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Figure 5.22: Curves that may be analyzed at multiple scales.
© Cengage Learning 2015.

f(x) is smoothed by convolution with a 1D Gaussian

G(x, σ) = e−x2/2σ2
. (5.51)

If the standard deviation σ is slowly changed, the function

F (x, σ) = f(x) ∗ G(x, σ) (5.52)

represents a surface on the (x, σ) plane that is called the scale-space image. Inflexion
points of the curve F (x, σ0) for a distinct value σ0

∂2F (x, σ0)
∂x2 = 0 and ∂3F (x, σ0)

∂x3 �= 0 (5.53)

describe the curve f(x) qualitatively. The positions of inflexion points can be drawn as
a set of curves in (x, σ) co-ordinates (see Figure 8.16). Coarse to fine analysis of the
curves corresponding to inflexion points, i.e., in the direction of decreasing value of the
σ, localizes large-scale events.

The qualitative information contained in the scale-space image can be transformed
into a simple interval tree that expresses the structure of the signal f(x) over all
observed scales. The interval tree is built from the root that corresponds to the largest
scale (σmax), and then the scale-space image is searched in the direction of decreasing σ.
The interval tree branches at those points where new curves corresponding to inflexion
points appear (see Chapter 8 and Section 8.2.4).

The third example of the application of scale is that used by the popular Canny
edge detector. Since the Canny detector is a significant and widely used contribution
to edge detection techniques, its principles will be explained in detail.

5.3.5 Canny edge detection
Canny proposed an approach to edge detection [Canny, 1986] that is optimal for step
edges corrupted by white noise. The optimality of the detector is related to three criteria.

• The detection criterion expresses the fact that important edges should not be
missed and that there should be no spurious responses.

• The localization criterion says that the distance between the actual and located
position of the edge should be minimal.

• The one response criterion minimizes multiple responses to a single edge. This is
partly covered by the first criterion, since when there are two responses to a single
edge, one of them should be considered as false. This third criterion solves the
problem of an edge corrupted by noise and works against non-smooth edge operators
[Rosenfeld and Thurston, 1971].
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Canny’s derivation is based on several ideas.

1. The edge detector was expressed for a 1D signal and the first two optimality criteria.
A closed-form solution was found using the calculus of variations.

2. If the third criterion (multiple responses) is added, the best solution may be found
by numerical optimization. The resulting filter can be approximated effectively
with error less than 20% by the first derivative of a Gaussian smoothing filter with
standard deviation σ [Canny, 1986]; the reason for doing this is the existence of
an effective implementation. There is a strong similarity here to the LoG based
Marr-Hildreth edge detector [Marr and Hildreth, 1980], see Section 5.3.3.

3. The detector is then generalized to two dimensions. A step edge is given by its
position, orientation, and possibly magnitude (strength). It can be shown that
convolving an image with a symmetric 2D Gaussian and then differentiating in the
direction of the gradient (perpendicular to the edge direction) forms a simple and
effective directional operator (recall that the Marr-Hildreth zero-crossing operator
does not give information about edge direction, as it uses a Laplacian filter).
Suppose G is a 2D Gaussian [equation (5.47)] and assume we wish to convolve the
image with an operator Gn which is a first derivative of G in some direction n

Gn = ∂G

∂n = n ∇G . (5.54)

We would like n to be perpendicular to the edge: this direction is not known in
advance, but a robust estimate of it based on the smoothed gradient direction is
available. If f is the image, the normal to the edge n is estimated as

n = ∇(G ∗ f)��∇(G ∗ f)
�� . (5.55)

The edge location is then at the local maximum of the image f convolved with the
operator Gn in the direction n

∂

∂n Gn ∗ f = 0 . (5.56)

Substituting in equation (5.56) for Gn from equation (5.54), we get

∂2

∂n2 G ∗ f = 0 . (5.57)

This equation (5.57) illustrates how to find local maxima in the direction perpendic-
ular to the edge; this operation is often referred to as non-maximal suppression
(see also Algorithm 6.4).
As the convolution and derivative are associative operations in equation (5.57), we
can first convolve an image f with a symmetric Gaussian G and then compute
the directional second-derivative using an estimate of the direction n computed
according to equation (5.55). The strength of the edge (magnitude of the gradient
of the image intensity function f) is measured as

��Gn ∗ f
�� =

��∇(G ∗ f)
�� . (5.58)
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4. Spurious responses to a single edge caused by noise usually create a ‘streaking’
problem that is very common in edge detection in general. The output of an
edge detector is usually thresholded to decide which edges are significant, and
streaking may break up edge contours as the operator fluctuates above and below
the threshold. Streaking can be eliminated by thresholding with hysteresis,
employing a hard (high) threshold and a soft (lower) threshold—see Algorithm 6.5.
The low and high thresholds are set according to an estimated signal-to-noise ratio
[Canny, 1986].

5. The correct scale for the operator depends on the objects contained in the image.
The solution to this unknown is to use multiple scales and aggregate information
from them. Different scales for the Canny detector are represented by different
standard deviations σ of the Gaussians. There may be several scales of operators
that give significant responses to edges (i.e., signal-to-noise ratio above the thresh-
old); in this case the operator with the smallest scale is chosen, as it gives the best
localization of the edge.
Canny proposed a feature synthesis approach. All significant edges from the
operator with the smallest scale are marked first, and the edges of a hypothetical
operator with larger σ are synthesized from them (i.e., a prediction is made of how
the large σ should perform on the evidence gleaned from the smaller σ—see also
Section 5.3.4 and Figure 8.16). Then the synthesized edge response is compared
with the actual edge response for larger σ. Additional edges are marked only if they
have a significantly stronger response than that predicted from synthetic output.
This procedure may be repeated for a sequence of scales, a cumulative edge map
being built by adding those edges that were not identified at smaller scales.

Algorithm 5.4: Canny edge detector

1. Convolve an image f with a Gaussian of scale σ.

2. Estimate local edge normal directions n using equation (5.55) for each pixel in
the image.

3. Find the location of the edges using equation (5.57) (non-maximal suppression).

4. Compute the magnitude of the edge using equation (5.58).

5. Threshold edges in the image with hysteresis (Algorithm 6.5) to eliminate spu-
rious responses.

6. Repeat steps (1) through (5) for ascending values of the standard deviation σ.

7. Aggregate the final information about edges at multiple scale using the ‘feature
synthesis’ approach.

Figure 5.23a shows the edges of Figure 5.9a detected by a Canny operator with
σ = 1.0. Figure 5.23b shows the edge detector response for σ = 2.8 (feature synthesis
has not been applied here).
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(a) (b)

Figure 5.23: Canny edge detection at two different scales. © Cengage Learning 2015.

Canny’s detector represents a complicated but major contribution to edge detection.
Its full implementation is unusual, it being common to find implementations that omit
feature synthesis—that is, just steps 1–5 of Algorithm 5.4.

5.3.6 Parametric edge models
Parametric models are based on the idea that the discrete image intensity function can be
considered a sampled and noisy approximation of an underlying continuous or piecewise
continuous image intensity function [Nevatia, 1977]. While this function is not known, it
can be estimated from the available discrete image intensity function and image properties
can be determined from this continuous estimate, possibly with subpixel precision. It is
usually impossible to represent image intensities using a single continuous function since
a single function leads to high-order intensity functions in x and y. Instead, piecewise
continuous function estimates called facets are used to represent (a neighborhood of)
each image pixel. Such an image representation is called a facet model [Haralick and
Watson, 1981; Haralick, 1984; Haralick and Shapiro, 1992].

The intensity function in a neighborhood can be estimated using models of different
complexity. The simplest one is the flat facet model that uses piecewise constants and
each pixel neighborhood is represented by a flat function of constant intensity. The
sloped model uses piecewise linear functions forming a sloped plane fitted to local image
intensities. Quadratic and bi-cubic facet models employ correspondingly more complex
functions.

Once the facet model parameters are available for each image pixel, edges can be
detected as extrema of the first directional derivative and/or zero-crossings of the second
directional derivative of the local continuous facet model functions.

A thorough treatment of facet models and their modifications for peak noise removal,
segmentation into constant-gray-level regions, determination of statistically significant
edges, gradient edge detection, directional second-derivative zero-crossing edge detection,
and line and corner detection is given in [Haralick and Shapiro, 1992]. Importantly,
techniques for facet model parameter estimation are given there.
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