In essence, the world is just elements and compounds.

1.1 Introduction

Fourier transform has played a key role in image processing for many years, and it
continues to be a topic of interest in theory as well as application. The fundamental
principle behind Fourier transform is that a pattern can be treated as a signal, and as
such, it can be represented by elementary components of the signal. If we can define
elementary components to represent or approximate a pattern under analysis, we
can determine how significant an elementary component in a given pattern. The
elementary components found in the signal can be used to describe the given
pattern. Fourier transform is useful for pattern analysis and description because
different patterns can be distinguished by the transformed spectra (Fig. 1.1) [1],
while similar patterns will have similar transformed spectra even they are affected
by noise and other variations. It can be observed that the spectrum of Fig. 1.1a
clearly shows patterns of both horizontal and vertical directions, while that in
Fig. 1.1b shows patterns of random fashion. They demonstrate the power of Fourier
transform in image analysis and understanding.

1.2 Fourier Series
1.2.1 Sinusoids

To understand how Fourier transform works, it has to start with understanding how
sinusoids work. It is important to understand the relationship between frequency
and period. Figure 1.2 shows a sine wave and its harmonic waves. It shows how the
change of variable scaling or horizontal stretching affects the sine wave’s frequency
and periods.
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Fig. 1.1 Fourier spectra of different images. a A scenic image at the left and its Fourier spectrum
at the right; b a tree image in the left and its Fourier spectra in the right. The brighter the pixel, the
higher magnitude of the spectrum
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Fig. 1.2 Three sine waves sin(nx) with different periods and frequencies
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As can be seen, as the variable scaling factor n increases, the period of sin(rnx)
becomes shorter and the frequency becomes higher. For example, the period of sin
(x) is 2m, while the periods of sin(2x) and sin(4x) are © and 1/2w, respectively.
Consequently, the frequencies of the three sine waves are 1/2rn, 1/n, and 2/m,
respectively. Similarly, the period and frequency of sin(nx) are 2r/n and n/2m,
respectively.
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The sine waves expressed this way do not have an easy interpretation of the
frequency and periods, because both of them are in angular terms. Now let’s replace
n with 27n and change the sine function from sin(nx) to sin(2mnx), see what will
happen.

Sine waves Frequency Periods

sin(27x) 1 1
sin(47nx) 2 i
sin(87x) 4 i
sin(27mnx) n 0

Now both the periods and frequencies are easier to understand. For example, the
period of sin(27x) is 1, while the periods of sin(47x) and sin(87x) are 1/2 and 1/4,
respectively. Consequently, the frequencies of the three sine waves are 1, 2, and 4,
respectively (Fig. 1.3). Therefore, the period and frequency of sin(2znnx) are 1/n and
n, respectively. This is much easier to interpret.

A more general form of sine function is expressed as sin(2zn/L), which has a
period of L/n and frequency of n/L. This is extremely helpful to analyze signals with
arbitrary periodicity and frequencies.

Sine waves Frequency Periods

sin (Z—Z") 1 L
i) 7
o) 4
sin (272"") I %

1.2.2 Fourier Series

One of the most important and interesting discoveries in mathematics is that any
math function can be approximated with a series of sinusoids (sine and cosine
waves), called Fourier series. Now consider a signal function f(x) with period L,

o0

Ff(x) =ao+ Z (ay, cos

n=1

2 2
" 4 b,sin 72”) (1.1)

To determine the Fourier coefficients a,, and b,, we multiply both sides of the
above equation with either sin (ZT[—L”X) or cos (Z"T’”‘) and do the integral in [—L/2, L/2].
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Fig. 1.3 Three sine waves sin(2znx) with different periods and frequencies

It can be shown that sine and cosine waves have the following convenient
properties:

L2
2rnx  2nmx . [L/2 forn=m
/ c08 ——C0s dx—{ 0 Jorn £ m (1.2)
~L/2
L2
. 2nnx . 2mmx . [L/2 forn=m
/ sin—-—sin— dx_{ 0 forn £ m (1.3)
)
L2
2 2
/ sin 2 cos T gy = 0 (1.4)
L L
)
L2
dx =0 (1.5)

. 2nnx
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To prove the above properties, we only need to demonstrate that
[ sin(nx) sin(mx)dx =0 (m # n) and [ sin(nx) cos(mx)dx = 0; the others are
obvious due to the symmetry of sine and cosine waves. Without loss of generality,
we just need to show [ sinxsin(2x)dx = 0 and [ sinxcosxdx = 0.

Figure 1.4 illustrates [ sinxsin(2x)dx in one period. We divide the Sum of
Product (SoP) of the two functions within one period into four regions: R1-R4,
marked with different colors. It is easy to observe that the SoP magnitude of the
four regions is exactly the same; however, the signs of the four corresponding SoPs
are +, —, —, and +, respectively, resulting in the total SoP of the period as O.
Applying this to all the other periods, it can be shown [ sinxsin(2x)dx = 0 on the
entire x axis.

Figure 1.5 illustrates [sinxcosxdx in one period. Similar to the above, we
divide the Sum of Product (SoP) of the two functions in the single period into four
regions: R1-R4, marked with different colors. Again, it is easy to observe that the
SoP magnitude of the four regions are exactly the same, however, the signs of the 4
corresponding SoPs are +, —, + and —, respectively, resulting in the total SoP of the
period as 0. Applying this to all other periods, it can be shown [ sinxcosxdx =0
on the entire x axis.

By making use of the integral identities and orthogonality of (1.2)—(1.6), the
Fourier coefficients are obtained as follows:
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L2
1
a =7 / F(x)dx
—L)2
L2
2 2
=7 / F(x)cos 7Zmdx (1.7)
—L)2
L2
2
by =7 / F(x)sin ™
—L)2
n=1,2, ..
1.2.3 Complex Fourier Series
Using the Euler formula
e = cosx +isinx (1.8)
where i = +/—1. It is easy to work out
1 .
cos(x) = 3 (" +e™™) (1.9)
sin(x) = 1 (" —e™) = L (e" —e™) (1.10)
2i 2

Now, by replacing the sinusoids in the Fourier series of (1.1) with the above two
equations, we obtain the complex Fourier series:
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which can be written as the complex Fourier series

flx) = i cpe?m/E (1.12)

n=—00

The exponential form of orthogonality is as follows:

o o {L form =n (1.13)

e L e L — .
0 otherwise

—

I~

Now by multiplying both sides of the Fourier series (1.12) with ¢ >™* and do
integral in [0, L], we obtain complex Fourier coefficients:

_ 2

Ldx,n=0,%1,%2,... (1.14)

flx)e

S~ =
—

I~

Cp, =

1.3 Fourier Transform

Equation (1.14) indicates that the coefficients of the Fourier series are determined
by fix), while (1.12) indicates that f{x) can be reconstructed from Fourier coeffi-
cients c,. Therefore, the Fourier series establish a unique correspondence between f
(x) and its Fourier coefficients. Now, consider the integral of (1.14):

L
p

Le, = /f(x)e;%dx (1.15)
-

where j = v —1. If we let L — 00, n/L becomes continuous and n/L — u, (1.15)
becomes

oo

F(u) = /f(x)exp(—jZnux)dx (1.16)

—00

Now, by substituting (1.6) into (1.12) and replacing the sum with an integral by
using n/L — u and 1/L — du, (1.12) becomes

flx) = / F(u) exp(j2nux) du (1.17)
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The F(u) of (1.16) is called the forward Fourier transform or FT, and (1.17) is
called the inverse Fourier transform or FT '

1.4 Discrete Fourier Transform
1.4.1 DFT

Discrete Fourier Transform (DFT) is particularly useful for digital pattern analysis,
because digital patterns exist in discrete form. To define DFT from Fourier series, f
(x) is first discretized into N samples in [0, L]:

f(0).f(Ax),f(2Ax), ..., f((N — 1)Ax) (1.18)

where Ax is the sample step in spatial domain and L = NAx, and then f{x) can be
expressed as

fk) =f(kAx),k=0,1,2,...,N — 1 (1.19)
Now consider the Fourier coefficients (1.14):
L/2

1 j2ThX
=7 / flx)e~ " dx

L2 (1.20)

L
1 2
= i/f(x)e’JZL dx
0

By substituting L = NAx, fix) = fik), x = kAx, and dx = Ax into the above
equation, it yields

Ax = —
& = pp o (R T
- (1.21)
1 omk
ZNZf(k)e ¥n=0,1,2,...N—1

> f(x)exp(=j2mux/N) u=0,1,2,..,N 1 (1.22)
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By substituting (1.22) into (1.12), the inverse DFT is obtained as

N—-1

Ff(x) :ZF(u)exp(jZnux/N) x=0,1,2,.. ,N—1 (1.23)
u=0

1.4.2 Uncertainty Principle

Assume f{x) is a signal in a time period of AT = [0, L], the sampling step Au in
frequency domain and the sampling step Ax in spatial domain are related by the
following expression:

1 1

Basically, (1.24) tells that the frequency sampling step is inversely proportional
to the spatial sampling step. This is known as the uncertainty principle, which
means that increasing spatial resolution (reduce Ax) reduces the frequency resolu-
tion and vice versa. In other words, higher spatial resolution and higher frequency
resolution cannot be achieved simultaneously. This is the key reason behind the
multiresolution analysis such as wavelets which will be discussed later on in
Chap. 3.

Since the Ax depends on the sampling rate f;, and the relationship between
Ax and f; is given by Ax = 1/f;, the above inequality becomes

Au> 5 (1.25)
N
and the uth frequency is given by
I
=2 1.26
fomuk (126)

It should be noted that the uth frequency computed from (1.22) is not the actual
frequency; instead, the uth frequency is the uth bin of frequency. In other words,
u is the bin number, and the actual frequency is given by (1.26): f, = u * Au, and
Au is called the bin size of DFT. If f;, = N, Au = 1, this is often the assumption in
DFT. However, this is not always the case. When f; > N, Au > 1, this will be
demonstrated in Sect. 2.2. Equation (1.25) is another form of the uncertainty
principle. Given a sampling rate, in order to increase the frequency resolution
(reduce Au), it has to increase the sample or window size N, which reduces the
spatial resolution. This is called the trade-off between spatial resolution and fre-
quency resolution.



12 1 Fourier Transform

It should also be noted that any window size of a DFT is relative according to
(1.25). Specifically, a window size is relative to the sampling rate or sampling
frequency. A window of N samples is smaller in a signal with faster sampling rate
than that in a signal with slower sampling rate. For example, in a signal with
44,000 Hz sampling rate, a window of 128 samples has a duration of
128/44,000 = 0.0029 s. However, in a signal with 22,000 Hz sampling rate, the
duration of a 128 samples window is 128/22,000 = 0.0058 s, which is twice the
size as that in the first signal. This indicates that a bin number (#) of a DFT
computed from windows of different sizes or different signals means different
frequencies.

The inverse relationship between frequency resolution and spatial resolution
(window size) can be demonstrated using the following example. Suppose there are
two sine waves with very small frequency difference [2]:

Sine waveone:  sin(2m x 0.05x)
Sine waveone:  sin(2m x 0.0501x)

In this case, Au = 0.0001. If we plot the two sine waves in one graph (Fig. 1.6),
one in red and the other in blue, the two signals do not show a difference in the first
100 samples, which means a small window cannot discern the difference of the two
signals. However, if we show the two signals in a very large window (5,000
samples), at the end of the window, they are 180° out of phase. This is because the
periods of the two sine waves are 20 and 19.96, respectively. Assume a sampling
frequency of 1 Hz. For a 100 samples window, the difference between the two
signals is just 5.01 — 5 = 0.01 period, which is almost indiscernible. However, with
a 5,000 samples window, the difference between the two signals is 250.5 —
250 = 0.5 period, which is more than sufficient to distinguish the two signals. It is
more convenient to explain this case using (1.25), because the smallest frequency
difference can be detected in a 100 samples window is Au = 1/100 = 0.01, while in

10 20 30 40 S0 60 70 80 90 100 4000 4910 4920 4930 4040 4050 4060 4070 4080 4990 5000

Fig. 1.6 Inverse relationship between spatial and frequency resolution. Left: the first 100 samples
of the two sine waves; right: the last 100 samples of the two sine waves
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a 5,000 samples window, Au = 1/5,000 = 0.0002, which is able to distinguish the
two signals.

It demonstrates that a smaller window gives poor frequency resolution, while a
larger window gives higher frequency resolution. This is because the larger the
window, the more samples, and the more low frequencies can be computed.

1.4.3 Nyquist Theorem

Because frequency is measured by the number of cycles in a period of time, and the
smallest cycle consists of two samples, for a signal of size N, only N/2 frequencies
can be computed from the DFT. This is called the Nyquist theorem.

Another way to express the Nyquist theorem 1is that in order to
reconstruct/recover a signal appropriately (“appropriately” means recover the
“essence” or low frequency while ignoring the “nuance” or high frequency), the
sampling rate of the signal must be at least twice the highest frequency in the signal.
Figure 1.7 demonstrates this fact. The figure shows three signals of 1 s length. The
top signal is a sine wave with 1 cycle/period (frequency = 1) which can be
recovered or reconstructed appropriately by at least two samples (marked with red
dots). The middle signal is a sine wave with two cycles/periods in a second (fre-
quency = 2); it needs at least four samples to recover the signal appropriately. The

Fig. 1.7 Illustrations of 1 [
different sampling rates for e -
three signals of the same time //
length Fid ¢

q N /1
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bottom signal is a sine wave with 4 cycles/periods in a second (frequency = 4); it
needs at least eight samples to recover the signal appropriately, and so on so forth.

In the case of images, frequency is related to structure size, and small structures
are known to have high frequency. Because the smallest structure in an image
requires 2 pixels to discern, the highest frequency which can be captured in an
image is 1/2 pixels.

1.5 2D Fourier Transform

For a two-variable function f{x, y) defined in 0 < x, y < N, its Fourier transform
pair is given by

2

-1
F(x,y) exp[—2n(ux + vy)/N] (1.27)
0

1N

x:() y

foru,v=0,1,2,... N—1l,andj = +v—1.

=
=

S, y) :jlv F(u,v)exp[j2n(ux+vy)/N] (1.28)

u

i
o
Il
o

V:

forx,y=0,1,2,...,N— 1.

Although the number of F(u, v) resulted from Fourier transform is usually large,
the number of significant F(u, v) (or F(u)) (large magnitude) is usually small. This
is because the higher frequencies only represent the finest pattern details which are
not so useful in many applications. This means that a meaningful approximation of
original pattern f(x, y) (or f{x)) can be constructed from a small number of F(u, v) (or
F(u)). This forms the basis of Fourier signal processing and Fourier pattern analysis.

1.6 Properties of 2D Fourier Transform

Fourier transform has the following important properties which are useful for image
analysis.

1.6.1 Separability

The discrete Fourier transform can be expressed in the separable form
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ZF - exp( ﬂnux) (1.29)
_ FTX{FTy[f (x,9)] }

where FT, and FT, are the 1D FTs on row and column, respectively.

The advantage of the separability is that F(u, v) can be obtained in two steps by
successive applications of 1D FT which can be computed using the Fast Fourier
Transform (FFT).

1.6.2 Translation

The translation property of the Fourier transform is given by
FT[f(x — x0,y = yo)| = F(u,v) - exp[=j2n(uxo +vyo)/N] (1.30)

It indicates that a shift in spatial domain results in a phase change in frequency
domain. That means the magnitude of Fourier transform is invariant to translation.
This is a desirable feature, because, in many applications, the phase information is
discarded which leaves the FT features invariant to translation.

1.6.3 Rotation

To find the relationship between a rotated function f{x, y) and its spectrum, let’s
assume the function f{x, y) is rotated by an angle 0, and the function after the
rotation is f{ix’, ¥'). Then the relationship between two corresponding points of the
two functions is as follows:

x' =xcos0+y sinf (1.31)
y =ycos — xsin 0 (1.32)
x=x"cos —y'sinf (1.33)

y=x"sin0+y cos b (1.34)
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By substituting (1.33) and (1.34) into (1.27), we have

JIRUSLEAL ux' cos 0 — uy' sin 0 + vx’ sin 0 + vy’ cos 0
AN o s
F(u',V) N2 2 f(x7y)e>q3[ 127r( N )}
x'=0y'=0
it g ucos+vsin @ vecos — usin @

— ;o iy (222 VST oy (222 Y
Nx’zwgof(x,y)em{ j M( v )] eXp{ j ny( v )}
1N—1N—] xlu/_,’_ylvl

e | (V]

Nx’:O)/:O N
(1.35)
where
u = ucos0+vsin0 (1.36)
vV =vcos0 — usinf (1.37)

Therefore, rotating f{x, y) by an angle of 0 in spatial domain rotates F(u, v) by the
same angle in frequency domain.

The rotation property can be proved more conveniently by considering f(x,
y) and FT in either complex domain or polar space. A point (x, y) in complex
domain can be expressed as

z2=x+jy (1.38)
By using Euler’s formula, it is simple to shown that

ze 7 = (x+jy) - (cos O — jsin 0)
=xcos0+jycos — jxsin0+ ysin 0 (139)
= (xcos 0 +ysin0) +j(ycos 0 — xsin 0) '

=X +jy
Equation (1.39) shows that a point z rotated by an angle 0 is equivalent to

z times ¢ 7’ In other words, the following is true:

f(x/vy/) :f(x7y> e (14O>

Equation (1.40) is a more concise and convenient rotation formula than (1.31)
and (1.32). By substituting (1.40) into (1.27), we obtain the FT of the rotated
function f{x', y'):
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T
T

ux—&-vy)}

F,y)exp {—J%( N

ux+vy)] (1.41)

flx,y)e? exp [—jZn( N

Il
o

3
(u,v) - e

Therefore, we obtain the same result as shown in (1.35).
If we consider both f(x, y) and F(u, v) in polar space, they can be expressed as f
(r, 0) and F(p, ¢), respectively, where

x=rcosO,y=rsin0; u=pcos¢,v=psing (1.42)

(r, 0) is the polar coordinates in image plane and (p, ¢) is the polar coordinates in
frequency plane. The differentials of x and y are

dx = cosOdr — rsin0do
(1.43)

dy =sin0dr — rcos 0d0

The Jacobian of (1.43) is r. Therefore, by substituting both (1.42) and (1.43) into
2D continuous FT, the 2D FT in polar space is given by the following equations:

oo 2m
F(,O, d)) _ / /f(r, O)eijn(rcos(-)pcasgb+rsin9psin(/)) rdrd6
0

oo 2m
= / /f(r, 0)e 725 0=) )
00

(1.44)

Suppose f(r, 0) is rotated for an angle of 6, to f(r, 0 + 0,). Let 8’ = 0 + 0,, then
0=0 -0, and dg=d0 (1.45)

Now, in (1.44), by substituting f{r, 8) with f{r, ') and substituting 0 with (1.45),
we obtain

oo 27

F(p,¢') = / / F(r, 0 e 72mrecosll =@+ 00l rgrq@ (1.46)

0 0
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Equation (1.46) means
FT[f(r,0+ 00)] = F(r, ¢+ 0o) (1.47)

Again, this yields the same result as (1.35) and (1.41). Equation (1.47) also tells
that in polar domain, the rotation of an image causes a translation or shift on its FT
spectrum. This property is useful for feature normalization.

1.6.4 Scaling

For two scalars a and b, the scale property of Fourier transform is given by

FT[f(ax, by)) = ﬁF(Z 7) (1.48)

It indicates the scaling of f{x, y) with a and b in x and y directions in spatial
domain (time domain in 1D case) causes inverse scaling of magnitude of F(u, v) in
frequency domain. That means, if you stretch f{x, y) in spatial domain, you shrink F'
(u, v) in frequency domain and vice versa. This proves the uncertainty principle
from another perspective. In general terms, enlarging an object in an image gives
rise to lower frequencies in spectral domain while shrinking an object in an image
gives rise to higher frequencies in spectral domain. This property is useful in
dealing with image scaling.

1.6.5 Convolution Theorem
The convolution theorem states that the FT of a convolution between two functions

is equal to the product of two FTs. Specifically, given two function f and g, the
following are true:

FT[f*g} =FT[f] -FT[g] (1.49)
f g = FT"{FTIf) - FT[g]} (1.50)

where f * g means convolution. Because of the separability property of 2D FT, we
only need to prove the 1D case.
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FTIf +g) = 303 fm)gln —m)e ¥

n m

=D 7m) > gln—me ¥

= Zf(m)FT[g]e‘w(translationproperty) (1.51)

_ J2mmu

— FT(g) Y flm)e 5
= FT[f]- FTg]

Convolution theorem shows that convolution in spatial domain can be done by
an FT (FFT in practice) and a product. This is a useful feature because both FFT
and product are much more efficient than spatial convolution.

1.7 Techniques of Computing FT Spectrum

The magnitude image of a Fourier transform is called an FT spectrum. The intensity
of an FT spectrum has a very large dynamic range; it is impossible to display this
large range in a gray level image. For example, the dynamic range of spectral values
of the Lena image [3] is [0, 31, 744], and Fig. 1.8a shows the FT spectrum without
scaling. It can be seen that the spectral image reveals little information about the
input image. Conventional thresholding (Fig. 1.8b) and linear scaling (Fig. 1.8c)
do not work well for such a large range of values.

The common practice of displaying an FT spectrum is to do a logarithmic
transformation of the spectral values to bring down the large spectral values to well
within the display range of 255 and raise the lower spectral values in the meantime.
However, the logarithm transformed spectrum does not have sufficient contrast
between lower frequency and higher frequency spectral values as shown in
Fig. 1.8d. A more effective way to display FT spectrum is to apply a logarithm
transform on the spectral values followed by a linear scaling to map the spectral
magnitudes to [0, 255] using (1.52):

log(1+ |F(u,v)|)

Fi(uv) = 255 X i max([F ()]

(1.52)

Figure 1.8e shows the FT spectrum using (1.52). It can be seen from Fig. 1.8e
that there are three directional features in the FT spectrum: horizontal, vertical, and
diagonal. The strong horizontal feature is due to the vertical pole on the left-hand
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(c) (d)

Fig. 1.8 FT spectra with different methods. a FT spectrum without scaling; b FT spectrum with
thresholding value 10; ¢ FT spectrum with linear scaling; d FT spectrum with log transform; e FT
spectrum with both log and linear transform; and f FT spectrum with enhanced contrast from (e)
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Fig. 1.9 FT spectra of different types of patterns. a Regular patterns and their FT spectra on the
right; b random patterns and their FT spectra on the right; and ¢ directional patterns and their FT
spectra on the right

side of the input image, while the vertical and diagonal features are due to the rim of
the hat and the black arch on the right-hand side of the input image.

The logarithmic transformation, however, enhances the low magnitude values,
while compressing high magnitude values into a relatively small pixel range.
Therefore, if an image contains some important high magnitude information, this
may lead to loss of information. An alternative solution to further increase the
spectral contrast is to decrease the compression rate by scaling down the spectrum
image intensity before applying the logarithmic transform. This is because the
logarithmic function has a less degree of compression at places close to the origin.
Figure 1.8f shows the FT spectrum with enhanced contrast, which is equivalent to
highlighting the low-frequency area with a spotlight.

The FT spectrum reveals key information about an image if displayed properly.
Figure 1.9 shows three different types of homogenous patterns and their FT spectra
on the right-hand side of the patterns. It can be seen that the FT spectra have
generally accurately captured the three types of texture features: regularity, ran-
domness, and directionality. This is the primary motive for the development of
short-time FT and wavelets, which attempt to capture local and changing patterns.



