Canny Edge Detector

« Canny (1984)
introduces severd
good ideas to help.

» References: Canny, JF.
A computational approach
to edge detection. |IEEE
Trans Pattern Analysis
and Machine Intelligence,
8(6): 679-698, Nov 1986.
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Canny Edge Detection

» Basicideaisto detect at the zero-crossings of the
second directional derivative of the smoothed

image
* inthedirection of the gradient where the gradient

magnitude of the smoothed image being greater
than some threshold depending on image statistics.

* It seeks out zero-crossings of
T(G*1)/In* =1([1G/qn]* 1 )/1n

n is the direction of the gradient of the smoothed image.
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Canny’s zero-crossings

» Canny zero-crossings correspond to the first-
directional-derivative’ s maximaand minimain the
direction of the gradient.

* Maxima in magnitude reasonable choice for
locating edges.
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Optimal Edge Detector Design

» Canny derives hisfilter by optimizing acertain
performance index that favors true positive, true
negative and accurate localization of detected
edges

» Analysisisrestricted to linear shift invariant filter
that detect unblurred 1D continuous step

* Other judtifiable performance criteriaare possible
and will lead to different filters.
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What are Canny’s Criteria?

» Good detection: low probability of not marking
real edge points, and falsely marking non-edge
points. X{

\/Wof 2(x)dx

» fisthefilter, G isthe edge signal, denominator is
the root-mean-squared response to noise n(x) only.

NR=E=
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L ocalization Criterion

» Good localization: close to center of the true edge
-X) f° (x)d><{
VE[XO f (x)dx

Localization=

» ameasure that increases as localization improves.

» Usereciprocal of the rms distance of the marked
edge from the center of the true edge.
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L ocalization Criterion

» Thelocalization criteria equation is a bit hard to
understand. The book’ s description doesn’t help either, |
think. It isatechnical detail that you are not responsible
for it. | will put Canny’s derivation in the lecture notes for
your information.

* The basic intuition: if we assume the filter's response is
maximum &t the edge when there is no noise, what is the
expected distance of the local maximum in the response as
we change the filter? The numerator is actually the second
derivative of the filtered response, indicating how steep the
dope of the zero-crossing of the filtered response is. The
steeper is this dope, the sharper is the locaization.
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Eliminating Multiple Response

* Only one response to asingle edge: implicit in first
criterion, but make explicit to eliminate multiple
response.

» Thefirst two criteria can be trivialy maximized by
setting f(X)=G(-x)!

* What isthis? Thisisatruncated step (difference
of box operator).

* What isits problem?
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| nter-maximum Spacing

* ldeally, want to make the distance between peaks in the
noise response approximate the width of the response of the
operator to a single step.

» The mean distance between two adjacent maxima in the
filtered response (or zero-crossing of their derivatives) can
be derived as: ¥ &2

¢ Of *(x)dx +

ch( f ) = p g-¥¥—_
g Of " (¥dxz

-¥ (%]

» Set thisdistance afraction k of the operator width W,
Seek f satisfies this constraint with a fixed k. _
ch(f ) - kW

CMU 15-385 Computer Vision Soring 2002 Tai Sing Lee

| nter-maximum Spacing

» Again, thisisatechnical detail that is hard to understand.
If you want to understand it, you have to go back to
another mathematical result derived for zero-crossing by
Rice, “Mathematical anlaysis of random noise” Bell
System Techn J. vol 24, pp 46-156, 1945.
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Numerical Optimization

* Maximizethefirst two criteria subject to the multiple
response constraint (third criterion) numerically to
find the "optimal edge’ detector for different kinds of

edges:
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Optimal Step Edge Detector
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Threshold Determination

» Adaptive Thresholds: Usethe statistics of the image
itself to set the threshold.

* Used the histogram of |[N(1 * G, )| , and chose its value at
some percentile, e.g. the median, as areference value
of edge strength.

» Set histhresholds as multiple of thisvalue, in fact, not

as anumber, but as a slowly varying function on a
coarsegrid.
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High and Low Thresholds

» Hysteresis method: Use two thresholds.

* The high threshold isused to find "seeds’ for
strong edges.

» Thelr strength should be large enough so that such
an edge cannot be ignored.

» These seeds are grown into as long an edge in both
directions as possible, so long as you can do this
without the edge strength falling below the low
threshold.
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An Example

(8) origind image

(b) threshold at T1

(c) thresholded at 2
T1

(d) image
thresholded with
hysteresis usng
both (b) and (c).
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Elongated Filters

* A model edgeisnot just a strong gradient: it is a prolonged
contour with a strong perpendicular gradient all along it.

 Better filters for these structures are the anisotropic odd
filters, i.e. the odd symmetric simple cells.

» Approximately, the first derivative of an elongated
Gaussian:

P+t

K(s,t) =txe =’

sional impulse responses of several masks —
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An Example

(b) edges found by circular operator.

% (c) edges found by 6 orientation

R directional masks.

== 0 The basic ideais similar to
anisotropic diffusion: Gaussian
smoothing is modified so that
smoothing along contours and do
not smooth across contour.
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Orientation-selective Simple Cells
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Even and Odd Mother Gabor Wavelets

gabor(150,90,1) gabor(150,90,0)
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Gabor wavelet family

« Membersof 1 Gabor wavelet family and their spatial frequency
coverage:

Tiling of spatia) requency plane by Gabor-wavelets
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Non-maximum suppression

At each point, compute its edge gradient, compare with the
gradients of its neighbors aong the gradient direction. If
smaller, turn O; if largest, keep it.

Edge Direction
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Non-maximum suppression

» The normal to the edge direction, given by arrow, has 2
components U, and u, .Usea9 pixel neighborhood.

» Norn-max suppress the gradient magnitude in this direction.

Edge Direction
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Estimation of Gradient

o Sampling is discrete, how to estimate gradient?
* Pick 2 ptsin support closest to u.

» The gradient magnitudes at 3 pts define a plane,
use this plane to locally approximate the gradient
magnitude surface and to estimate the value at a

point ontheline. The interpolated

gradient magnitude at A, for example, IS
u,- u
G, = G(x+1 y+1) + —=G(x, y+1)
Uy Uy
e nrcion  NOtEI G(1, ), Uy, U, @eknown.
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Estimation of Gradient

* Theinterpolated gradient on the other side is given
by:

u u, - u,
Gs =u—XG(x- 1y- 1)+yu—G(x,y- 1)

Y; y

 Mak B, asamaximumif G(xy)>G, andG(xy)>G,

* Interpolation alwaysinvolve 1 diagona and 1 non-diagonal
point. Avoid division by multiplying through by u, -
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Non-maximum suppression

*  Works better than simpler scheme which compares the points vaywith
two of its neighbors.

|
B

¢ This scheme involves 4 multiplication per point, but it is not excessive.
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Other Edge Operators

Origin: Approximating
the intensity landscape
with Planar surface,
guadratic surface, or
bicubic surface, and then
take derivatives on this
surface.
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| mage intensity surface

200

0 50 6

z=f(x,y) =k +kx+k;y+ k4X2 +Ks Xy + k6y2
+ k7X3 + k8X2y + kQXy2 + k10y3
Planar surface, quadratic surface, bicubic surface
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Mean Square Error Fit

z=1f(Xxy) =k +kx+kyy+ k4X2 +KsXy + key2
ko X +keX*y +KoXy* + Koy
» Wecan fit theintensity surface with these surfaces by

adjusting the parameters K, tok, to minimize the
Euclidean norm or equivalently the mean square error:

E=3 8 (u,v)- f(u,v))?
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Robert Operator:

» Thefirst simplest gradient operator: Robert’ s cross
operator along diagonal:

€0 1 e ou

g1l & -
e Or equivalently,

ell el 1u

g11f &1

» They are derived to provide the gradient of the |east
square error planar surface fitted over a 2x2 window.
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Sobel Operator

e Derived from

» The gradient of a surface smoothed by a mean
filter.
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Prewitt Operator

« 3x3 Prewitt (1970):

&1 0 1L é1 1 1y
q -8 a _é a
Nx—e-l 0 ]U Ny—§0 0 0@
g1 0 19 g1 -1 -3
* 4x4 Prewitt (1970):
¢3 -11 3y é3 3 3y
e u e u
NX:§3-11 3@ N:(:al 1 1 1@
863 -11 30 &1 -1 -1 -10
e u e u
§3-11 33 &3 -3 -3 -33

Derived by fitting aleast square error quadratic surface over
a 3x3 image window, then differentiating the fitted surface.
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Trade off between SNR and Resolution

Prewitt "~

v
Roberts
—_—
(a) (b)
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