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Canny Edge Detector

• Canny (1984) 
introduces several 
good ideas to help. 

• References:  Canny, J.F.  
A computational approach 
to edge detection. IEEE 
Trans Pattern Analysis 
and Machine Intelligence, 
8(6): 679-698, Nov 1986.
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Canny Edge Detection

• Basic idea is to detect at the zero-crossings of the 
second directional derivative of the smoothed 
image 

• in the direction of the gradient where the gradient 
magnitude of the smoothed image being greater 
than some threshold depending on image statistics.

• It seeks out zero-crossings of 
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n is the direction of the gradient of the smoothed image.n is the direction of the gradient of the smoothed image.
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Canny’s zero-crossings

• Canny zero-crossings correspond to the first-
directional-derivative’s maxima and minima in the 
direction of the gradient.

• Maxima in magnitude reasonable choice for 
locating edges.
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Optimal Edge Detector Design

• Canny derives his filter by optimizing a certain 
performance index that favors true positive, true 
negative and accurate localization of detected 
edges

• Analysis is restricted to linear shift invariant filter 
that detect unblurred 1D continuous step

• Other justifiable performance criteria are  possible 
and will lead to different filters.
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What are Canny’s Criteria?

• Good detection: low probability of not marking 
real edge points, and falsely marking non-edge 
points.

• f is the filter, G is the edge signal, denominator is 
the root-mean-squared response to noise n(x) only.
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Localization Criterion

• Good localization: close to center of the true edge

• a measure that increases as localization improves.
• Use reciprocal of the rms distance of the marked 

edge from the center of the true edge.
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Localization Criterion

• The localization criteria equation is a bit hard to 
understand. The book’s description doesn’t help either, I 
think. It is a technical detail that  you are not responsible 
for it. I will put Canny’s derivation in the lecture notes for 
your information. 

• The basic intuition: if we assume the filter’s response is 
maximum at the edge when there is no noise, what is the 
expected distance of the local maximum in the response as 
we change the filter?  The numerator is actually the second 
derivative of the filtered response, indicating how steep the 
slope of the zero-crossing of the filtered response is. The 
steeper is this slope, the sharper is the localization.
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Eliminating Multiple Response

• Only one response to a single edge: implicit in first 
criterion, but make explicit to eliminate multiple 
response.

• The first two criteria can be trivially maximized by 
setting f(x)=G(-x)!

• What is this?  This is a truncated step (difference 
of box operator).

• What is its problem?
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Inter-maximum Spacing
• Ideally, want to make the distance between peaks in the 

noise response approximate the width of the response of the 
operator to a single step.

• The mean distance between two adjacent maxima in the 
filtered response (or zero-crossing of their derivatives)  can 
be derived as:

• Set this distance a fraction k of the operator width W,                             
Seek f satisfies this constraint with a fixed k.

2/1

2

2

)("

)('
)(



















=

∫

∫
∞

∞−

∞

∞−

dxxf

dxxf
fxzc π

kWfxzc =)(

CMU 15-385  Computer Vision                                         Spring 2002  Tai Sing Lee

Inter-maximum Spacing

• Again, this is a technical detail that is hard to understand. 
If you want to understand it, you have to go back to 
another mathematical result derived for zero-crossing by 
Rice, “Mathematical anlaysis of random noise” Bell 
System Techn J. vol 24, pp 46-156, 1945. 
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Numerical Optimization

• Maximize the first two criteria subject to the multiple 
response constraint (third criterion)  numerically to 
find the `optimal edge’ detector for different kinds of 
edges:

Roof and Ridge Roof and Ridge 
edge detectors edge detectors 
close to 2nd close to 2nd 
derivative of a derivative of a 
GaussianGaussian..
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Optimal Step Edge Detector

Interestingly, it turns Interestingly, it turns 
out to be the First out to be the First 
derivative of the derivative of the 
GaussianGaussian..
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Threshold Determination

• Adaptive Thresholds:  Use the statistics of the image 
itself to set the threshold. 

• Used the histogram of                 , and chose its value at 
some percentile, e.g. the median, as a reference value 
of edge strength.

• Set his thresholds as multiple of this value, in fact, not 
as a number, but as a slowly varying function on a 
coarse grid.
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High and Low Thresholds

• Hysteresis method: Use two thresholds.
• The high threshold is used to find `seeds’ for 

strong edges. 
• Their strength should be large enough so that such 

an edge cannot be ignored.
• These seeds are grown into as long an edge in both 

directions as possible, so long as you can do this 
without the edge strength falling below the low 
threshold.
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An Example

(a) original image
(b) threshold at T1
(c) thresholded at 2 

T1
(d) image 

thresholded with 
hysteresis using 
both (b) and (c).
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Elongated Filters

• A model edge is not just a strong gradient: it is a prolonged 
contour with a strong perpendicular gradient all along it. 

• Better filters for these structures are the anisotropic odd 
filters, i.e. the odd symmetric simple cells.

• Approximately, the first derivative of an elongated
Gaussian:
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An Example

(b) edges found by circular operator.
(c) edges found by 6 orientation 

directional masks.
The basic idea is similar to 
anisotropic diffusion: Gaussian 
smoothing is modified so that 
smoothing along contours and do 
not smooth across contour.

CMU 15-385  Computer Vision                                         Spring 2002  Tai Sing Lee

Orientation-selective Simple Cells
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Even and Odd Mother Gabor Wavelets

(150,90,0)                )1,90,150( gaborgabor
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Gabor wavelet family

• Members of 1 Gabor wavelet family and their spatial frequency 
coverage:
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Non-maximum suppression

At each point, compute its edge gradient, compare with  the 
gradients of its neighbors along the gradient direction. If 
smaller, turn 0; if largest, keep it. 
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Non-maximum suppression

• The normal to the edge direction, given by arrow, has 2 
components                        . Use a 9 pixel neighborhood. 

• Non-max suppress the gradient magnitude in this direction.
yuu    and x
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Estimation of Gradient

• Sampling is discrete, how to estimate gradient?
• Pick 2 pts in support closest to u. 
• The gradient magnitudes at 3 pts define a plane, 

use this plane to locally approximate the gradient 
magnitude surface and to estimate the value at a 

point  on the line. point  on the line. The interpolated The interpolated 
gradient magnitude at A, for examplegradient magnitude at A, for example , is, isAA
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Estimation of Gradient

• The interpolated gradient on the other side is given 
by:

• Mark         as a maximum if
• Interpolation always involve 1 diagonal and 1 non-diagonal 

point.  Avoid division by multiplying through by        .  
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Non-maximum suppression

• This scheme involves 4 multiplication per point, but it is not excessive.  
• Works better than simpler scheme which compares the points      with 

two of its neighbors.  
yxP ,

yxP ,
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Other Edge Operators

Origin: Approximating Origin: Approximating 
the intensity landscape the intensity landscape 
with Planar surface, with Planar surface, 
quadratic surface, orquadratic surface, or
bicubicbicubic surface, and then surface, and then 
take derivatives on this take derivatives on this 
surface.surface.
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Image intensity surface
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Planar surface, quadratic surface, Planar surface, quadratic surface, bicubic bicubic surfacesurface
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Mean Square Error Fit

• We can fit the intensity surface with these surfaces by 
adjusting the parameters                    to minimize the 
Euclidean norm or equivalently the mean square error:
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Robert Operator: 

• The first simplest gradient operator: Robert’s cross 
operator along diagonal:

• Or equivalently,

• They are derived to provide the gradient of the least 
square error planar surface fitted over a 2x2 window.
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Sobel Operator 

• Derived from

• The gradient of a surface smoothed by a mean 
filter.
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Prewitt Operator

• 3x3 Prewitt (1970):

• 4x4 Prewitt (1970):
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Derived by fitting a least square error quadratic surface over Derived by fitting a least square error quadratic surface over 
a 3x3 image window, then differentiating the fitted surface.a 3x3 image window, then differentiating the fitted surface.
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Trade off between SNR and Resolution 

RobertsRoberts

PrewittPrewitt


