Part 111
Image Classification and Annotation

Dripping water penetrates the stone

II1.1 Introduction

Due to the rapid digitisation and development of the Web, the world
is full of digital images. However, without proper classification, these
mammoth amount of images are not going to be much helpful, instead,
it has caused a huge waste of resources.

Vast amount of research has been done in the past decades to
organize digital images into categories so that they can be searched and
retrieved conveniently. However, despite the tremendous effort, we are
still at the early stage of understanding images.

Basically, image classification is to organize images into different
classes based on the features of the images. Image annotation is to label
images with different semantic class names, such as trees, air planes,
lake, etc. The difference between image classification and image
annotation is that image annotation attempts to annotate an image
with multiple labels or classify an image into multiple classes. Image
annotation is done through multiple instance learning (MIL). With MIL,
an image is represented with a bag of features (BOF), and an image is
labelled as positive if any of the instances in the bag is positive. Image
classification and annotation are close related, because if an image is
correctly classified, it can be annotated and if an image is correctly
annotated, it can be properly classified into a class.

Given an image as in Fig. III.1, what we want is to classify it into one
of the semantic classes, such as, ‘mountain’ or ‘plants’ or ‘nature’, with a
probability or likelihood.
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Fig.Il1.1 Animage to be classified into one of the classes

However, what we have is usually a sequence of numeric features
computed through certain feature extraction methods described in Part
II, such as, a color histogram, or a feature vector (Fig. I11.2).
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Fig.II1.2 Animage on the left and its color histogram on the right

What we can do is to learn from experience or prior knowledge like
a human being. Suppose we know the above image is a mountain image,
given an unknown image, we can compare its features with the features
of the mountain image. If there is a good match (e.g., high probability)
between the two feature vectors, we would label or classify the
unknown image also as ‘mountain’ (Fig. II1.3).
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Fig.II1.3 Matching between an unknown image with a labelled image

We could use this simple method to identify or retrieve all the
mountain images from the database (Fig. I11.4). However, this is not
going to work well, because the single known image is not a good
representation of all the mountain images in the database.
Consequently, many mountain images in the database will be
misclassified or not retrieved.
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Fig.Il1.4 Use alabelled image to identify all the mountain images in a database

A much better way to identify all mountain images in a database is
to collect large number of sample mountain images and use them to
train a classifier. Once trained, the classifier will be able to memorize
these sample images and use them to recognize unknown images.

There are generally two types of approaches on training or building
a classifier, generative versus discriminative.

III.1.1 Generative Model

The generative approach is based on an idea similar to Platonic
philosophy that there is an abstract concept or model behind every
type of objects in this world, such as trees, apples, dogs, human beings
etc. It is believed that when people try to recognize a specific type of
objects in this world, they actually compare them with this abstract
model. Therefore, it is possible to create or work out this abstract
model for every type or class of objects. The simplest way to create this
kind of model is to collect a set of real world samples and average them,
for example, an average apple (Fig. I1L.5).



learning

C—

traiing samples

Fig.II1.5 Sample apples (right) and the learnt apple model (left)

However, this can only do simple classification by distinguishing
apples from non-fruit objects, while it would be difficult to distinguish
apples from other fruits such as peaches, or pears. In practice, a
probabilistic distribution is learnt from the collected samples and the
distribution is used as the model representing the objects (Fig. I11.6).
The variety of those probabilistic methods follow the generative
approach, including the typical Gaussian mixture model and Bayesian
methods.
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Fig.II1.6 Computation of a generative model. Sample images are represented as features
(right); a mixture distribution model is learnt from those sample features (left)




I11.1.2 Discriminative Approach

In contrast to the generative approach, the discriminative approach
doesn’t believe or is unaware of the model behind every type of objects
Instead, discriminative methods do classification by comparing
different objects based on their similarity or difference, as opposed to
comparing objects with a model in the generative approach. In practice,
a large number of sample training data are collected from different
classes, and an optimal hyper plane, called the classifier or a machine, is
fitted between two classes in a high dimensional feature space (Fig.
I11.7). The optimal hyper plane is found through a trial and error

process by keeping testing the similarity or difference between the
training data.
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Fig.III.7 A machine is fitted between two classes of data
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History tells the future.

7.1 Introduction
All Bayesian classification methods are based on the Bayes’ theorem:

P(BIA)P(A) P(B|A)P (A)

P(A|B) = =
A1) P(B) P(B|A)P(A)+P(B|A)P(A)

(7.1)

where

e Aand Bare random events, and A is the complement of A.

e Aisahypothesis to be tested or predicted.

e Bisthe new data or observation, and it is the new evidence to predict
A.

e P(A) is called the prior probability, and P(B|A) is called the likelihood,;
they represents our experience or prior knowledge.

e P(B) is the observation probability or the chance to observe event B.

e P(A|B) is called the posterior probability.

The idea of Bayes’ theorem is to convert the computation of
probability of P(A|B) to P(B|A) which is easier to compute. This is
extremely helpful when two random events A and B are dependent each
other, and the prediction of event A is difficult due to lack of evidence or



information; in this situation, the information about B can be employed
to help predicting A more accurately. The information about B can
usually be obtained from historical data or experience.

This idea of predicting one event using other related events have
been practiced by human beings all the time; for example, we use
symptoms to predict a disease, use cloud to predict rain, use a man'’s
culture/background to predict his behavior, use rainfall to predict
harvest, etc. In the following, we use two simple examples to get some
firsthand understanding of how Bayesian theorem works in real-world
applications.

For the first example, we are planning for a sports event at a
weekend in a local club and we want to know if the weather will be fine
at the weekend. We know the weather and humidity are highly related;
we can use humidity to help us predicting if the weather is fine so that
the sports can go ahead. Formally, let

R =Rain R =Norain H = Highhumidity (humidity > 80%)
Suppose we know from history (e.g. bureau of meteorology) the
following prior information:
P(R)=35% P(R)=65% P(HIR) = 30%
Suppose further we know there will be high humidity at the

weekend based on the most recent day weather, then we can predict
the chance of no rain at the weekend by the Bayes’ theorem:

ey PAIRP(R) P(HIRP (R)
(Rit) = P(H) P(HIR)P(R) + P(HIR)P (R)
0.3 % 0.65 _0195 .

T 03x0.65+1x065 0845

This information is useful for making a reasonable decision on if the
sports event should go ahead. Notice that without the prior information
of P(R) and P(H|R), the prediction and decision would have been

made arbitrarily. In practice, factors such as humidity, temperature and



atmospheric pressure are combined to obtain an even more accurate
prediction.

Another example is the application of the Bayes’ theorem on image
classification. Suppose we have detected some black and white strips
(through feature extraction) in an image; based on our experience, we
believe it’s likely a zebra image. But how likely the image is a zebra,
70% of the chance, 80% or 99%? For many other cases like financial,
economic or military situations, this likelihood is crucial to make a right
decision. It’s clear we need more evidence to determine the accurate
likelihood. The answer is in statistics.

If we were able to sample all the images in the world just like a
population census in a country, we would be able to calculate the
statistics and tell how many non-zebra images would have the black
and white strips. This statistic would help us to determine how likely
the image with black and white strips is a zebra image. Unfortunately,
we are not able to do a census on all the images in the world; all we can
do is to sample part of the image population and create an image
database, then use the statistics calculated from the image database to
approximate those in the image population.

Formally, let

Z = Zebraimage Z = non-— Zebraimage BWS = Black and white strips

Now, suppose we know the following probabilities from a training
set or an image database (our experience or prior information):

PBWS|Z)=1.0 P(Z)=0.05 PBWS|Z)=0.01

Then, given the black and white strips in an image, we can predict if
there is a zebra in the image by the Bayes’ theorem:

P(ZBWS) = P(BWS|Z)P(Z) P(BWS|Z)P (Z)
PBWS)  p(BWS|Z)P(Z)+ PBWS|Z)P(Z)
1.0 x 0.05 005 o0

~1.0x0.05+0.01x0.95  0.0595

Therefore, we can say there is a high chance that the image is a
zebra image and we have high confidence to classify the image into the
zebra image category.



Bayes’ theorem can be extended to multiple events Ay, Ao, ..., A,.

P(BIA)P (A;) P(B|A;)P (A;)
P(B) " P(BJA)DP(A)) + ...+ P(BIA,)P(A,)

P(AilB) = (7.2)
In this case, B is related to or dependant on multiple other events A,

and based on what we know about the relationship or dependency
between B and each A;: P(B|4;), we can predict if a new observation of B

is from any of the events A;.

For example, fever (B) can be caused by many diseases or medical
conditions (4;), such as infection, flu, pneumonia, chickenpox, measles,

HIV, meningitis, cancers, malaria and dengue. However, each disease or
medical condition has different chances of causing fever: P(B|4;). Now,

given a patient with fever, (7.2) can be used to determine if the patient
has flu: P(4;|B). In clinical practice, however, symptoms are typically

combined to nail a disease; e.g. by combining fever with running nose
and headache, flu can be diagnosed with very high accuracy.

7.2 Naive Bayesian Image Classification

7.2.1 NB Formulation

The naive Bayesian (NB) methods are based on a simple application of
the above Bayes’ theorem on numerical and high-dimensional image
data.

e Given a set of N images: I = {I;, I,, ..., Iy}
e And a set of n semantic classes C = {Cy, Cy, ..., C,} (events).

e JEC
e Each image I is represented by a feature vector I ~ X = (xq, X9, ..., X;;,)

(observation).

According to Bayes’ theorem, the classification or annotation of
image I to class C; is given by

PXICHP (C)) _ PXIC)HP(C)

P(ClD = P(Cix) = Px)  PGICOPC)+... + PxiC)PC) 73

Or



Px|C)P (C))
P(C|I) = P(Cix) = )
(Gl = PG = 0P () (7.4)

Because the denominator P (x) = };_; P(X|Cy) X P (Cy) is

independent of class C; (i =1, 2, ..., n) and is a constant, (7.4) can be
written as:

1
P(Ci|I) = P(Cilx) = ZP(X|C1')P(C1') (7.5)

where Z = }/_, P(x|Cy)P (Cy) is a scaling factor. The class of image I
can be decided using the maximizing a posterior (MAP) criterion

P(lel) =C =arg max P(C;x) = arg max {P(X|C)P (C))} (7.6)

The prior probabilities P(C;) is usually uniform for all classes;

otherwise, they can be found by the frequency or proportion of samples
belonging to class C; among all classes. Therefore, the classification of

image I comes down to modeling the likelihood probability of P(x/C;).

Since image features are typically numerical and continuous, they
need to be discretized before the likelihood modeling. In practice, the
following procedure is used to compute the P(x|C;) in (7.6).

Training:

e A training database of images from all the n classes {Cy, C, ..., C,,} are

created.
e Image features from the training database are clustered into m
clusters X; using a certain vector quantization algorithm.

* Next, a cluster centroid X; is computed for each of the clusters X;. x;, j
=1,2,..,m.

e Then, the likelihood P(le C,) is calculated by finding the frequency of
samples in X; belonging to class C;.



No. of samples in X ; which are from class C;

P(x/lC;)) = (7.7)

Total no. of samples in cluster X

Classification/Annotation:

e Given a new image I with feature X.
e Match feature x to the closest cluster centroids X; ’s.

» Apply the MAP of (7.6) by replacing the likelihood P(x|C;) with (7.7)
to obtain the posterior probability P(C; | I).

The classification and annotation of an image with naive Bayesian
method is illustrated in Fig. 7.1 [1, 2]. There are two major modules in a
NB classifier: training and annotation, and each of the major modules
consists of three submodules. The training module consists of feature
extraction, clustering and model building; while the annotation consists
of feature extraction, matching and decision making using MAP.
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Fig. 7.1 Image classification with naive Bayesian method

7.2.2 NB with Independent Features



Assume x4, X9, ..., X, are independent each other; then the likelihood is
given as:

PIC) = | | Pexjicy (7.8)

j=1

There are many situations where the features of a data are
independent each other, e.g., nominal features extracted by a web
crawler, tree, grass, sand and water. Suppose we are using a set of
nominal features X = (sand, water, sky, people) to classify a collection of
images into ‘beach’ and ‘non-beach’ categories; then, (7.8) can be
employed to modeling the likelihood in the Bayes’ theorem. Often
different types of numerical image features are combined into a more
powerful feature vector, e.g. x = (color, shape, texture); again, the
likelihood probability in the Bayes’ theorem can be computed using
(7.8).

7.2.3 NB with Bag of Features

If an image I is segmented into k regions, and each region is
represented as a feature vector xj,j =1, 2, .., k,Ican be represented as a

bag of features: I = {X;, Xo, ..., X;}. Typically, regions in an image are
independent each other; therefore, the conditional probability of P(I |
C;) is given by:

k
P(IC) = P (x1,%,...,%dC) = | | P(x/ICo) (7.9)
j=1

7.3 Image Annotation with Word Co-

occurrence

In the above naive Bayesian classification, images are not individually
labeled; instead, they are simply classified into categories. The
categories can be regarded as implicit image annotation or collective
image annotation. However, individual images can be pre-labeled and
the annotation of images can be done explicitly. Vast amount of labeled



images are available on the web; they can be employed to annotate new
images. One of the earliest works on explicit image annotation or
individual image annotation is the word co-occurrence model (WCC)
introduced by Mori et al. [3]. The idea is to establish the relationship
between image features and the labels and use the relationship as a
likelihood model to label new images. Specifically, features from pre-
labeled image are clustered into clusters and a word histogram is
computed from each cluster as the likelihood model. The idea of their
method can be summarized as follows:

1. Collecting training images with pre-labeled key words.

2. Divide each image into parts and extract features from each part.
3. Each divided part inherits all words from its original image.

4. Make clusters from all divided images using vector quantization.

5. Accumulate the frequencies of words of all partial images in each
cluster and calculate the likelihood for every word.

6. For an unknown image, divide it into parts, extract their features
and match the image parts with the above clusters. Combine the
likelihoods of the image parts and determine which words are most
plausible.

The algorithm of the word co-occurrence model is given as
following:

» Collect and label training images. Given a training dataset of n
images I = (I3, I,,, ..., I,) and each image I, is pre-labeled with a set of
semantic words w;:

(Lw) ={(Li,w1), L2, w2),...,([,,W,)}

¢ Obtain the vocabulary of the training images. The semantic
vocabulary of the dataset consists of m words:



W = (WI,W27"'7Wm)

e Divide training images into blocks. Each training image is divided
into small blocks, and each block inherits all the annotations from its
parent image.

e Vector Quantization (VQ).

- Blocks from all the training images are clustered into v clusters
represented by the centroids ¢4, ¢, ..., C,.

- Each cluster c; is represented as a feature vector x; (each cluster is
called a visual word or VW, which is corresponding to a region in
the training images):

c=(c,c2,...,0) = (X1,X2,...,X))

e Obtain a word histogram in each cluster. Because each block has
inherited a set of words from its parent image, by counting the
occurrence of words, a histogram of words from the vocabulary can
be created:

P(wijlc;) = P(Wj|Xi) = (W, W,,...,W,) (7.10)

where W; represents the frequency of word w;in cluster ¢;, P(Wilc;)

represents the likelihood of word w;.
e Annotate an unknown image

- Given an unknown image I,, it is also divided into small blocks and
the blocks of the unknown image is also clustered into clusters.

- Each unknown cluster is matched with the VWs, and the nearest |
VWs are found for the unknown image.

- The matching is done by calculating the distance between each
feature of the unknown image x, and each VW X; : [|x, — X;|



- The annotation of image I,, to a semantic word w; (Gj=1,2,..,k)is
given by first summing up the histograms of matched clusters c; (i
=1, .., 1) and then selecting the top k bins as the annotations:

P(wi,...,wil,) = top k bins (Z P(wlc)) (7.11)
1

The co-occurrence annotation method can be illustrated in Fig. 7.2
[1, 2]. There are two key differences between Figs. 7.2 and 7.1. The first
is in the training module; while the NB builds a model of p(x;|c), the
WCC builds a model of p(w|c). The second difference in the annotation
module; while the NB makes a decision based on MAP, the WCC makes a
decision based on top histogram bins which means an image can be
classified into several classes.
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Fig. 7.2 Image annotation with co-occurrence of words

Although the co-occurrence method uses image blocks for the VQ,
the blocks can be replaced with pre-segmented image regions. This is



because regardless blocks or regions, they are all represented with a
feature vector x, and the VQ is done based on feature vector Xx.

7.4 Image Annotation with Joint Probability

The word co-occurrence model is a significant development to
traditional image classification; it can be generalized into a joint
probability model which is described in the following.

» Given a training dataset of n pre-annotated images:
(I’ W) = (117 Wl) s (]2, W2) IR (Il’l’ Wn)

e The semantic vocabulary of the dataset consists of m words:
W = (W17W2’° . '7Wm)
e The annotation or association of an unknown image I to a word w in
the vocabulary can be found by the joint probability of P(w, I) or P(w,

X), where x is the feature of L.
e In order to compute P(w, I), a latent variable c is introduced

Pw|I) = Pw,I) = P(wlc) X P(c|I) (7.12)

The computation of conditional probabilities P(w | ¢) and P(c | I) is
given in the following procedure:

e The training images are clustered into v clusters or VWs (the latent
variables):

¢c= (C17CZ3'°°7CV) = (X17X27 °'-7XV)

e Animage to be annotated is represented as a histogram or
distribution of VWs:

P(cill) = (X1, Xa,...,X,) (7.13)

where X; is the frequency of VW x; in image I.

e Each cluster is represented as a histogram or distribution of
vocabulary words:



P(wjlei) = (Wi, Wa, ..., Wy) (7.14)

where W; represents the frequency of word w; in cluster c;,
» Finally, the annotation of image I to a word w; is given by

P(wjll) = P (wlci) x P (D) (7.15)

As discussed in Sect. 7.2, images can be segmented into regions and
represented as a bag of features for annotation.

e Ifanimage I is represented as a bag of features (pre-clustered): I =
{X1, X9, ..., X}

» The conditional probability of P(c¢;|I) in (7.15) can be computed using
MAP:

P (c;|I) = arg max P(cj|l) = arg glax{P(Ilcj) X P(c;)} (7.16)

Cj Cj

where

P(I|cj) = P(X],Xz, e ,Xk|Cj> = l_[ P(x;lc) (7.17)

The key idea of image annotation based on the joint probability
model is the association of semantic words with visual words. This is
achieved through the VQ process. Once image features are clustered,
each cluster (VW) and the semantic words are bound together or
associated because each image feature inherits the semantic word(s)
from its parent image. This idea can be illustrated in Fig. 7.3.
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Fig. 7.3 Association of semantic words with block features
Once image features are clustered and visual words are generated,

two types of distribution can be created from each cluster: P(x|c;) and
P(wlc;). P(w|c;) is the word distribution in cluster c;, and it connects the
VWs to the semantic vocabulary. P(x|c;) is the feature distribution in
cluster c;, and it connects each VW with each of the images in the

database (Fig. 7.4). By combining these two important information,
new image can be annotated as shown in the above sections.
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Fig. 7.4 Association of semantic words with region features

7.5 Cross-Media Relevance Model

Although VQ is typical in building the likelihood models, models can
also be built ‘on the fly’ by a set of training images which are relevant to
the new observation. The cross-media relevance model (CMRM) [4]
provides an alternative method to the VQ and is another joint
probability model.

Given an image which is represented by a set of blobs: I = {x{, X, ...,
X,,}, the association of I with concept c is given by the joint probability

of p(c, X4, X9, ..., Xp):

p(e, X, Xp) = Z p(J) X p(c, Xy, - XplJ)
JeT

= p()x )" pleld) X ]_[ pxilJ)

JeT

(7.18)

where



#(c, J) N #(c,T)

plelJ) =1 —-ay) x 7 ay T (7.19)
#(x;, J) #(x;, T)
iIJ) = - .
px;|J) = (1 =By X W 7 Tl (7.20)

where

e Jis an image in the training set T
* ajand fjare the interpolation parameters.

e #(c,]) is the number of times concept c appears in J.
e #(X;, J) is the number of times blob Xx; appears in J.

e #(c, T) is the number of times concept c appears in T
e #(x;, T) is the number of times blob x; appears in T.

It can be seen from (7.18), given a new observation I = {Xy, X, ...,
X}, CMRM attempts to find all the relevant images in the training set
that have both concept ¢ (p(c|J) = 0) and feature x; (p(x;|J) = 0). A joint

probability model is built by aggregating all the models from the

relevant images. This is equivalent to build a class model for concept ¢
‘on the fly’. From (7.19) and (7.20), it can be seen that the performance
of this model depends on the choice of the weight a;and ;. In practice,

this can be a difficult decision to make.

7.6 Image Annotation with Parametric Model

One of the classic ways of model building is the parametric method
using the expectation-maximization (EM) algorithm. The idea of image
annotation with parametric model is similar to the CMRM method, that
is, to build a model for each of the individual images and aggregate the
similar individual models into a class model. However, instead of
combining training and annotation into a single process as in the CMRM
method, parametric model separates training and annotation into two
different processes.



During the training, images in the training set are pre-labeled and
pre-classified into different classes. A class model is then built by
aggregating individual image models in each class. During the
annotation, the model of the new image is built and matched with the
class models and the closest classes are selected as the annotations.
The procedure of parametric method is shown in Fig. 7.5. The
algorithm of this method is as the following:
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Fig. 7.5 Image annotation with parametric model

e Given a set of N training images: I, I, ..., Iy and a set of n classes Cy,
C,, ..., C,

o Features (e.g., block features) from each training image I are
clustered within the image

e A Gaussian mixture model (GMM) is learned from the clustering
using the EM algorithm:



[
P(IN) = > mG (x4, %) (7.21)
i=1

where
- lis the number of components in the mixture model of image L
- 715 is the weight for the ith component of the mixture model.
- ,u? is the mean of the ith component of the mixture model.

- 23 is the standard deviation of the ith component of the mixture

model.
e A Gaussian mixture model for each class C; is learnt by aggregating

(e.g., weighted averaging) all the image models within the class:
K
P(XIC) ) n6.G (%, 28, (7.22)
k=1

where

- K is the number of components in the mixture model of class C;.
- nk, is the weight for the kth component of the mixture model.
l

- ,ulé. is the mean of the kth component of the mixture model.
1

- EZ. is the standard deviation of the kth component of the mixture
l

model.
e Given a new observation image I, = X,,, the annotation of image I, is
given by the MAP:
P(lexu) = ¢ = argmax P(C;[x,)
C.

i (7.23)
= arg max{P(x,|C;) x P(C))}
C.

l



The algorithm of the parametric annotation method is illustrated in
Fig. 7.5 [2, 5].

7.7 Image Classification with Gaussian Process
In Gaussian mixture, each multidimensional feature vector X = (x4, x,, ...,

x,) is regarded as a data point in a R" space and the mixture model is
built based on the statistics of the data points in a cluster.

But a multidimensional data x = (x4, X, ..., X,,) can also be regarded
as a discretized function f X = Rand y = f(x) = {x; = f(d,) | i= 1,2, .., n}.
A typical example of such a data is a histogram feature vector. Figure 7.6
shows three normalized histograms (vertical bars) from the same class
in red, green and blue, respectively. The corresponding functions

approximating the three histograms are shown as colored curves at the
top of the histograms.

Mo\

N /T

I TN

os] | N VO \N\Y

ylk
1_

v

X

Fig. 7.6 Feature vectors shown as functions. Three histograms shown as vertical color bars and
their respective functions shown as colored curves on the top

If we plot all the histogram features f(X;) from a class in a single

coordinate system, we would see all the data fall within a band and
form a cluster. Like in the linear regression which attempts to fit a line



to a cluster of data points, we can also fit a curve to this cluster of data
points and use this curve as the model to predict new instances. This

approach is the idea behind the Gaussian process or GP, which is
demonstrated in Fig. 7.7 [6].

X

Fig. 7.7 Cluster of multidimensional data (green) and the approximation function of the data
shown in pink

Now, given a set of data X1, X,, ..., Xy from a certain class C and each
feature vector x; is a D-dimensional data point in space X; = (x;1, X;9,

ceey

X;p). Amatrix X = D x N = (dq, do, ..., dp)T can be created as following:

( X115 X290 evens s XN1 d1
X125 X025 v v , XN2 d;
X = = (7.24)
| X1Ds X2Ds e v - ,xyp | | dp |

where d; is a jth-dimensional vector. Since the elements of each d; are
samples from (or follow) a normal distribution, N (pj, Oj), Xisa

Gaussian process and X ~ N (py, Kxx), where py and Ky are the mean
and variance which are determined by (7.25) and (7.26), respectively.

[ u(dy) |

d
ny = | M9 (7.25)

| u(dp) |




[ k(dy,dy),k(d),dy)...... Jk(dy,dp) |
k(dr,,dy),k(dy,d>)...... Jk(dyr,d
Ky = (da,dy), k(da,d>) (dy,dp) (7.26)
| k(dp,d,),k(dp,dy)...... ,k(dp,dp) |

where k(d;, d;) is a kernel function which is typically the covariance

function.
To predict a new data or a new set of data X, X and X, are

concatenated and the concatenated data is a new GP which follows the
following normal distribution:

X, tx, 2X,X.s 22X, X
f( X ) N(( Ly )’( 2 XX, XX )) (7.:27)

Then, the probability of the new data X. given the observed data X
is given by (7.28):
pXIX) = N (px, + KxxKxk (X - bx), Kx.x, — Kx.xKxkKxx, )(7.28)

The proof of (7.28) is given in Appendix [7-9].

7.8 Summary

This chapter introduces the first image classification method: Bayesian
classification. Several important and interesting application of Bayesian
classifier are described and demonstrated in details, including NB,
word co-occurrence model, CMRM, parametric model and Gaussian
process method. The key features of Bayesian classifiers can be
summarized as the following

1. Generative. A Bayesian classifier is a typical generative model, and
it assumes the distribution or model of likelihood probability is
known. This likelihood probability model is typically obtained
through learning from known samples.



2. Intuitive. Compared with many other black box-based classifiers
such as SVM and ANN, Bayesian classifiers are intuitive, and results
are easily interpreted by a human being. The basic idea the
Bayesian method is to use our prior experience to forecast or
predict new events. In this sense, we all make decision using
Bayesian classifiers.

3. Robust. A Bayesian classifier generates a result in probabilistic
form instead of deterministic form. Probabilistic prediction is more
robust than deterministic prediction, e.g., a 70% chance of rain
forecast is more likely to be correct than a rain/no-rain forecast.

4. Nonlinear. The boundary of a Bayesian classifier is nonlinear
because the prediction is based on the data distributions and the
distribution models can be any shape.

However, the downside of Bayesian classifier is that there needs
large number of data samples to have a reasonable accurate estimation
of data distribution.

7.9 Exercises

1. Use the example code in the following web page to generate a
Gaussian mixture model: https://au.mathworks.com/help/stats/
gmdistribution.html#mw_4758a58e-5bc7-4eda-b261-
83521d63d]1ce. First, try the gmdistribution function with the
following code. Turn the graph to different angles and also to flat
(2D) to view the model in more details. Then try different mu and
sigma values to create more GMM models.

mu=1[1 2;-3- 5];

sigma=cat(3,[2 .5],[1 1]);

gm=gmdistribution(mu, sigma);

ezsurf(@(x,y)pdf(gm, [x y]),[-10 10],[-10
10]);



2. Use the example code from this link: https://au.mathworks.com/
help/stats/fitgmdist.html and try the fitgmdist function with
the following code. Turn the graph to different angles and also to
flat (2D) to view the model in more details. Now, try fitgmdist

with more components and different mu and sigma values to create
more complex GMM models.

mul = [1 2];

sigmal = [2 0; 0 .5];

muZ2 = [-3 -5];

sigma2 = [1 0; 0 17;

rng ('default')

rl = mvnrnd (mul,sigmal,1000);
r2 = mvnrnd (muz,sigma2,1000);
X = [rl; r2];

gm = fitgmdist(X,2)
ezsurf (@ (x,y)pdf (gm, [x y1),[-8 6],[-8 6])

3. Use the code from the following web page to compute the posterior
probabilities of a GMM model which you have generated from the
above exercises. Explain the graph using the colors and color bar.
Write a report on the GMM models, the posterior probabilities and
tell how they can be used for image analysis (hints: an image or an
image region is a GMM model, and a GMM model is characterized or
defined by its parameters e.g. mu and Sigma). https://au.
mathworks.com/help/stats/gmdistribution.posteriorhtml.
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