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Definition

« ‘Support Vector Machine 1s a system for
efficiently training linear learning machines in
kernel-induced feature spaces, while respecting
the insights of generalisation theory and
exploiting optimisation theory.’

— AN INTRODUCTION TO SUPPORT VECTOR
MACHINES (and other kernel-based
learning methods)

N. Cristianini and J. Shawe-Taylor
Cambridge University Press
2000 ISBN: 0 521 78019 5

— Kernel Methods for Pattern Analysis
John Shawe-Taylor & Nello Cristianini
Cambridge University Press, 2004




The Scalar Product

a

0,

a-b =|a|b|cosd

The scalar or dot product is, in some sense, a
measure of Similarity



Decision Function
for binary classification

f(x)eR

f(x)20=vy. =1
f(xi)<0:> y. =—1



Support Vector Machines

SV Ms pick best separating hyperplane according to
some criterion

— €.g. maximum margin
Training process Is an optimisation

Training set is effectively reduced to a relatively
small number of support vectors



Feature Spaces

* \We may separate data by mapping to a higher-
dimensional feature space

— The feature space may even have an infinite
number of dimensions!

* We need not explicitly construct the new feature
space



Kernels

* We may use Kernel functions to implicitly map to a
new feature space

« Kernel fn:
K(x,%,)eR

« Kernel must be equivalent to an inner product in
some feature space



Example Kernels

Linear: (X-z)
Polynomial: P((x-z))

Gaussian: exp(—Hx—sz /02)



Perceptron Revisited: Linear Separators

 Binary classification can be viewed as the task of
separating classes in feature space:

wix+b=0

wix+b<0

f(x) = sign(w'x + b)
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Which of the linear separators is optimal?

11



Best Linear Separator?
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Best Linear Separator?
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Best Linear Separator?
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Best Linear Separator?
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Find Closest Points in Convex Hulls
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Plane Bisect Closest Points

w'x +b =0
w=d-c¢
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Classification Margin

Distance from example data to the separatoris r=
Data closest to the hyperplane are support vectors.

Margin p of the separator is the width of separation between
classes.
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Maximum Margin Classification

« Maximizing the margin is good according to intuition and
theory.

« Implies that only support vectors are important; other training
examples are ignorable.
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Statistical Learning Theory

Misclassification error and the function complexity
bound generalization error.

Maximizing margins minimizes complexity.
“Eliminates” overfitting.

Solution depends only on Support Vectors not
number of attributes.
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Margins and Complexity

Skinny margin
IS more flexible
B hus more complex.
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Margins and Complexity

Fat margin
IS less complex.
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Linear SVM Mathematically

« Assuming all data is at distance larger than 1 from the
hyperplane, the following two constraints follow for a

training set {(X; ,Yi)}
wixi+b>1 ify;=1
WTXi+bS'1 ify.=-1

« For support vectors, the inequality becomes an
equality; then, since each example’s distance from the

e hyperplaneis = the margin is: P

_ 2
wi
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Linear SVMs Mathematically (cont.)

Then we can formulate the quadratic optimization problem:

Find w and b such that

p=ﬁ is maximized and for all {(X; ,y:)}

wix, +b>1ify=1; wix,+b<-1 ify,=-1

A better formulation:

Find w and b such that

®(w) =% wTw is minimized and for all {(X; ,Y;)}

yi (W'X;+b) =1
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Solving the Optimization Problem

Find w and b such that
®(w) =% w'w is minimized and for all {(X; ,Y;)}
yi (W'x; +b)=>1

Need to optimize a quadratic function subject to linear constraints.
Quadratic optimization problems are a well-known class of mathematical
programming problems, and many (rather intricate) algorithms exist for
solving them.

The solution involves constructing a dual problem where a Lagrange
multiplier ¢; Is associated with every constraint in the primary problem:

Find a;...a such that

Q(0) =2a; - Yooy y;X;TX; is maximized and
(1) Zogy;=0

(2) o; >0 for all o;
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The Optimization Problem Solution

The solution has the form:

W =ZayX; b=vy,- w'x, for any x, such that o, =0

Each non-zero o; indicates that corresponding x; is a support vector.
Then the classifying function will have the form:

f(X) = Loy XX + b

Notice that it relies on an inner product between the test point x and the
support vectors x; — we will return to this later!

Also keep in mind that solving the optimization problem involved
computing the inner products x;'x; between all training points!
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Soft Margin Classification

What if the training set is not linearly separable?

Slack variables & can be added to allow misclassification of difficult or
noisy examples.
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Soft Margin Classification Mathematically

The old formulation:

Find w and b such that
®(w) =% w'w is minimized and for all {(X; ,Y;)}
yi (WX +b) =1

The new formulation incorporating slack variables:

Find w and b such that
d(w) =¥ wTw + CX&  is minimized and for all {(X; ,Y;)}
yi W'x; +b)>1-&  and =0 foralli

Parameter C can be viewed as a way to control overfitting.
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Soft Margin Classification — Solution

The dual problem for soft margin classification:

Find a;...a such that

(1) Zay;=0
(2) 0<g;<Cforall g

Neither slack variables & nor their Lagrange multipliers appear in the dual

problem!

Again, x; with non-zero a; will be support vectors.

Solution to the dual problem is:

W =2ayX;
b=y, (1- &) - w'x, where k = argmax a,
k

But neither w nor b are
needed explicitly for
classification!

f(X) = Loy XX + b
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Theoretical Justification for Maximum Margins

Vapnik has proved the following:
The class of optimal linear separators has VC dimension h bounded from

above as D2
h<min{| —|/m, r+1
o,

where p is the margin, D is the diameter of the smallest sphere that can
enclose all of the training examples, and m, is the dimensionality.

Intuitively, this implies that regardless of dimensionality m,we can
minimize the VC dimension by maximizing the margin p.

Thus, complexity of the classifier is kept small regardless of
dimensionality.
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Linear SVMs: Overview
The classifier is a separating hyperplane.

Most “important” training points are support vectors; they define the
hyperplane.

Quadratic optimization algorithms can identify which training points x; are
support vectors with non-zero Lagrangian multipliers a;.

Both in the dual formulation of the problem and in the solution training
points appear only inside inner products:

Find a;...aysuch that f(x) = Zai)’i"' b
Q(a) =Xq; - 1/222aiajyiyjis maximized and

(1) 2ay;=0

(2) 0< ;< Cforall g
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Non-linear SVMSs

« Datasets that are linearly separable with some noise work out great:

« But what are we going to do if the dataset is just too hard?

*—0 —0— -0—0 o - —>

0 X
« How about... mapping data to a higher-dimensional space:
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Nonlinear Classification

X:[a’b] .“ e o
X0w = w,a +w,b o’ ®
! :.'
0(x)=| a,b,ab,a’,b’ | “Tee

(X)W = w,a + w,b +w,ab +w,a’ + w.b?
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Non-linear SVMSs: Feature spaces

General idea: the original feature space can always be mapped to some
higher-dimensional feature space where the training set is separable:
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The “Kernel Trick”

The linear classifier relies on inner product between vectors K(x;,X;)=x;"X;

If every datapoint is mapped into high-dimensional space via some
transformation ®: x — ¢(x), the inner product becomes:

K(X;,X;)= 0(X;) To(X;)
A kernel function is some function that corresponds to an inner product into
some feature space.

Example:

2-dimensional vectors X=[x; X,]; let K(x;,X;)=(1 + X;"X;)?

Need to show that K(x;,X;)= 9(X;) To(X;):

KX X)=(1 + X7XG)2 = 14 X33 2X1% + 2 Xy X1 XigXjp+ Xip?Xjo” + 21X + 2XipXj,=
=1 x;,% V2 XX Xi? V2%i V2] T [1 Xi32 N2 XXy Xip? N2Xip V2Xip] =
= o(x;) To(x;), Wwhere o(x) = [1 X,2 V2 XX, X2 V2X; V2X,]
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Bernhard Scholkopf

Christopher ).C. Burges

Alexander J. Smola
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Positive Definite Matrices

A square matrix A is positive definite if

XTAx>0 for all nonzero column vectors
X.

It is negative definite if xTAx < 0 for all
noNzero X.

It is positive semi-definite if XTAx >0.

And negative semi-definite if xTAX
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What Functions are Kernels?

For some functions K(x;,x;) checking that K(x;,x;)= ¢(x;) T@(x;) can be
cumbersome.
Mercer’s theorem:

Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a semi-positive
definite symmetric Gram matrix:

KxpXp) | K(Xp:Xp) | K(X3,X3) K(X1:Xy)
KX2Xp) | K(X2:Xp) | K(X;,X3) K(X2:Xy)
KXniX) | K(XnXo) | K(XX3) K(Xn:Xn)

38



Examples of Kernel Functions
Linear: K(x;,X;)= X; 'X;
Polynomial of power p: K(x;,x;)= (1+ X; 'X;)P
Gaussian (radial-basis function network): K(x;,x;)= €

Two-layer perceptron: K(x;,X;)= tanh(Byx; ij + B,)

_Hxi —Xj

257

[
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Non-linear SVMs Mathematically

Dual problem formulation:

Find o ...ay such that

Q(0) =2a; - YoXayoyyy;K(X;, X;) is maximized and
(1) Zoyy;=0

(2) a; =0 for all o

The solution is:

f(X) = ZagyiK(x;, X;)+ b

Optimization techniques for finding ¢; s remain the same!
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SVM applications

SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and
gained increasing popularity in late 1990s.

SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.

SVM techniques have been extended to a number of tasks such as
regression [Vapnik et al. *97], principal component analysis [SchOlkopf et
al. ’99], etc.

Most popular optimization algorithms for SVMs are SMO [Platt *99] and
SVM!'idt [Joachims’ 99], both use decomposition to hill-climb over a subset
of @;’s at a time.

Tuning SVMs remains a black art: selecting a specific kernel and
parameters is usually done in a try-and-see manner.
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SVM Extensions

Regression

Variable Selection

Boosting

Density Estimation
Unsupervised Learning

— Novelty/Outlier Detection
— Feature Detection

— Clustering
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Support Vector Machine Resources

SVM Application List
http://www.clopinet.com/isabelle/Projects/SVM/applist.htmi

Kernel machines
http://www.kernel-machines.org/

Pattern Classification and Machine Learning
http://clopinet.com/isabelle/#projects

R a GUI language for statistical computing and graphics
http://www.r-project.org/

Kernel Methods for Pattern Analysis — 2004

http://www.kernel-methods.net/

An Introduction to Support VVector Machines
(and other kernel-based learning methods)

http://www.support-vector.net/

Kristin P. Bennett web page
http://www.rpi.edu/~bennek

Isabelle Guyon's home page
http://clopinet.com/isabelle
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