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Support Vector Machine 

Classifiers
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Outline

• Support Vector Machines for Classification

– Linear Discrimination

– Nonlinear Discrimination

• SVM Mathematically

• Extensions

• Data Classification

• Kernel Functions
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Definition

• ‘Support Vector Machine is a system for 

efficiently training linear learning machines in 

kernel-induced feature spaces, while respecting 

the insights of generalisation theory and 

exploiting optimisation theory.’

– AN INTRODUCTION TO SUPPORT VECTOR 

MACHINES (and other kernel-based 
learning methods)
N. Cristianini and J. Shawe-Taylor
Cambridge University Press
2000 ISBN: 0 521 78019 5

– Kernel Methods for Pattern Analysis
John Shawe-Taylor & Nello Cristianini
Cambridge University Press, 2004
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The Scalar Product
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The scalar or dot product is, in some sense, a 

measure of Similarity
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Decision Function

for binary classification
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Support Vector Machines

• SVMs pick best separating hyperplane according to 

some criterion

– e.g. maximum margin

• Training process is an optimisation

• Training set is effectively reduced to a relatively 

small number of support vectors
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Feature Spaces

• We may separate data by mapping to a higher-

dimensional feature space

– The feature space may even have an infinite 

number of dimensions!

• We need not explicitly construct the new feature 

space
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Kernels

• We may use Kernel functions to implicitly map to a 

new feature space

• Kernel fn: 

• Kernel must be equivalent to an inner product in 

some feature space

  Rxx 21,K
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Example Kernels

zx Linear:

Polynomial:  zx P

Gaussian:  22
/exp zx 
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Perceptron Revisited:  Linear Separators 

• Binary classification can be viewed as the task of 

separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)
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Which of the linear separators is optimal?
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Best Linear Separator?
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Best Linear Separator?
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Best Linear Separator?
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Best Linear Separator?
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Find Closest Points in Convex Hulls

c

d
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Plane Bisect Closest Points 

d

c

wT x + b =0

w = d - c
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Classification Margin

• Distance from example data to the separator is 

• Data closest to the hyperplane are support vectors. 

• Margin ρ of the separator is the width of separation between 

classes.
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Maximum Margin Classification

• Maximizing the margin is good according to intuition and 

theory.

• Implies that only support vectors are important; other training 

examples are ignorable. 
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Statistical Learning Theory

• Misclassification error and the function complexity 

bound generalization error.

• Maximizing margins minimizes complexity.

• “Eliminates” overfitting.

• Solution depends only on Support Vectors not 

number of attributes.
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Margins and Complexity

Skinny margin

is more flexible

thus more complex.
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Margins and Complexity

Fat margin

is less complex.
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Linear SVM Mathematically

• Assuming all data is at distance larger than 1 from the 

hyperplane, the following two constraints follow for a 

training set {(xi ,yi)}

• For support vectors, the inequality becomes an 

equality; then, since each example’s distance from the 

• hyperplane is                       the margin is:

wTxi + b ≥ 1    if yi = 1

wTxi + b ≤ -1   if yi = -1
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Linear SVMs Mathematically (cont.)

• Then we can formulate the quadratic optimization problem: 

A better formulation: 

Find w and b such that

is maximized and for all {(xi ,yi)}

wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi = -1

w

2


Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)}

yi (wTxi + b) ≥ 1
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Solving the Optimization Problem

• Need to optimize a quadratic function subject to linear constraints.

• Quadratic optimization problems are a well-known class of mathematical 

programming problems, and many (rather intricate) algorithms exist for 

solving them. 

• The solution involves constructing a dual problem where a Lagrange 

multiplier αi is associated with every constraint in the primary problem:

Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2) αi ≥ 0 for all αi
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The Optimization Problem Solution

• The solution has the form: 

• Each non-zero αi indicates that corresponding xi is a support vector.

• Then the classifying function will have the form:

• Notice that it relies on an inner product between the test point x and the 

support vectors xi – we will return to this later!

• Also keep in mind that solving the optimization problem involved 

computing the inner products xi
Txj between all training points!

w =Σαiyixi             b= yk- wTxk for any xk such that αk 0

f(x) = Σαiyixi
Tx + b
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Soft Margin Classification  

• What if the training set is not linearly separable?

• Slack variables ξi can be added to allow misclassification of difficult or 

noisy examples.

ξi

ξi
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Soft Margin Classification Mathematically

• The old formulation:

• The new formulation incorporating slack variables:

• Parameter C can be viewed as a way to control overfitting.

Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that

Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi ≥ 0 for all i
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Soft Margin Classification – Solution

• The dual problem for soft margin classification:

• Neither slack variables ξi nor their Lagrange multipliers appear in the dual 

problem!

• Again, xi with non-zero αi will be support vectors.

• Solution to the dual problem is:

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2)  0 ≤ αi ≤ C for all αi

w =Σαiyixi             

b= yk(1- ξk) - wTxk where k = argmax αk
k f(x) = Σαiyixi

Tx + b

But neither w nor b are 

needed explicitly for 

classification!
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Theoretical Justification for Maximum Margins

• Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from 

above as 

where ρ is the margin, D is the diameter of the smallest sphere that can 

enclose all of the training examples, and m0 is the dimensionality.

• Intuitively, this implies that regardless of dimensionality m0 we can 

minimize the VC dimension by maximizing the margin ρ.

• Thus, complexity of the classifier is kept small regardless of 

dimensionality.
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Linear SVMs:  Overview

• The classifier is a separating hyperplane.

• Most “important” training points are support vectors; they define the 

hyperplane.

• Quadratic optimization algorithms can identify which training points xi are 

support vectors with non-zero Lagrangian multipliers αi.

• Both in the dual formulation of the problem and in the solution training 

points appear only inside inner products: 

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2)  0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b
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Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space:

0
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x

0 x

0 x
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Nonlinear Classification
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Non-linear SVMs:  Feature spaces

• General idea:   the original feature space can always be mapped to some 

higher-dimensional feature space where the training set is separable:

Φ:  x → φ(x)
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The “Kernel Trick”

• The linear classifier relies on inner product between vectors K(xi,xj)=xi
Txj

• If every datapoint is mapped into high-dimensional space via some 

transformation Φ:  x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

• A kernel function is some function that corresponds to an inner product into 

some feature space.

• Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2=

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2  xj2
2  √2xj1  √2xj2] =

= φ(xi)
Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]
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Positive Definite Matrices

A square matrix A is positive definite if

xTAx>0 for all nonzero column vectors 

x. 

It is negative definite if xTAx < 0 for all 

nonzero x.

It is positive semi-definite if xTAx  0.

And negative semi-definite if xTAx  0

for all x.



38

What Functions are Kernels?

• For some functions K(xi,xj) checking that K(xi,xj)= φ(xi)
Tφ(xj) can be 

cumbersome. 

• Mercer’s theorem:  

Every semi-positive definite symmetric function is a kernel

• Semi-positive definite symmetric functions correspond to a semi-positive 

definite symmetric Gram matrix:

K(x1,x1) K(x1,x2) K(x1,x3) … K(x1,xN)

K(x2,x1) K(x2,x2) K(x2,x3) K(x2,xN)

… … … … … 

K(xN,x1) K(xN,x2) K(xN,x3) … K(xN,xN)

K=
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Examples of Kernel Functions

• Linear: K(xi,xj)= xi 
Txj

• Polynomial of power p: K(xi,xj)= (1+ xi 
Txj)

p

• Gaussian (radial-basis function network): K(xi,xj)=

• Two-layer perceptron: K(xi,xj)= tanh(β0xi 
Txj + β1)

2

2

2

ji xx 


e
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Non-linear SVMs Mathematically

• Dual problem formulation:

• The solution is:

• Optimization techniques for finding αi’s remain the same!

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and 

(1) Σαiyi = 0

(2) αi ≥ 0 for all αi

f(x) = ΣαiyiK(xi, xj)+ b
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SVM applications

• SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 
gained increasing popularity in late 1990s.

• SVMs are currently among the best performers for a number of 
classification tasks ranging from text to genomic data.

• SVM techniques have been extended to a number of tasks such as 
regression [Vapnik et al. ’97], principal component analysis [Schölkopf et 
al. ’99], etc. 

• Most popular optimization algorithms for SVMs are SMO [Platt ’99] and 
SVMlight [Joachims’ 99], both use decomposition to hill-climb over a subset 
of αi’s at a time. 

• Tuning SVMs remains a black art:  selecting a specific kernel and 
parameters is usually done in a try-and-see manner. 
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SVM Extensions

• Regression

• Variable Selection

• Boosting

• Density Estimation

• Unsupervised Learning

– Novelty/Outlier Detection

– Feature Detection

– Clustering
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Support Vector Machine Resources

• SVM Application List
http://www.clopinet.com/isabelle/Projects/SVM/applist.html

• Kernel machines
http://www.kernel-machines.org/

• Pattern Classification and Machine Learning
http://clopinet.com/isabelle/#projects

• R a GUI language for statistical computing and graphics
http://www.r-project.org/

• Kernel Methods for Pattern Analysis – 2004
http://www.kernel-methods.net/

• An Introduction to Support Vector Machines
(and other kernel-based learning methods)

http://www.support-vector.net/

• Kristin P. Bennett web page
http://www.rpi.edu/~bennek

• Isabelle Guyon's home page
http://clopinet.com/isabelle
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