., y.

Assumption: the object should appear in the image

with the same orientation and scale.



Hough Transform: Comments

Works on disconnected edges.

Relatively insensitive to occlusion and noise.
Effective for simple shapes (lines, circles, etc.).
Complex Shapes: Generalized Hough Transform.

Trade-off between work in image space and parameter space.



Corner Detection

Content taken from various sources



Image matching

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?



Image matching

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?



Image matching

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?
a corner



Image matching - Aperture Problem

Corner points are easier to match uniquely



Corner Detection

Sudden change in intensity in more than one direction
A corner can be defined as the intersection of two edges.

A corner can also be defined as a point for which there are two dominant and different edge
directions in a local neighborhood of the point.

In practice, many corner detection methods detect interest points in general, and in fact, the
terms "corner" and "interest point" are often used interchangeably.

These interest points, often located at corners or junctions of edges, serve as key features for
various computer vision tasks.



Why detect corners?

Image alignment (homography, fundamental matrix)
3D reconstruction

Motion tracking

Object recognition

Indexing and database retrieval

Robot navigation



Background: Matrix, Eigen Values, Eigen Vectors, SVD



Matrix Vector Operation
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A can be considered as a set of row vectors.
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Then Ax is a column vector where each element i is the dot

product of the i" row and x vector.
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Matrix Vector Operation

ail

asi

a2

an2

A

A1m

asm

L1

Z2

Ax =7 A = [coly, coly, ..., coly)
A can be considered as a set of column vectors.

Then Ax is a column vector obtained by the scalar
multiplication of i" column vector with the i"" element of x and
adding the resulting scaled vectors, i.e., scale each column
vector with the corresponding element and add the scaled
column vectors.

x =coly X x1 + coly X x9 + ...+ col,, X z,,



Geometric Interpretation

Ae R x e R"Ax € R"

Matrix A€ R®3, can be considered as a function that takes a 3 dimensional vector as input and
outputs another 3 dimensional vector (if A is full rank).

.x [ AR

Ale
<: R3x3

]

The transformation is a
one-to-one function only if Ais
full rank, i.e. rank of A € R33=3

If A exists, then it can reverse
the transformation induced by A



Eigenvalues and Eigenvectors
Suppose, A € R™ q € R™, and Aq = Aq
i.e., Applying transformation A to vector q, produces a scaled version of the vector q

Such vectors are known as the eigen vectors of A, and the corresponding scaling factors are the
eigen values.

If A € R¥3 | at most 3 linearly independent eigen vectors are possible

z z
A A

q q
=0 » X I: Ae R3X3 ::> —@)— X

Input Space Output Space



Eigenvalues and Eigenvectors

Suppose, A € R™ q € R™, and Aq = Aq

The eigen values are the roots of the following characteristics equation

p(A) =det(A-A)=0

Solve for the Eigenvectors: For each eigenvalue A, solve the equation: (A — Al)v=0

Eigen values: A, ,h,,...,.A Eigen vectors S=[v,,v,,...,v\]

n, i

STAS=A=




Singular Value Decomposition

 Singular values: Non negative square roots of the
eigenvalues of A'A. Denoted ¢, i=1,... ,n

« SVD: If A 1sareal m by n matrix then there exist
orthogonal matrices U (¢ R”*) and V (€ R"") such

that

A=UZ V' U'AV=3-=




Singular Value Decomposition

Every matrix A € R™" | factorizes into UZVT = A

Where U € R™™and V € R™ are orthogonal matrices and 2 € R™"is a diagonal matrix.

[ul w2 o 0]fu
0 o2 [v]
For example:

U ) vt A

—.40 916 " 5.39 0 " —.05 .999| |3 -2
916 .40 0 3.154 999 05| (1 5



Singular Value Decomposition

Compute the transpose of the matrix, AT and then compute ATA.

Find the eigenvalues of ATA and sort them in descending order.
Construct a diagonal matrix 2 by placing the singular values in
descending order along the diagonal.

Use the ordered eigenvalues from step 2 and compute the
eigenvectors of ATA.

The eigenvectors of ATA make up the columns of V, and the
eigenvectors of AAT make up the columns of U.

The singular values in Z are square roots of eigenvalues from
AAT or ATA.

ul w2 [%1



Singular Value Decomposition

7T
v . —.42 —‘57 ~.70 4
{—.39 —.92])([;).51 0 ()]X 81 11 —.58 :[1 2 3]
B // O TNl s | O
We can look at X \
to see that the while the second
first column has column has a
a large effect much smaller

effect in this
example



SVD Applications

* For this image, using only the first 10
of 300 singular values produces a
recognizable reconstruction

* So, SVD can be used for image
compression



Visualizing quadratics



Visualizing quadratics

Equation of a circle
Q 1=2"+y°

,;}\ Equation of a ‘bowl’ (paraboloid)
N \\\ |lr

Rt
i

flz,y) =%+ 9

If you slice the bowl at

f(xay) = 1

what do you get?



Visualizing quadratics

Equation of a circle
Q 1=2"+y°

Equation of a ‘bowl’ (paraboloid)

flz,y) =%+ 9

If you slice the bow! at
flz,y) =1 Q

what do you get?



Visualizing quadratics

flz,y) =2* +y°

can be written in matrix form like this...

en=t= v1[3 0] ]2

Y



Visualizing quadratics

fen=1sv1g 1|5 =

‘sliced at 1’




Visualizing quadratics

What happens if you increase
coefficient on x?

sen=1= v1|g 0]]5]

and slice at 1



Visualizing quadratics

What happens if you increase
coefficient on x?

fan=1= 15 1]

and slice at 1

15T

‘| 5 -2 -1.5 -1

decrease width in x!

15T

oy



Visualizing quadratics

What happens if you increase
coefficient on y?

fen=[s v1|g 5|7

and slice at 1



Visualizing quadratics

What happens if you increase

coefficient on y?

fan=[s v1|q 5

and slice at 1

15T

decrease width iny

IHE

n

'
N
v

oy



Visualizing quadratics
f(z,y) = 2% +y*

can be written in matrix form like this...

fen=t= 1 [3 9] ]2

What's the shape?
What are the eigenvectors?
What are the eigenvalues?



Visualizing quadratics
f(z,y) = 2% +y*

can be written in matrix form like this...

en=t= w1 [3 9] ]2

Result of Singular Value Decomposition (SVD)

. eigenvalues
eigenvectors along diagonal

BB BEIEE

Inverse sqr of
axis of the length of the
‘ellipse slice’ quadratic along

the axis

O =

017
1



Visualizing quadratics

Eigenvectors Eigenvalues

1 01 110 o1 o1 o1 &
A = — t
o 1| lol 1]lo 0 1
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Visualizing quadratics

Recall:

Q fan=l= v1|g T4 ]

you can smash this bowl in the y direction

CD fay=[= y]“) ZHﬂ

you can smash this bowl in the x direction

() sen-t= 1[5 0][3]



Visualizing quadratics
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Visualizing quadratics

Eigenvalues

A 3.25 1.30 0.50 -0.87][1 01[ 0.50 -0.87]
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Visualizing quadratics

Eigenvalues

A 775 3901 [050 -087][1 071[0.50 -0871
1390 325| [-0.87 -050{[0 10{|-0.87 -0.50

Eigenvectors Eigenvectors

200~
15004
1000

5004

150

Ny L L L L i L I L |
10 20 30 40 50 B0 70 80 90 100




Error function for Harris Corner Detector

e Letanimage be given by /.
e Consider taking an image patch over the area (x,y) and shifting it by (u,v).
e The weighted sum of squared differences (SSD) between these two patches, is given by:

Change of intensity for the shift [2,V]:

Error Window Shifted Intensity
function function intensity

Window function w(x,y) =

1 in window, O outside Gaussian



Error function for Harris Corner Detector

Change in appearance of window w(x,y) for shift [u, V]




Error function approximation for Harris Corner Detector

Taylor Series: f(x) Can be represented at point a in terms of its derivatives

(g "a (3)0,

fla)+

f(z,y) = L(z,y) = f(a,b) + fi(a,b)(z —a) + fy(aa b)(y —b)+ ...



Error function approximation for Harris Detector

E(u,v)= Z w(x y) [](x+u y+v) ](x y)]

X,y

WlndOW function shifted 1nten91ty 1ntens ity

E@,v)=Y wx,y) [I(x,p)+ul +vI, —I(x,y)] ToYlor senes

-V window funct tensit
window function shifted in intensity intensity

Hww )= Zw(x y)lul, +v[]

Bla.yv)= Zw(x y){ u v{j:]:l

p)= St of i 1 1]
E(uy)=(u v){ZMxy)[ j(l 1 )}(ZJ E(u,v)=(u ")M@



Error function approximation for Harris Detector

For small shifts [, V]

Change in
appearance for a
shift [u,V]

where M is a 2x2 matrix computed from image derivatives:

‘second moment’ matrix
‘structure tensor’




How do you find a corner?

[Moravec 1980]

Recognize corners by looking at small window.

Shifting the window in any direction should give a large change in intensity in
all directions.



How do you find a corner?

/

—— e ——————

—— o ————————

“flat” region: ‘edge”. “corner”:
no change in all no change along the edge significant change in all
directions direction directions



Design a program to detect corners
(hint: use image gradients)



Finding corners using Harris Corner Detector

W
Compute image gradients over a small . @ |
region/window. Be ./
Compute the covariance matrix Notation:

= M (Structure Tensor)
Compute eigenvectors and eigenvalues.

Use threshold on eigenvalues or on a function
of eigenvalues to detect corners

2. Iyl
. pEP

2. Iyl




1. Compute image gradients over a small region
(not just a single pixel)



1. Compute image gradients over a small region

array of x gradients

I
I:,,—a

Oz

array of y gradients

;oI

"= ay




Visualization of gradients

image

X derivative

Y derivative




Visualization of gradients

oI oI oI
Iy_@ Iy—@ Iy_a_y
’.&.o (XIINY e o (3§ oI
° I :al o0 L ﬁ I :g e o ode T = o=
. > = 5 . = by oz
o ®
°

What does the distribution tell you about the region?



Visualization of gradients

oI oI oI
- = %= I =
h=%y b=y Y by
(J a
> I = — e
U _az e oz / :‘ Oz
L)
o

distribution reveals edge orientation and magnitude



2. Compute the covariance matrix



2. Compute the covariance matrix

i 1.1 1.1,
%:P Ttx %:P -y p € P denotes all
p T P 77 pixels in the window
Z y-x Z Yty
_ pEP pEP o
oI oI
k=5 = 5y
_ *
S I,I, =SUm( )
peEP

array of x gradients array of y gradients



2. Compute the covariance matrix

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

“flat” region: “edge™ “corner”:
no change in all no change along the edge significant change in alll
directions direction directions

[Moravec 1980]



Visualization of a quadratic

The surface E(u,v) is locally approximated by a quadratic form

Eu,v) = [u vl M

)
1 11
M = )
I, I




Visualization of a quadratic

Which error surface indicates a good image feature?

e 8 &8 8 8 B8
s 8 & 8 8 8

What kind of image patch do these surfaces represent?



Visualization of a quadratic

Which error surface indicates a good image feature?

o B &8 8 8 B8
o 8 &5 8 8 §
- 8 5 8 8 8

corner
‘dot’




3. Compute eigenvalues and eigenvectors



3. Compute eigenvalues and eigenvectors

eigenvalue

Me = \e (M — M\)e =0

eigenvector



3. Compute eigenvalues and eigenvectors

eigenvalue

Me = \e (M — AM)e =0

eigenvector

1. Compute the determinant of M — A\

(returns a polynomial)




3. Compute eigenvalues and eigenvectors

eigenvalue

Me = Xe (M —X)e=20
N /7

eigenvector

1. Compute the determinant of M — M\

(returns a polynomial)




3. Compute eigenvalues and eigenvectors

eigenvalue

l

Me = Xe (M —X)e=20
N/

eigenvector

1. Compute the determinant of M — M\

(returns a polynomial)




Interpreting eigenvalues

Ao




Interpreting eigenvalues

%

‘horizontal’

B oo
Ay >> A

L

corner

A~

A1 >> Ay

‘vertical’
edge




Interpreting eigenvalues

‘horizontal’ corner
- edge
Ay >>
A~ Ao
}\,1 > 7\,2

o 8 8 8 8 8

‘vertical’
edge




4. Use threshold on eigenvalues or a on function of
eigenvalues to detect corners



4. Use threshold on eigenvalues to detect corners

%)

Think of a function to
score ‘cornerness’




4. Use threshold on eigenvalues to detect corners

A2

strong corner

Think of a function to
score ‘cornerness’




4. Use threshold on “afunction of” eigenvalues to detect corners

%)

corner

Use the smallest eigenvalue
as the response function

R = min()\l, )\2)




4. Use threshold on “afunction of” eigenvalues to detect corners

%)

corner

R = )\1)\2 - I’{,()\l + )\2)2



4. Use threshold on “afunction of” eigenvalues to detect corners

%)
corner
R<0 R>0
det M =\,
trace M =\, + A\,
R = det(M) — strace?(M) e ({a ZD — ad — be
C




Harris & Stephens (1988)

k is usually set between 0.04 and 0.06.

Kanade & Tomasi (1994)

Nobel (1998)




Harris Detector
C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

5. Threshold on R value. Compute non max suppression.

Retain only the pixels that correspond to the local maxima within a NMS window in the
corner response map.

The choice of the window size for NMS affects the scale at which non-maximum
suppression is applied.

A larger window may lead to the preservation of larger corners, while a smaller window
may focus on finer details.



Harris




Harris: Corner response




Harris: Thresholded Corner response




Harris: Non-maximal suppression




Harris corner detection

Harris corner response is
invariant to rotation

™ ||~/\
& SR

Ellipse rotates but its shape
(eigenvalues) remains the same

- Corner response R is invariant to image rotation




Harris corner detection

The Harris corner detector is not
invariant to scale

edge!
corner!

C



