
(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Zhang, Fundamentals of Image Data Mining, Texts in Computer Science
https://doi.org/10.1007/978-3-030-69251-3_8

8. Support Vector Machine

Dengsheng Zhang1

Federation University Australia, Churchill, VIC, Australia

Dengsheng Zhang
Email: dengsheng.zhang@federation.edu.au

To see better, go higher.

One of the key developments in recent artificial intelligence (AI)
research is the SVM, which has attracted large amount of research and
has produced good results in many applications. Because of the so-
called kernel trick, it has made SVM one of the most effective and
efficient machine learning tools in the literature. In this chapter, we
attempt to do an anatomy of SVM so that readers have a good
understanding of its mechanism.

SVM is basically the combination of both a linear classifier and a k
nearest neighbor classifier (K-NN). Therefore, to understand SVM, we
will first introduce the linear classifier and the K-NN classifier.

We will only focus on two-class classification problem in this
chapter because any classification problem can be converted into a one-
vs-all classification, which is a two-class classification problem.

8.1 Linear Classifier
The Bayesian methods in Chap. 7 are model-based, and they can give
good decision if the models are accurate. However, because data
distributions are usually unknown, the models can only be estimated
accurately if a large number of training samples are available. This is

especially true when the number of features is large, which is common
for multimedia data.

An alternative approach is to assume that there exists a functional
form decision boundary between each pair of classes, and the
parameters of the decision boundary or discriminant function can be
estimated using available training samples. A linear classifier is one of
those approaches.

Suppose the data is represented as a n-dimensional feature vector x
= (x1, x2, …, xn), then a linear discriminant function is formulated as:

(8.1)

where xi are the variables and wi are the coefficients or weights.
Assume x0 = 1, and f(x) can be written as

(8.2)

Geometrically, f(x) = 0 is a hyperplane in n-dimensional space and
f(x) = 0 is the decision boundary between two classes. A sample data
with feature vector x is classified into one of the classes using the
following criterion.

8.1.1 A Theoretical Solution
The next is to find out the parameters or the set of weights of f(x): w0,
w1, w2 …. wn, which will minimize the number of misclassified samples
in a given training set.

A classical way to find the weights is to solve a set of linear
equations given a set of training samples. For an n-dimensional data,
there need n + 1 linear equations or samples to solve the n + 1 weights.
Suppose di = 1 (or di > 0) represents class 1 and di = − 1 (or di < 0)

represents class 2, and the n + 1 training samples are given as (xi, di),
where

Then, by substituting (8.2) with each of the training data xi, the set
of weights wi (i = 0, 1, …, n) can be solved using the following n + 1
linear equations:

(8.3)

(8.3) can be written in matrix form:

(8.4)

which in turn can be written as:

where wT and dT are the transposes of w and d, and the solution of w is
then given as (8.5):

(8.5)

8.1.2 An Optimal Solution
The above theoretical solution is just based on n + 1 or part of the
training samples; therefore, it is not optimal. An optimal solution is
usually given by minimizing the squared errors of f(x) on the entire
training dataset of N data (xi, di) and:

That is, to minimize the following total squared error:

(8.6)

By taking the partial derivative of E on wk (k = 0, 1, 2, …, n) and
letting the partial derivative to be 0: , the following n + 1 linear

equations are obtained:

(8.7)

which is equivalent to the following:

(8.8)

By solving the above n + 1 linear equations using the same method
as solving (8.3), a set of weights (w0, w1, w2 …. wn) is obtained and an
optimal hyperplane is resulted. It can be observed that compared with
(8.3), in an optimal solution algorithm, xij is replaced with ,

while di is replaced with . Specifically, the solution is given

by:

(8.8a)

where X is the N × (n + 1) matrix representing the N data, and d is a 1 ×
N vector representing the class values of the N data.

8.1.3 A Suboptimal Solution

Although the solution from (8.8) results in a more optimal decision
boundary than that from (8.5), the solution of (8.8) would involve
processing very large matrices which is computationally expensive and
undesirable. This is because multimedia data usually has very high-
dimensional features. An alternative approach is to use an iterative
optimization algorithm to find a suboptimal solution to (8.2). Common
practice is to use an error-driven weight adaption technique which is
basically a trial-and-error technique. The iterative optimization
procedure is given in the following.

1. Initialize the weights w0, w1, w2 …. wn with some small random
values.

2. Take the next training sample {x, d}= {(x1, x2, …, xn), d}, d = 1 or −1.
3. Compute f(x) = w0 + w1x1 + w2x2 +… + wnxn
4. If f(x) ≠ d (a misclassification), update w0 ← w0 + cdk and wj← wj+

cdxj, j = 1, 2, …, m, where k and c are both positive constants.
5. Repeat steps 2–4 on each of the remaining training samples, until

all the samples are correctly classified or the weights stop to
change.

To demonstrate that the weights wi or the hyperplane f(x) are
moving in the right directions, let fnew and fold be the updated value and
old value of f(x), respectively. Because k, c and the feature value xj are
all positive, after the update in step 4, all the weights wj become larger
if d = 1 and all the weights wj become smaller if d = −1. That means, if
there is a misclassification, the decision function is updated according
to the following rules:

Therefore, in either case, the new hyperplane f(x) is moving in the
right direction with the updated weights, until the misclassified sample

is located at the correct side of the hyperplane.
A linear classifier can only classify data which is linearly separable.

However, this idea can be extended to build a nonlinear classifier. For
example, we can convert a two-dimensional feature vector (x, y) in xy
space to a five-dimensional feature vector (u1, u2, u3, u4, u5) in a higher-

dimensional space, where , , u3 = x2, ,

u5 = y2. This would be the polynomial kernel (1 + x + y)2. This is the key
idea behind the kernel method which will be discussed in Sect. 8.3.

8.2 K Nearest Neighbor Classification
K nearest neighbor or K-NN is a simple algorithm that stores all
available cases and classifies new cases based on a decision function
(e.g. a distance measure).

Given a training dataset D and a distance measure dist:

(xi, yi), i = 1, 2, …, N.

xi is a training data in Rn.
yi is the corresponding class of the data xi, and yi {cj, j = 1, 2, …, M}.
dist(x−xi) = ||x−xi||.

A new observation data x is classified to one of the classes yj using
the following algorithm:

1. Input the new data x.
2. Compute the distance of x to all the training samples xi in the

dataset: dist(x−xi).
3. Sort dist(x−xi) (i = 1, 2, …, N) in ascending order and rank all the xi

accordingly: xr1, xr2, …, xrk, …, xrN.
4. For a nearest neighbor (NN) classification, classify x to yr1.

a. For a K-NN classification, classify x to the majority class yrp

among the top k ranked data: {xr1, xr2, …, xrk}.

Although Euclidean (L2) and city block distance (L1) are typical
choice for the distance measure, any other distance can be used
depending on the applications. The nearest neighbor (NN or 1-NN)
results in too many classes, while K-NN gives more reliable
classification results. This is because the values of k have a smoothing
effect that makes the classifier more resistant to outliers. However, the
performance of a K-NN classifier depends on the choice of k which is
usually determined empirically.

Figure 8.1 demonstrates the comparison between an NN classifier
and a K-NN classifier [1]. It can be seen from the two classification
results, in the case of a NN classifier (after merging), outlier data points
create small islands within a class (e.g., red point within the green
class) and sharp corners on the class boundaries, those islands and
sharp corners likely lead to incorrect predictions, while the 5-NN
classifier smooths over these outliers, which lead to better
classification on the data. However, the 5-NN classifier also causes
misclassifications which are characterized by the blue dots in red
region and red dots in green region. There can also be confusions by the
tied votes among the 5 nearest neighbors (e.g. two neighbors are red,
next two neighbors are blue, and last neighbor is green).

Fig. 8.1 Comparison between NN and K-NN. a The data to be classified; b classification result
from a 1-NN classifier; c classification result from a 5-NN classifier

This kind of misclassification can be overcome to certain extent by
using the weighted K-NN. The idea is to give more weight to the
neighbors with shorter distance to the test data than to the far away

neighbors. The commonly used weighted K-NN is the Gaussian
weighted K-NN.

Unlike any other classifiers who are independent of the original
training data once trained, a K-NN classifier is tied to the training data.
If we analogue a classifier to a connoisseur traveling around the world
to judge (classify) different kinds of antiques for people. While other
types of connoisseurs only need to take a model or a tool summarizing
the key characteristics of the antiques, a K-NN connoisseur will have to
carry every kind of real antiques in his/her collection in order to make
a new judgment. This may sound too cumbersome; however, one of the
key advantages of a K-NN classifier is that it can classify data which is
nonlinearly separable. This is the key idea behind the kernel-based
support vector machine (SVM).

8.3 Support Vector Machine
In previous two sections, we have introduced the linear classifier and
K-NN classifier, and both are keys to understand SVM.

A linear classifier is simple, and once trained, it is like a tool or a
machine which can be used to tell if a data belongs to one of the classes.
However, the disadvantages of a linear classifier include:

The solution is either not optimal or computationally expensive.
It cannot classify data which is nonlinearly separable.

A K-NN classifier is also simple and can separate data nonlinearly.
However, the disadvantages of a K-NN classifier include:

It’s difficult to choose a k.
Dependence on training data.

Now that we have understood how the linear classifier and the K-
NN classifier behave, we would like to build a classifier which takes the
advantage of both and overcomes their disadvantages. This is SVM.

A SVM is basically a binary linear classifier, however, with two
prominent goals to achieve:

To maximize the margin which separates the two classes (optimal);

To use only a few training data (or support vectors) to determine the
hyperplane which separates the two classes (efficient).

A kernel-based SVM adds another goal to achieve:

To be able to classify data which is nonlinearly separable.

As can be seen, once the three goals are achieved, we would truly
build a machine which combines the advantages of both the linear
classifier and the K-NN classifier, while overcomes their disadvantages.

To formulate SVM, we will start with the simple perceptron and the
primal form of SVM. In the next, the dual form of SVM is introduced, and
finally, the kernel-based SVM is described in detail.

8.3.1 The Perceptron
A perceptron is a binary linear classifier which is one of the simplest
classifiers. Given an unknown data, the perceptron simply generates a
linear prediction. The training process is the same as the linear
classifier introduced in Sect. 8.1. The only difference is that a
perceptron can do online learning, which means it can process the
training data one at a time instead of having to taking the entire
training dataset. Although it is simple, the perceptron is the key to
understand both SVM and artificial neural network (ANN) later on.

Given a training dataset D:

D = {(xi, yi), i = 1, 2, …, N}.
xi is a feature vector in n-dimensional space: xi = (xi1, xi2, …, xin).
yi is the corresponding class of the data xi, and yi {−1, 1}.

 is the dot product between two vectors.

A perceptron is a binary linear classifier which is formulated as follows:

1. f(x) = <w, x > + b.
2. Let w0 = b and x0 = 1, then the above can be simply written as f(x) =

<w, x>
3. h(x) = sign (f(x)) = yi (f(x))

4. Take the next training data (xi, yi) D
5. if h(xi) ≥ 0, wk+1 ← wk
6. if h(xi) < 0

 then wk+1 ← wk + η yi xi, η > 0
7. Repeat from 4.
8.3.2 SVM—The Primal Form
8.3.2.1 The Margin Between Two Classes
Continue from the perceptron discussion and its training data
assumption.

The perceptron gives us a hyperplane to separate the two classes of
data; however, there are an infinite number of hyperplanes between
two classes of data as shown in Fig. 8.2. The one resulted from the
perceptron is just one of them, and it’s nothing optimal. Although an
optimal hyperplane was given in Sect. 8.1, it’s optimal only in terms of
minimizing the total error, and it’s still far from the optimal hyperplane
we perceive.

Fig. 8.2 Hyperplanes between two classes of data

The optimal or the best hyperplane we perceive is the one
separating the two classes with the maximal margin as shown in

Fig. 8.3. That is the hyperplane we are going to find out.

Fig. 8.3 Optimal hyperplane H between two classes of data

Assume the two subspaces corresponding to the two classes of data
are, respectively,

The above two inequalities can be combined into one:

(8.9)

The boundaries between the two subspaces are hyperplanes H1 and
H2, respectively:

(8.10)

(8.11)

and the hyperplane between H1 and H2 is given as H0:

(8.12)

The two classes of data and the three hyperplanes separating them
are shown in Fig. 8.4.

Fig. 8.4 Two classes of data and the hyperplanes separating them

Our purpose is not only to find H0 but also to maximize the distance
between H1 and H2, which is the margin between the two classes of
data. How to work out the distance between H1 and H2? Here is how it
works out.

Remember in a 2D space, a hyperplane is just a line which is
expressed as: ax + by + c = 0. The constant c is called the intercept,
and |c| is associated with the distance from the origin to the line.
This is also true in higher-dimensional space. For example, in a 3D
space, a plane is given as Ax + By + Cz + D = 0, and |D| is associated
with the distance from the origin to the plane, so on so forth.
Therefore, the distance between H1 and H2 is equal to the difference
between the distance of each of them to the origin.

Specifically, based on the theory of geometry, the distance of a point
(x0, y0, z0) to a plane in 3D space: Ax + By + Cz + D = 0, is given as
follows:

(8.13)

Because this is also true for higher-dimensional space, accordingly,
the distance from H0 to the origin (0, 0, …, 0) in n-dimensional space is
given as:

(8.14)

where is the magnitude or length of vector w, and the distance

from H1 and H2 to the origin (0, 0, …, 0) in n-dimensional space is given
by the following two, respectively:

(8.15)

Therefore, by calculating the difference between the two terms of
(8.15), the margin between the two hyperplanes H1 and H2 is obtained
as:

(8.16)

The data points which lie on H1 and H2 are called support vectors
(marked by circles in Fig. 8.3), which are both necessary and sufficient
to define the boundary hyperplanes.

8.3.2.2 Margin Maximization
Therefore, based on (8.16), to maximize the distance between the two
subspaces is equivalent to the following optimization problem:

(8.17)

(8.18)

The above is a constrained optimization problem, and there are a
few important facts to be pointed out [2]:

b is one of the weights to be found because if we let x0 = 1, then w0 =
b.

(8.17) is a paraboloid in n-dimensional space.
A paraboloid has a single global minimum at the bottom.
(8.18) is a hyperplane in n-dimensional space.
The solution to this constrained optimization problem is at the
tangent point of the paraboloid and the hyperplane.
At the tangent point, the normal vectors or gradient vectors of both
the paraboloid and the hyperplane are parallel.
That is, , (i = 1, 2, …, N), where is the gradient and αi is

a constant.
Based on the above analysis, the optimization problem of (8.17) and

(8.18) is equivalent to combining them into the following Lagrange
function and solve or ∂w, b L = 0:

(8.19)

(8.20)

8.3.2.3 The Primal Form of SVM
From (8.20), we can obtain the primal form of the SVM:

(8.21)

8.3.3 The Dual Form of SVM
Although the primal form (8.21) lets us to find the weights w and a
hyperplane which separates the two classes of data with the maximum
margin, the optimization is too expensive. Because we have to optimize
two sets of parameters at the same time: w and αi, this is very
undesirable. In the next, we want to make it more efficient.

Since (8.21) is a quadratic function, based on mathematics, at the
global minima of the quadratic function, the gradient or the partial
derivatives of L(w, b, αi) are 0. Therefore, we have

(8.22)

Now let

This leads to

(8.23)

Substituting the primal form (8.21) with (8.23) leads to the
following dual form of the SVM:

(8.24)

To see why it has changed from minimization in the primal form to
maximization in the dual form, let’s have a good look at (8.24). The
value of LD is determined by the following three cases [2]:

If the two features xi, xj are completely dissimilar, (xi, xj are from
different classes and are very different), their dot product <xi, xj> = 0.
That means, features from different classes and are far away from the
boundaries between two classes don’t contribute to LD

If the two features xi, xj are completely alike and from the same class,
<xi, xj> ≈ 1 and yi yj = 1. Therefore, αi αj yi yj<xi, xj> would be positive
and this would decrease the LD. That means, LD downgrades similar
features in the same class but far away from the boundaries between
two classes
If the two features xi, xj are completely alike but from the different
class, <xi, xj> ≈ 1 but yi yj = –1. Therefore, αi αj yi yj <xi, xj> would be

negative, and this would increase LD or maximize it. That means, LD is
maximized with similar features from different classes or LD is
maximized with features on the opposite boundaries of two classes.

To summarize the above analysis, by maximizing LD, the dual-form
SVM

1. Emphasizes the feature vectors on the opposite boundaries
between two classes;

2. Ignores or suppresses those feature vectors far away from the
boundaries between two classes.
This is exactly what we want, because in terms of finding the

hyperplanes separating the two classes with maximum margin, only
those vectors on or close to the boundaries between the two classes
matter most. Those feature vectors are called support vectors, and the
classifier defined by support vectors is called a support vector machine.

8.3.3.1 The Dual-Form Perceptron
Because LD is determined by the small number of support vectors on
the boundaries between the two classes, not surprisingly, most of the αi

would be zero. Once αi, i = 1, 2, …, N are solved, the weights for the
hyperplane separating the two classes of data with the maximum
margin are given as follows:

(8.25)

Therefore, the weight of the SVM hyperplane is just a linear
combination of the training data, and this is consistent with the weight
updating methods used in the linear and perceptron classifiers
introduced earlier.

A set of αi can be estimated using the dual-form perceptron:

1.

2. Take the next training data (xj, yj) D
3. If yj (∑i αi yi<xi, xj> + b) ≥ 0

 then αi+1 ← αi

4. If yj (∑i αi yi<xi, xj> + b) <0
 then αi+1 ← αi + η, η > 0

5. Repeat from step 2.
8.3.4 Kernel-Based SVM
8.3.4.1 The Dual-Form SVM Versus NN Classifier
With the dual-form SVM (8.24), we have successfully reduced the
primal form optimization problem to optimizing just one set of
parameters: αi, i = 1, 2, …, N. This is much more efficient than (8.21).
However, this is just a small part of the story about SVM, and the more
important part of the story is the transform of SVM optimization from
testing <w, xi> to testing <xi, xj>. This is explained in the following.

An n-dimensional data x is a feature vector in space, and
geometrically, the dot product is defined as follows:

(8.26)

where θ is the angle between the two feature vectors xi and xj

In practice, the magnitudes of all feature vectors are normalized to
unit or 1 so that they can be fairly matched.
Therefore, the dot production of two feature vectors is just cosθ.
Because all feature values are positive, θ is between 0◦ and 90◦.
For two feature vectors at the same direction or θ = 0◦ (identical), the
dot product is 1: cos θ = 1.
For two feature vectors at vertical angle or θ = 90◦ (completely
different), the dot product is 0: cos θ = 0.

For two feature vectors at an angle 0◦ < θ < 90◦ (between similar to
different), the dot product is between (0, 1): 0 < cos θ < 1.
Therefore, the dot product cosθ actually measures the similarity
between the two feature vectors, or the dot product is just the cosine
distance between the two feature vectors.

Equipped with this key finding, now let’s go back to (8.24):

It is equivalent to

(8.27)

Because <xi, xj> is just the distance between xi,and xj, by recalling
what has been discussed in the K-NN section, we can see that (8.27) is
just the weighted nearest neighbor classification.

Now, if we look at the dual-form perceptron at the end of Sect. 8.3.3,
the connection between SVM and K-NN is even clearer. The dual-form
classifier is given as (8.28):

(8.28)

The classification of each training data xj is done by testing

(8.29)

Again, this is just a weighted nearest neighbor classifier.
This is a significant development, because, by using the dual form,

we not only make the SVM more efficient but also make it a nonlinear
classifier.

8.3.4.2 Kernel Definition
These are some of the key points obtained from the above:

The dot product is a kind of distance.
The dual-form SVM is a kind of weighted nearest neighbor classifier.
The weighted nearest neighbor classifier is a nonlinear classifier.

Now that we understand how an important role the dot product
plays in the dual-form SVM, we can extend this idea to any function that
behaves like a dot product.

It turns out that the dot product of data points can be generalized as
kernelling. Any function K(x) which has the following property can be
regarded as a kernel:

(8.30)

where Φ(x) is a function transforming feature vector x in one space Rm

to another higher-dimensional space Rn (n > m). From the definition, a
kernel behaves like a dot product, and it takes two feature vectors as
input and maps the two vectors to a scalar or a real value. The
difference of a kernel from a dot product is that a kernel does the dot
product at a higher-dimensional space, called the Hilbert space. We will
explain the benefit of doing this.

Not surprisingly, with this definition, the dot product itself is a
kernel, because

(8.31)

where Φ(x) = x.
Given a kernel, the kernel-based SVM can now be written as:

(8.32)

The questions now are:

1. Are there any other kernel functions than the dot product?
2. How useful is a kernel?

The answer to the first question is yes, there are many such kinds of
kernel functions. Common kernel functions used in multimedia data
classification include the following:

1. Quadratic kernel

(8.33)

2. Polynomial kernel

(8.34)

3. Radial basis function (RBF) kernel

(8.35)

To demonstrate these functions having the kernel property of
(8.30), let’s assume x and y are in R2 and x = (x1, x2), y = (y1, y2).

For <x, y>2:

(8.36)

or

(8.37)

where or is a function

which maps a 2D feature vector to a 3D or 4D feature vector. Therefore,
<x, y >2 is a kernel, and so is <x, y >d when d > 2.

For , we have:

(8.38)

where is a function mapping a

2D feature vector to a 6-dimensional feature vector. Therefore,
 is also a kernel, so is for d > 2.

In general, a quadratic kernel <x, y >2 transforms an n-dimensional
vector x = (x1, x2, …, xn) to vector in n(n + 1)/2-dimensional space:

(8.39)

For RBF , again assume x and z are in 2D, since:

Without loss of generality, let γ = ½, then we have:

(8.40)

where is a constant because feature vector is

normalized to unit length, and is a polynomial kernel [3].

Therefore, the RBF is a kernel because the sum of kernels is also kernel
(see the following). (8.40) shows that the RBF maps a vector into a
space with infinite dimensions.

8.3.4.3 Building New Kernels
It can be shown that the following rules are true:
1. The sum of two kernels is also a kernel

(8.41)

2. A scalar times a kernel is also a kernel

(8.42)

3. The product of two kernels is also a kernel

(8.43)

Therefore, by using these rules and existing kernels, we may build
more kernels for different applications.

8.3.4.4 The Kernel Trick
Now that we have defined the kernels and understood their behaviors,
the next is to answer the second question we mentioned earlier. That is,
why kernels or why we transform a feature vector to a higher-
dimensional space? It appears the dual-form SVM is good enough
because it not only gives us a SVM but also let us do nonlinear
classification. So what’s the benefit of using kernels?

There are two reasons to use a kernel instead of just the dot
product.

One is to transform nonlinear data in lower-dimensional space to
linear data in higher-dimensional space so that they can be separated
linearly using the SVM.
The other is to have more and better choices of distance
measurement than the dot product, so as to improve the
performance of a SVM.

To demonstrate how a kernel can transform nonlinear data into
linear data, we will use the quadratic kernels as examples.

Consider the following 1D binary data (red and green dots) which is
a nonlinear data because it cannot be separated by a point or a line.

Now map each of the samples using the following function:

(8.44)

Φ is a quadratic mapping, and it transforms a 1D line into a 2D
parabola:

By transforming the 1D data into a 2D space, now the data in 2D
space can be separated using a line (blue) or linearly separable. This is
exactly the first reason of using kernel. This phenomenon can also be
demonstrated using a 2D nonlinear data (Fig. 8.5) [4]. By using the
following mapping function to map the 2D data on the left of Fig. 8.5 to
a paraboloid in 3D space, the data can now be separated using a 2D
plane and is linearly separable:

Fig. 8.5 Mapping of nonlinear data to linear data in higher-dimensional space. a An original
nonlinear data in 2D space; b transformed data in 3D space using a quadratic mapping function
φ

(8.45)

Because the dot product is kind of distance measure, therefore, all
kernels behave like a distance measure. Just like a good distance
measure is crucial to a classifier, the choice of a good kernel can affect a
classifier significantly. This is the reason why a kernel-based SVM is
always better than a SVM just using the simple dot product.

Although the use of kernel gives us the advantage to do nonlinear
classification, the explicit mapping from a lower-dimensional space to a
higher-dimensional space is undesirable and can be expensive in terms
of computation, given the fact that a feature vector usually has high
dimension. Furthermore, data representation using very high
dimension in Hilbert space is inefficient too.

Fortunately, the mapping doesn’t need to be done explicitly. So long
it’s a kernel, and it implicitly maps a data to one in another space which
is linearly separable. Put the other way, a kernel is just a dot product
(implicit) regardless the space where the dot product is done, and
according to (8.32), a kernel SVM is just a weighted nearest neighbor
classifier by which a data can always be separated nonlinearly.
Therefore, all we need to do for a kernel SVM is just to replace the dot
product with a kernel. This is called the kernel trick.

To further improve the efficiency, in practice, an N × N kernel (or
Gram) matrix is pre-computed for a dataset of N elements before the
actual learning, so that there is no need to recompute the dot products
at every iteration of the optimization. A kernel matrix K has the
following properties:

K is a positive definite matrix.
K(i, j) = K(xi, xj) = <Φ(xi), Φ(xj)> (implicit dot product in higher
dimension space).
K is symmetric, or K(i, j) = K(j, i).
K(i, j) measures the similarity between ith and jth training samples in
feature space.

8.3.5 The Pyramid Match Kernel
A well-designed kernel is crucial to a SVM classifier. Conventional
kernel design is independent of feature itself. However, the selection of
a kernel for a particular type of features is difficult because there is no
natural connection between a feature and a kernel. Consequently, the
selection of kernel for a SVM classifier is often arbitrary or empirical at
best. The pyramid match kernel or PMK [5] is a method to design a
kernel which matches the specific type of image features.

The idea is to extract a pyramid histogram feature at different level
of resolutions and build a kernel using a weighted sum of histogram
intersections. The idea of the PMK is described in detail in the
following.

Start with image X itself as level 0 and the total number of levels is L.
Divide image into grids at different levels of resolutions. The grid at
level l has a total of 2l × 2l = 4l cells, with 2l cells along each
dimension.
A histogram is computed for each block at each level of resolutions.
Histograms at each level l are given a different weight.
The weighted histograms from all levels are concatenated as the
pyramid histogram of the image.
A kernel of weighted histogram intersection is built for the SVM.

(8.46)

where Xm and Ym are two weighted pyramid histograms and k is the
histogram intersection.

The idea is illustrated in Fig. 8.6 [5].

Fig. 8.6 Computation of pyramid match kernel. An image is divided into 3 levels of grids. At
each level of the grid, a histogram is computed for each block of the grid. Histograms at each
level are given a weight, and the weighted histograms are then concatenated as a feature
vector

Let Xl and Yl stand for the histograms of X and Y at level l, then the
number of matches at this level is given by the histogram intersection

(8.47)

where l = 0, 1, 2, …, L. kl at lower levels represent global features, while
kl at higher levels represent local features. Since global features can
cause more confusion than local features, global features should be
given less weights than local features. Therefore, the weight given to
level l is set to 1/2L−l, which is inversely proportional to the block width
at that level. Since the total weights must sum to 1, the combined
matching result between two images is given in (8.48).

(8.48)

The next is to prove (8.48) is a kernel. Because a linear combination
of kernels is also a kernel, we just need to prove each histogram
intersection kl is a kernel.

Let Xm and Ym be the histograms of two images or image blocks X
and Y. Each image has N pixels. We can then represent Xm and Ym as two
N × m-dimensional binary vectors [6].

(8.49)

(8.50)

With the above representation, the histogram intersection of Xm and
Ym is given as the dot product of the two histograms:

(8.51)

Therefore, kl is a kernel and as a result, K(X, Y) in (8.48) is also a
kernel.

A histogram is a statistical feature, and it captures the feature
distribution in an image or an image block. Histogram intersection tells
how much area two distributions share; the more area they share, the
more similar the two distributions are. Figure 8.7 shows an example of
histogram intersection. The shared region is about 33% of the two
histograms; therefore, the similarity between the two histograms is
about 33%.

Fig. 8.7 Histogram intersection of two normal distributions

8.3.6 Discussions
Kernel-based support vector machine is essentially a training-based
nearest neighbor classifier. The use of dot product transforms the
support vector machine into a nonlinear nearest neighbor classifier.
Traditional nearest neighbor has two limitations, the determining of k
and it does not support training. However, if the training set is

sufficiently large, both limitations can be overcome. First, the k can be
determined empirically. The second limitation can be overcome by
determining the class boundary with a piecewise linear approximation.
For example, the class boundary of the following data can be
approximated by 5 hyperplanes, which can then be used to classify new
data (Fig. 8.8).

Fig. 8.8 Approximation of class boundary using piecewise hyperplanes

Although the piecewise linear boundary given by the K-NN is not
optimal as the boundary provided by the kernel-based SVM, in terms of
classification, the effectiveness of the two classifiers can be comparable.
However, it would not be as efficient as SVM.

8.4 Fusion of SVMs
8.4.1 Fusion of Binary SVMs
An SVM is essentially a binary classifier. However, automatic image
classification and annotation need a multiclass classifier. The most
common approach is to train a separate SVM for each concept c, and
each SVM generates a decision value dc(x). During the testing phase, the
decisions from all classifiers are fused to obtain the final class label of a
test image. Figure 8.9 demonstrates this two-level fusion process [7, 8].
The first level consists of multiple binary classifiers, and the second
level fuses the decisions from the first-level classifiers.

Fig. 8.9 A fusion of binary SVM classifiers

8.4.2 Multilevel Fusion of SVMs
The above approach can be regarded as a base-level fusion, and it
works well for small number of concepts. The quality of classification
degrades with the increase of the number of concepts due to the
increase of the noise and class imbalance in the training data. To be
more robust, multiple sets of base-level fusion of SVMs can be merged to
make a more powerful fusion as shown in Fig. 8.10 [7, 8]. Each set of
SVMs in level 1 and level 2 is similar to the base-level fusion shown in
Fig. 8.9 and independently classifies an input image, and the final
decision is fused from the decisions of all the individual sets at level 3.

Fig. 8.10 A 3-level fusion of SVMs

The key advantage of using multiple sets of SVMs is to learn a more
accurate and robust classifier using different types of SVMs, such as
classification of SVMs, regression SVMs and SVMs with/without soft
margins.

8.4.3 Fusion of SVMs with Different Features
Fusion of classifiers can also be done with combination of different
types of features. For example, both global and local features can be
used to train two different sets of SVMs at level 1 as shown in Fig. 8.11
[7, 8]. The results from the two sets of SVMs are then be fused in two
steps. First, decisions of each concept made by each set of SVM are
fused at level 2. Next, the final decision is made using a maximization at
level 3.

Fig. 8.11 A 3-level class-by-class fusion of SVMs with both global and local features

Although the fusion methods discussed in this section are shown as
fusion of SVMs, they can also be applied to fusion of different types of
classifiers such as Bayesian, ANN and DT.

8.5 Summary
SVM is basically a supervised linear classifier which divides a dataset
into two classes with a hyperplane in data space. However, different
from an ordinary linear classifier, it offers an optimal hyperplane which
separates two classes of data with maximum margin between them.
The data points that make the hyperplane are called the support
vectors. SVM works by repeat guessing with candidate hyperplanes
until the optimal hyperplane is found.

The biggest progress of SVM is the kernel-based SVM which
achieves nonlinearity without the use of networking like ANN.
Nonlinearity of SVM is achieved through transforming data into higher
space so that they can be separated linearly. Due to the kernel trick, this
transformation is even unnecessary so long as the distance is a kernel.
This makes SVM very efficient compared with ANN.

However, SVM is essentially a binary classifier or non-probabilistic
classifier. This makes it less robust than other probabilistic classifiers
such as Bayesian classifiers and DT. In addition, a multiclass SVM needs
to be achieved through fusion or assembly.

8.6 Exercises
1. Experiment on the perceptron algorithm. Download the dataset

from the following Web site: http:// networkrepositor y. com/ pima-
indians-diabetes. php. Now, run the following Matlab code and
examine the data variable (double click it) in the Workspace. Next,
study every variable in the Workspace, comment or describe every
line of the code and compare the code with the perceptron
algorithm in Sect. 8.3.1. Change the epochs to 1, 10 and 100, and
see what happens to the mis_class variable. Find a different
binary dataset (two-class data) and run the code again to see the
new classification result. Write a short report to record your
findings.

2. Matrix solutions on linear classifier. This exercise is based on the
code from the above. First, load the dataset of Exercise 1 to Matlab
Workspace. Next, select n + 1 data from the dataset and use Matlab
matrix inverse function inv() to compute the weight vector w of
Eq. (8.5). Finally, write a short piece of code (by revising and
simplifying the code in Exercise 1) to do the classification of the
dataset using the weight vector w. Repeat the above steps for
Eq. (8.8a), but this time you need to use the entire dataset instead
of just n + 1 data. Write a short report to compare both of your new
results with the classification result from Exercise 1.

3. Linear SVM classifier. Open your Matlab editor, visit the following
Matlab Web site: https:// au. mathworks. com/ help/ stats/ fitcsvm.

html#bt8v_ 23-1, and run the code of the first example ‘Train SVM
Classifier.’ You can copy and run the code line by line or block by
block in Matlab command line. Or you can copy the entire code of
the example, save it as a Matlab m file, and run it. Once you’ve run
the entire code of the example, now do the following:

Examine the meas (data or features) and species (classes)
variables in Workspace.
Examine the X and y variables, and compare them with the meas
and species, respectively. The removal of the two features
from the meas and one class from the species is to visualize
the data in 2D space.
Examine the SVMModel variable in Workspace, especially the
KernelParameters, IsSupportVector and the
SupportVectors parameters.
Observe the support vectors on the scatter diagram. Draw a line
between two support vectors so that the classification error is
minimum.
Once you’ve understood how SVM works, move to the second
example ‘Train and Cross-Validate SVM Classifier.’

4. Nonlinear SVM classifier. Open your Matlab editor, visit the
following Matlab Web site: https:// au. mathworks. com/ help/ stats/
support-vector-machines-for-binary-classification. html, and run
the code of the first example ‘Train SVM Classifiers Using a
Gaussian Kernel.’ Try different kernels such as ‘polynomial’ or
a custom kernel and compare the cross-validation results.

References
1. Karpathy A Stanford cs class cs231n: convolutional neural networks for visual recognition.

http:// cs231n. github. io/ classification/ , Accessed Feb 2019
2.

Berwick R An idiot’s guide to support vector machines (SVMs) http:// web. mit. edu/ 6. 034/
wwwbob/ svm-notes-long-08. pdf, Accessed Feb 2019

3.
Bernstein M The radial basis function kernel, http:// pages. cs. wisc. edu/ ~matthewb/ pages/
notes/ pdf/ svms/ RBFKernel. pdf, Accessed Feb 2019

4.
Cambridgespark Support vector machines, http:// beta. cambridgespark. com/ courses/ jpm/
05-module. html, Accessed Feb 2019

5.
Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for
recognizing natural scene categories, CVPR06, vol II, pp 2169–2178

6.
Barla A, Odone F, Verri A (2003) Histogram intersection kernel for image classification, ICIP03

7.
Islam M (2009) SIRBOT—semantic image retrieval based on object translation, Ph.D. thesis,
Monash University

8.
Zhang D, Islam M, Lu G (2012) A review on automatic image annotation techniques. Patt
Recogn 45(1):346–362
[Crossref]

OceanofPDF.com

