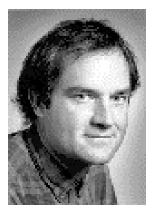
Canny Edge Detector



- Canny (1984) introduces several good ideas to help.
- References: Canny, J.F. A computational approach to edge detection. IEEE Trans Pattern Analysis and Machine Intelligence, 8(6): 679-698, Nov 1986.

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Canny Edge Detection

- Basic idea is to detect at the zero-crossings of the second directional derivative of the smoothed image
- in the direction of the gradient where the gradient magnitude of the smoothed image being greater than some threshold depending on image statistics.
- It seeks out zero-crossings of

$$\partial^2 (G*I)/\partial n^2 = \partial ([\partial G/\partial n]*I)/\partial n$$

n is the direction of the gradient of the smoothed image.

CMU 15-385 Computer Vision

Canny's zero-crossings

- Canny zero-crossings correspond to the first-directional-derivative's maxima and minima in the direction of the gradient.
- Maxima in magnitude reasonable choice for locating edges.

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Optimal Edge Detector Design

- Canny derives his filter by optimizing a certain performance index that favors true positive, true negative and accurate localization of detected edges
- Analysis is restricted to linear shift invariant filter that detect unblurred 1D continuous step
- Other justifiable performance criteria are possible and will lead to different filters.

CMU 15-385 Computer Vision

What are Canny's Criteria?

• **Good detection**: low probability of not marking real edge points, and falsely marking non-edge points.

$$SNR = \frac{\int_{-w}^{w} G(-x)f(x)dx}{n_o \sqrt{\int_{-w}^{w} f^2(x)dx}}$$

• f is the filter, G is the edge signal, denominator is the root-mean-squared response to noise n(x) only.

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Localization Criterion

• Good localization: close to center of the true edge

Localization =
$$\frac{1}{\sqrt{E[x_0^2]}} = \frac{\left| \int_{-w}^{w} G'(-x)f'(x)dx \right|}{n_o \sqrt{\int_{-w}^{w} f'^2(x)dx}}$$

- a measure that increases as localization improves.
- Use reciprocal of the rms distance of the marked edge from the center of the true edge.

CMU 15-385 Computer Vision

Localization Criterion

- The localization criteria equation is a bit hard to understand. The book's description doesn't help either, I think. It is a technical detail that you are not responsible for it. I will put Canny's derivation in the lecture notes for your information.
- The basic intuition: if we assume the filter's response is maximum at the edge when there is no noise, what is the expected distance of the local maximum in the response as we change the filter? The numerator is actually the second derivative of the filtered response, indicating how steep the slope of the zero-crossing of the filtered response is. The steeper is this slope, the sharper is the localization.

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Eliminating Multiple Response

- Only one response to a single edge: implicit in first criterion, but make explicit to eliminate multiple response.
- The first two criteria can be trivially maximized by setting f(x)=G(-x)!
- What is this? This is a truncated step (difference of box operator).
- What is its problem?

CMU 15-385 Computer Vision

Inter-maximum Spacing

- Ideally, want to make the distance between peaks in the noise response approximate the width of the response of the operator to a single step.
- The mean distance between two adjacent maxima in the filtered response (or zero-crossing of their derivatives) can be derived as:

 $x_{zc}(f) = \mathbf{p} \left(\int_{-\infty}^{\infty} f'^{2}(x) dx \right)^{1/2}$ $\int_{-\infty}^{\infty} f''^{2}(x) dx$

• Set this distance a fraction k of the operator width W, Seek f satisfies this constraint with a fixed k. $x_{zc}(f) = kW$

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Inter-maximum Spacing

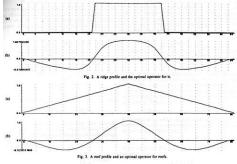
• Again, this is a technical detail that is hard to understand. If you want to understand it, you have to go back to another mathematical result derived for zero-crossing by Rice, "Mathematical anlaysis of random noise" Bell System Techn J. vol 24, pp 46-156, 1945.

CMU 15-385 Computer Vision

Numerical Optimization

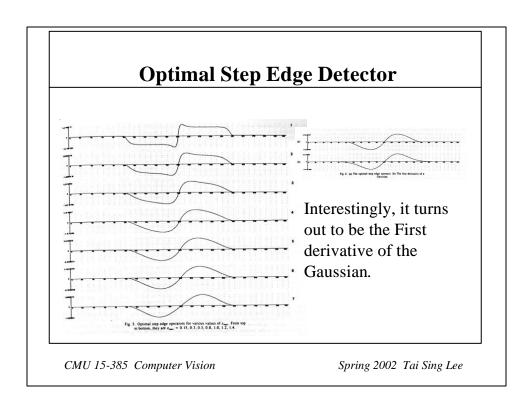
• Maximize the first two criteria subject to the multiple response constraint (third criterion) numerically to find the `optimal edge' detector for different kinds of edges:

Roof and Ridge edge detectors close to 2nd derivative of a Gaussian.



CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee



Threshold Determination

- **Adaptive Thresholds**: Use the statistics of the image itself to set the threshold.
- Used the histogram of $\|\nabla(I * G_s)\|^2$, and chose its value at some percentile, e.g. the median, as a reference value of edge strength.
- Set his thresholds as multiple of this value, in fact, not as a number, but as a slowly varying function on a coarse grid.

CMU 15-385 Computer Vision

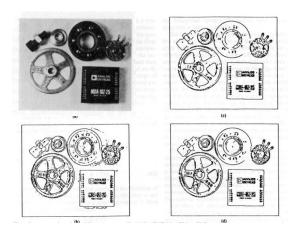
Spring 2002 Tai Sing Lee

High and Low Thresholds

- **Hysteresis** method: Use two thresholds.
- The **high threshold** is used to find `seeds' for strong edges.
- Their strength should be large enough so that such an edge cannot be ignored.
- These seeds are grown into as long an edge in both directions as possible, so long as you can do this without the edge strength falling below the low threshold.

CMU 15-385 Computer Vision

An Example



- (a) original image
- (b) threshold at T1
- (c) thresholded at 2 T1
- (d) image thresholded with hysteresis using both (b) and (c).

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Elongated Filters

- A model edge is not just a strong gradient: it is a prolonged contour with a strong perpendicular gradient all along it.
- Better filters for these structures are the anisotropic odd filters, i.e. the odd symmetric simple cells.
- Approximately, the first derivative of an elongated Gaussian:

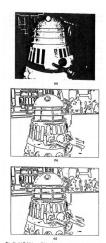
$$K(s,t) = t \cdot e^{-\frac{s^2 + 4t^2}{2s^2}}$$

Fig. 10. Directional step edge mask. (a) Cross section parallel to the edge direction. (b) Cross section normal to edge direction. (c) Two-dimer.

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

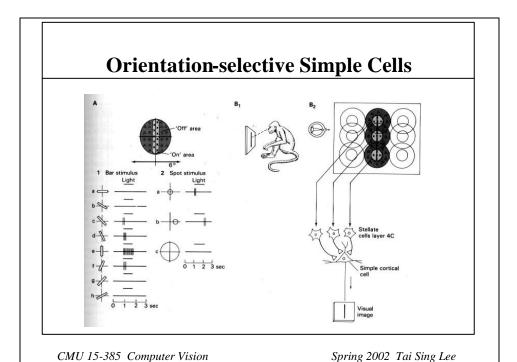
An Example

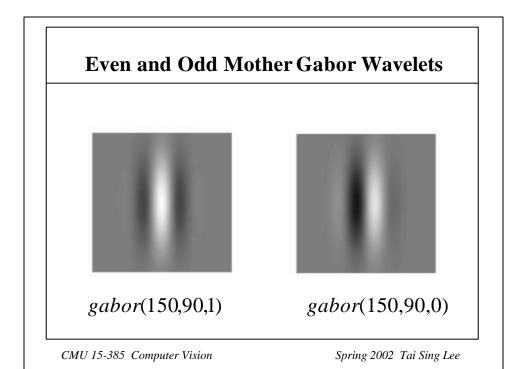


- (b) edges found by circular operator.
- (c) edges found by 6 orientation directional masks.

The basic idea is similar to anisotropic diffusion: Gaussian smoothing is modified so that smoothing along contours and do not smooth across contour.

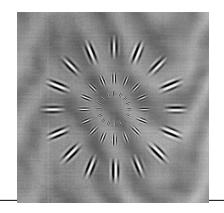
CMU 15-385 Computer Vision

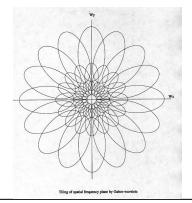




Gabor wavelet family

• Members of 1 Gabor wavelet family and their spatial frequency coverage:

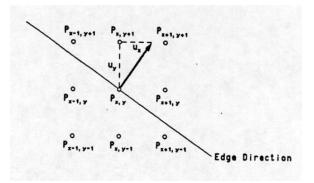




Spring 2002 Tai Sing Lee

Non-maximum suppression

At each point, compute its edge gradient, compare with the gradients of its neighbors along the gradient direction. If smaller, turn 0; if largest, keep it.

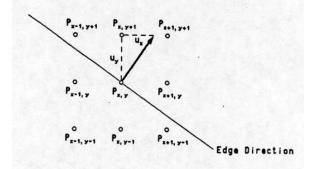


CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Non-maximum suppression

- The normal to the edge direction, given by arrow, has 2 components u_x and u_y . Use a 9 pixel neighborhood.
- Non-max suppress the gradient magnitude in this direction.



CMU 15-385 Computer Vision

Estimation of Gradient

- Sampling is discrete, how to estimate gradient?
- Pick 2 pts in support closest to u.
- The gradient magnitudes at 3 pts define a plane, use this plane to locally approximate the gradient magnitude surface and to estimate the value at a

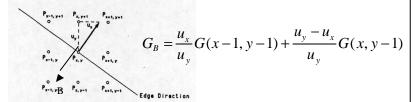
point on the line. The interpolated gradient magnitude at A, for example, is $G_A = \frac{u_x}{u_y} G(x+1,y+1) + \frac{u_y - u_x}{u_y} G(x,y+1)$ $G_{n,y} = P_{n,y} P$

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Estimation of Gradient

• The interpolated gradient on the other side is given by:

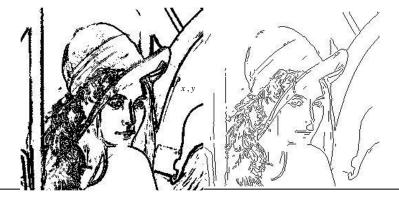


- Mark $P_{x,y}$ as a maximum if $G(x,y) > G_A$ and $G(x,y) > G_B$
- Interpolation always involve 1 diagonal and 1 non-diagonal point. Avoid division by multiplying through by u_y .

CMU 15-385 Computer Vision

Non-maximum suppression

- This scheme involves 4 multiplication per point, but it is not excessive.
- Works better than simpler scheme which compares the points $P_{x,y}$ with two of its neighbors.

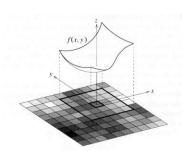


CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

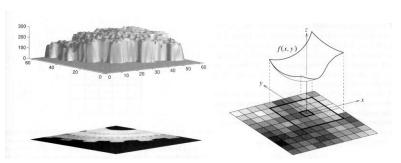
Other Edge Operators

Origin: Approximating the intensity landscape with Planar surface, quadratic surface, or bicubic surface, and then take derivatives on this surface.



CMU 15-385 Computer Vision

Image intensity surface



$$z = f(x, y) = k_1 + k_2 x + k_3 y + k_4 x^2 + k_5 x y + k_6 y^2$$
$$+ k_7 x^3 + k_8 x^2 y + k_9 x y^2 + k_{10} y^3$$

Planar surface, quadratic surface, bicubic surface

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Mean Square Error Fit

$$z = f(x, y) = k_1 + k_2 x + k_3 y + k_4 x^2 + k_5 xy + k_6 y^2 + k_7 x^3 + k_8 x^2 y + k_9 xy^2 + k_{10} y^3$$

• We can fit the intensity surface with these surfaces by adjusting the parameters k_1 to k_{10} to minimize the Euclidean norm or equivalently the mean square error:

$$E = \sum_{u} \sum_{v} (I(u, v) - f(u, v))^{2}$$

CMU 15-385 Computer Vision

Robert Operator:

• The first simplest gradient operator: Robert's cross operator along diagonal:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

• Or equivalently,

$$\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$

• They are derived to provide the gradient of the least square error planar surface fitted over a 2x2 window.

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee

Sobel Operator

• Derived from

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

• The gradient of a surface smoothed by a mean filter.

CMU 15-385 Computer Vision

Prewitt Operator

• 3x3 Prewitt (1970):

$$\nabla_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \qquad \nabla_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

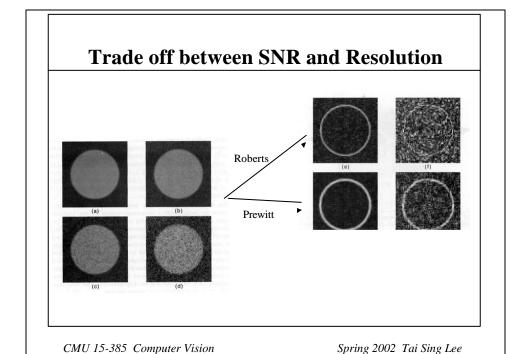
• 4x4 Prewitt (1970):

$$\nabla_{x} = \begin{bmatrix} -3 & -1 & 1 & 3 \\ -3 & -1 & 1 & 3 \\ -3 & -1 & 1 & 3 \\ -3 & -1 & 1 & 3 \end{bmatrix} \qquad \nabla_{y} = \begin{bmatrix} 3 & 3 & 3 & 3 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \\ -3 & -3 & -3 & -3 \end{bmatrix}$$

Derived by fitting a least square error quadratic surface over a 3x3 image window, then differentiating the fitted surface.

CMU 15-385 Computer Vision

Spring 2002 Tai Sing Lee



16