
10Image Annotation with Decision Tree

We may be different, but we all share a common ancestor.

10.1 Introduction

The machine learning methods we discussed so far are typically black box type of
classifiers, in the sense that the decisions they make are not transparent to users. In
other words, these models are neither interpretable nor comprehensible to users.
Another issue with these methods is that their decision-making process is one path
or non-conditional process, which means that there are no alternatives when the
original decision was not appropriate.

Human beings, however, tend to make decisions in a step-by-step and hierar-
chical way. For example, when we look at an image with complex patterns, we tend
to first organize the different patterns into groups using the most prominent attribute
or feature, then go further to identify the objects we are interested, and analyze them
in detail using other types of attributes or features. This kind of hierarchical and
step-by-step analysis is repeated until we are satisfied.

In machine learning, this kind of intuitive, hierarchical, and step-by-step analysis
can be modeled using a decision tree or DT. DT is a “divide-and-conquer”
approach to learn classification from a set of training samples. A DT is built from a
training dataset by recursively dividing the dataset into several subsets based on the
possible values of a selected attribute. The procedure starts at the root node and
continues until all the instances of a subset have the same class label or there is no
other attribute left to divide them.

A DT is typically built upside down with its root at the top. Figure 10.1 shows
an example of a DT on image classification [1, 2]. On the DT, an internal node
(with outgoing branches) is labeled with an input feature or a selected attribute. The
branches coming from a node are labeled with each of the possible values of the
selected attribute. Each leaf node (without outgoing branch) of the tree is labeled
with a class or a probability distribution over the classes.

© Springer Nature Switzerland AG 2019
D. Zhang, Fundamentals of Image Data Mining, Texts in Computer
Science, https://doi.org/10.1007/978-3-030-17989-2_10

243

The following is a list of terminologies associated with a DT:

1. Root Node. It represents the entire dataset and it is to be divided into two or
more homogeneous sets.

2. Internal Node/Decision Node. It is a node which can be split into two or more
sub-nodes.

3. Leaf Node/Terminal Node. It is a node which cannot be split into sub-nodes.
4. Branch/Sub-tree. An edge coming out of a node is called a branch and the

section under a branch is called a sub-tree.
5. Parent and Child Node. A node which is divided into sub-nodes is called parent

node and a node under a parent node is called a child node.
6. Splitting. It is a process of dividing a node into two or more sub-nodes.
7. Pruning. It is a process of removing unwanted sub-nodes and branches. It is the

opposite process of splitting.

Depending on the type of attribute values, a DT can be either a classification tree
or a regression tree. A classification tree takes a discrete set of attribute values and
the predicted outcomes are the class labels to which the data belong, while a
regression tree takes continuous attribute values and the predicted outcomes are real
numbers.

Quinlan [3] first formulated a DT algorithm called ID3 (Iterative Dichotomiser
3) which only accepts discrete features. ID3 is later extended to C4.5 [4] which
accepts both discrete and continuous features. In the following, we describe the
characteristics of different types of DTs.

colour

texture shape

Red
Star

Red
Diamond

Blue
Heart

Blue
Circle

Training samples

Internal node

Intermediate
classification

Leaves of DT

Final classification

Attribute values

Leaf1 Leaf2 Leaf3 Leaf4

Fig. 10.1 A DT for image classification

244 10 Image Annotation with Decision Tree

10.2 ID3

The ID3 algorithm begins with a training dataset T and an attribute set A as the root
node. It then checks every unused attribute of the attribute set A and calculates the
entropy info(T) (or information gain IG(T)) of that attribute. It then selects the
attribute which has the smallest entropy (or largest IG) value. The set T is then split
into subsets by the selected attribute. The above procedure is repeated on each
subset until there is no unused attribute or the subset is homogeneous (all instances
in the subset are from the same class). ID3 only accepts data with discrete or
nominal values. The algorithm of the ID3 can be summarized as follows:

ID3 (T, A) {

1. Create a root node Root
2. If all instances in Root belong to the same class C or A is empty

2:1. Stop and return Root with label = C

3. Else

3:1. Select an attribute Ai with possible values A1
i ;A

2
i ; . . .;A

n
i

3:2. Partition T into subsets T1, T2, …, Tn according to the values of Ai

3:3. For each Tj

3:3:1. Add a new branch under Root to connect Tj with Root
3:3:1. If Tj is homogeneous

3:3:1:1. Then, below this new branch add a leaf node with label = Ai
j

3:3:1. Else, below this new branch add the sub-tree ID3 (Tj, A − {Ai})

}

This algorithm, in fact, is a general DT algorithm. Central to a DT algorithm is
step 3.1, which requires an attribute selection criterion or a splitting criterion. This
splitting criterion determines how the tree looks like and the performance of a DT
as well.

10.2.1 ID3 Splitting Criterion

Because the split criterion is critical to the success of a DT, variety of criteria have
been proposed. The rule is to select an attribute which reduces the maximum
amount of uncertainty in data, because the higher the uncertainty in data is, the

10.2 ID3 245

more difficult it is to predict the class of an instance. Intuitively, this is equivalent to
selecting the most useful or most telling attribute to make a decision. Information
gain is a statistical measurement of reducing the uncertainty in data. Therefore, in
ID3, the attribute which gives the highest information gain is selected as the test
attribute.

Information gain of an attribute measures how much information we can save or
gain if it is selected to split the training set. Mathematically, it is measured as the
difference between information needed to classify an instance before and after the
attribute splits the training dataset.

Information before the splitting:

• Given a training set T ¼ f x1; y1ð Þ; x2; y2ð Þ; . . .; ðxN ; yNÞg, where xi is the data or
sample, yi is the class label for xi, and yi 2 C1;C2; . . .;Cmf g.

• Instances in T are characterized with the set of attributes A ¼ A1;A2; . . .;Anf g.
• Each attribute Ai has possible values A1

i ;A
2
i ; . . .;A

ni
i .

• The probability that an instance of T belongs to class Cj is given as

Pj ¼
Cj

�� ��
Tk k ð10:1Þ

where Cj

�� �� is the number of instances in Cj.

To classify an instance in T, the information needed (or the entropy) is given as,

infoðTÞ ¼ �
Xj¼m

j¼1

Pj � logPj ð10:2Þ

The negative sign before the sum is to make the information a positive value;
this is because Pj � 1 and log Pj � 0. Generally, entropy refers to disorder or
uncertainty in a dataset; a smaller info(T) means a more predictable class. This is
consistent with our understanding of information. An event with higher chance of
occurrence carries little to zero information such as sunrise/sunset, while an event
with less chance of occurrence carries more information such as rain/sunshine. In
English language, frequent words such as “a”, “the”, and “this” carry almost zero
information, while rare words such as “Delphi”, “nirvana”, and “dialectics” carry a
lot of information. In terms of a dataset, a data source (or a class) with higher
probability value carries less information than a data source with lower probability
value. Therefore, a DT learning algorithm attempts to split T into subsets so that the
expected information needed is minimized after a split.

Information after the splitting:

Suppose, an attribute Ai has ni nominal values such as A1
i ;A

2
i ; . . .;A

ni
i . If attribute Ai

is selected at the current node, it splits the training set T into T1
i ; T

2
i ; . . .; T

ni
i . After

the splitting, the expected information is calculated as

246 10 Image Annotation with Decision Tree

EðAiÞ ¼
Xj¼ni

j¼1

T j
i

�� ��
Tk k � infoðT j

i Þ ð10:3Þ

The information gain is the difference between info(T) and E(Ai):

IGðAiÞ ¼ info Tð Þ � EðAiÞ ð10:4Þ

The attribute which gives the highest IG is chosen for splitting the training set.
Because info(T) in (10.2) is the same for all attributes, the attribute Ai which gives
the highest gain has lowest expected information E(Ai). Therefore, the attribute
which leads to the least expected information is selected.

10.3 C4.5

C4.5 build a DT from a training dataset in the same way as ID3, except C4.5 has
made a number of improvements to ID3:

• Use gain ratio (GR) instead of IG to build a better DT.
• Accept both continuous and discrete attributes. For continuous attributes, C4.5
creates a threshold and then splits the list into those whose attribute value is
above the threshold and those that are less than or equal to it.

• Handle incomplete data points. C4.5 allows attribute values to be marked as “?”
for missing data.

• Apply different weights to the attributes.
• Overcome over-fitting problem by a bottom-up pruning. C4.5 goes back through
the tree once it has been created and removes branches that are deemed unnec-
essary by replacing them with leaf nodes.

10.3.1 C4.5 Splitting Criterion

In ID3, IG is used as splitting criterion. However, the disadvantage of using IG as
splitting criterion in ID3 is that it favors the highly branching attributes, that is, the
attributes which have a large number of possible values. Let us think about the
extreme case where the instance ID is used as an attribute. Say, it is denoted as AID,
and it has a distinct value for each instance. If AID is used to split the dataset T, each
subsequent subset will have only one instance. According to (10.3), E(AID) is zero
because each subset has zero entropy (information). Therefore, IG(AID) will be the
highest and AID will be selected. However, such a selection tells nothing about the
nature of the decision and leads to no classification at all. To reduce the effect of

10.2 ID3 247

high branching factor on information gain, a modified measure called gain ratio
(GR) or normalized IG is proposed by Quinlan in C4.5. The gain ratio is defined as
IG normalized by split information [4]

GR Aið Þ ¼ IG Aið Þ
splitInfo Aið Þ ð10:5Þ

where splitInfo(Ai) is calculated based on the proportion of each subset resulted
from the split using attribute Ai, regardless of the class information inside each
subset. Specifically, it is defined as

splitInfoðAiÞ ¼ �
Xj¼ni

j¼1

T j
i

�� ��
Tk k � log

T j
i

�� ��
Tk k

 ! !
ð10:6Þ

It can be observed that the higher the number of attribute values of Ai, the larger
the magnitude of splitInfo(Ai) and the lower its gain ratio. Therefore, using gain
ratio, the high branching behavior is penalized.

10.4 CART

In machine learning, a DT can be either classification tree or a regression tree. For
a classification tree, the predicted outcome is a class such as tree, tiger, water, etc.,
while for a regression tree, the predicted outcome is a real number, such as stock
price, queueing time, etc.

CART stands for Classification And Regression Tree; it is an umbrella term used
to cover both classification DT and regression DT. It was first introduced by
Breiman et al. in 1984 [5]. A CART tree is a binary DT that is constructed by
splitting a node into two child nodes repeatedly, beginning with the root node that
contains the entire training data. The splits are done using the twoing criteria and
the obtained tree is pruned by cost–complexity technique. CART can handle both
numeric and nominal attributes, and it can also handle outliers.

10.4.1 Classification Tree Splitting Criterion

A CART uses splitting criteria called the twoing criteria for a classification tree,
which is defined as (10.7)

DiðtÞ ¼ PLPR

4

Xm
j¼1

p jjtLð Þ � p jjtRð Þj j
 !2

ð10:7Þ

248 10 Image Annotation with Decision Tree

where

• t is the node to be split,
• Δi(t) indicates the impurity of node t,
• PL is the proportion of data split into the left node tL and similar for PR,
• PL ¼ tLj jj j= tj jj j and PR ¼ tRj jj j= tj jj j, where t is the parent node of tL and tR, ||t|| is
the total number of data in node t,

• p(j|tL) is the proportion of data belonging to class j at the left node tL, and
• m is the number of classes in the training set.

The twoing criteria measure the difference between the two split nodes, and a
split is achieved by maximizing the difference or Δi(t).

Gini impurity can also be used to define a splitting criterion for a classification
tree. First, the Gini index (GI) or GIs are computed for both the left split node tL and
right split node tR, which are given in (10.8) and (10.9), respectively.

GI tLð Þ ¼ 1�
Xm
j¼1

½p jjtLð Þ�2 ð10:8Þ

GI tRð Þ ¼ 1�
Xm
j¼1

½p jjtRð Þ�2 ð10:9Þ

It can be observed from (10.8) and (10.9) that

• A GI is maximum or GI = (1 − 1/m) when records in a node are equally dis-
tributed among all classes, indicating maximum uncertainty.

• A GI is minimum or GI = 0 when all records in a node belong to one class,
indicating minimum uncertainty.

A split is achieved by minimizing the Gini impurity which is defined as (10.10)

iG tð Þ ¼ tLj jj j � GI tLð Þþ tRj jj j � GI tRð Þ½ �= tj jj j ð10:10Þ

The Gini impurity splitting algorithm works faster than twoing splitting algo-
rithm; however, the twoing splitting criterion builds a more balanced DT and offers a
superior performance on complex classification such as multi-class and noisy data.

10.4.2 Regression Tree Splitting Criterion

A regression tree is also called a prediction tree. Instead of identifying the class
label for a training or unknown data, a regression tree predicts the likely target value

10.4 Cart 249

of the data. For regression tree, the splitting criterion is typically given by the mean
squared error (MSE). Given a training set T = {(x1, y1), (x2, y2), …, (xN, yN)},
where xi is the data or sample and yi is the target value for data xi. The splitting is
determined by the two nodes which give the smallest MSE:

MSE ¼ 1
NL

XNL

i¼1

yi � ŷLð Þ2 þ 1
NR

XNR

j¼1

yj � ŷR
� �2 ð10:11Þ

where

• NL and NR are the total number of samples falling into the left split node and the
right split node, respectively,

• ŷL and ŷR are the prediction values for the left and right split nodes, respectively,
• ŷL is typically given as the result of a regression from the data falling into the left
node: ŷL ¼ f̂L xið Þ ¼ bT � xi þ b:

A regression tree is basically a piecewise linear approximation of a dataset in
space. Figure 10.2 demonstrates a contrast between a global linear regression and a
regression tree approximation on one variable dataset. In the figure, the green line
shows an approximation from a global linear regression, while the red lines rep-
resent a regression tree approximation of the same data. It can be observed that the
regression tree gives a much closer approximation than the global linear regression
model.

10.4.3 Application of Regression Tree

The prediction value ŷL in (10.11) can also be estimated by the mean of the left

node ŷL ¼ 1
NL

PNL

i¼1
yi (similar for ŷR). The tree built in this way provides a piecewise

constant approximation of the data. The mean prediction model is a much faster
method to build a regression tree.

Figure 10.3 shows a mean prediction tree for predicting median house price of
California based on the two variables: latitude and longitude. The actual data map
and the tree partitions are shown in Fig. 10.4. It can be seen that the finer partitions
are concentrated at the darker areas.

250 10 Image Annotation with Decision Tree

Linear regression
Regression tree

Fig. 10.2 Contrast between linear regression and regression tree

Fig. 10.3 A regression tree for predicting median house price (′000) in California from the
geographic coordinates of Fig. 10.4. Legend: La = latitude, Lo = longitude, y = yes, n = no

10.4 Cart 251

10.5 DT for Image Classification

Images are complex data. A typical image usually has multiple regions/objects and
has multiple interpretations. Therefore, the first step is to segment an image into
individual regions and represent each region with an n-dimensional feature vector:
x = (x1, x2, …, xn). For color images, each image region is represented with a color
feature vector xC and a texture feature vector xT. Because certain types of image
regions can be best described by both color and texture, the third feature is also
created by combining both color and texture into a single feature vector xCT.

10.5.1 Feature Discretization

The three types of features xC, xT, and xCT are all continuous features; in order to
classify these regions using a classification DT, the features need to be quantized

Fig. 10.4 Data map of actual median house prices in California and the tree partition of the data
map, the darker the color, the higher the house value

252 10 Image Annotation with Decision Tree

into discrete values using a vector quantization (VQ) technique. The idea of a VQ
technique is to cluster similar image regions into clusters which are then assigned
with nominal values such as 0, 1, 2, …, K. These nominal values correspond to
class labels such as sky, water, grass, firework, tiger, etc., which are used for DT
classification. Common VQ algorithm is the LBG algorithm [6] which is given as
follows:

LBG (T, K, e) {
Input: T ¼ fxi 2 Rn; i ¼ 1; 2; . . .;Ng
Output: C ¼ fcj 2 Rn; j ¼ 1; 2; . . .;Kg

1. Initiate a codebook C ¼ fcj 2 Rn; j ¼ 1; 2; . . .;Kg
2. Set D0 = 0 and k = 0
3. Classify the N training vectors into K clusters Tq q ¼ 1; 2; . . .;Kð Þ and classify xi

to Tq if the distance d xi�cq
� �

\d xi�cj
� �

for all j 6¼ q
4. Update cluster centroids cj by cj ¼ 1

Tjj j
P

xi2Tj xi j ¼ 1; 2; . . .;Kð Þ
5. Set k ← k + 1 and compute the distortion Dk ¼

PK
j¼1

P
xi2Tj d xi � cj

� �
6. If Dk�1�Dkð Þ=Dk [e (a small positive number), repeat steps 3–5
7. Return the codebook C ¼ fcj 2 Rn; j ¼ 1; 2; . . .;Kg

}

By applying the LBG VQ algorithm on xC, xT, and xCT, three codebooks or
visual dictionaries Vi i ¼ 1; 2; 3ð Þ are created:

Vi ¼ vi1; v
i
2; . . .; v

i
ni

n o
; i ¼ 1; 2; 3 ð10:12Þ

where vij represents a code word of Vi and ni is the total number of code words in Vi.
For each image region R in the training dataset, it is represented as three discrete

attribute values as follows:

R ¼ ind1; ind2; ind3ð Þ ð10:13Þ

and

indi ¼ argmin
j

ðdistðvi; vijÞÞ ð10:14Þ

where

• dist(vi, vji) is the distance between feature vi and code word vj
i,

• vi is one of the feature vectors (xC, xT or xCT) of R,

10.5 DT for Image Classification 253

• vji is the jth value of attribute Vi, and
• indi is an index value of attribute Vi and it is an integer between 0 and ni.

Therefore, each image region in the training set is now associated with three
discrete attributes Ai ¼ Vi i ¼ 1; 2; 3ð Þ which are ready for building a DT.

10.5.2 Building the DT

With a training set of image regions T and a set of visual attributes A, an image
classification DT can be built using the following algorithm [1]:

1. If all training regions of T belong to the same class C,

1:1. The tree is a leaf node with the outcome C.
1:2. Stop.

2. If the regions of T belong to more than one class but there is no attribute to
separate them,

2:1. The tree is a leaf node. The outcome is determined as follows.

2:1:1. If there is a single majority class in T, the outcome is that class.
2:1:2. Else, the outcome is the majority class of the parent node.

2:2. Stop.

3. If the regions of T belong to more than one class and there are one or more
attributes to separate them

3:1. Create an internal node.
3:2. Calculate the IG or gain ratio for each attribute.
3:3. Select the attribute Ai with the highest gain ratio: Ai ¼ fvi1; vi2; vi3; . . .; vinig
3:4. Use Ai as the test attribute for the internal node.
3:5. Split the training set T into subsets: T0

i , T
1
i , T

2
i , T

3
i , …, Tni

i , where image
regions in T j

i have attribute value v j
i .

3:6. Remove attribute Ai from the attribute list.
3:7 Repeat from Step 1 for each T j

i .

A DT generated from the above algorithm can have nodes with isolated or noisy
samples. A common practice is to include a pre-pruning procedure after each
splitting to remove those nodes with noisy samples. The following pre-pruning
procedure can be included as step 3.7 in the above algorithm, and name the original
step 3.7 as 3.8.

254 10 Image Annotation with Decision Tree

3:7 Pre-pruning [7]:

3:7:1 Calculate the probabilityP0
i for every class in subsetT

j
i (j = 0, 1, 2,…, ni) as

P0
i ¼

pj
�� ���� ��
pij jj j ð10:15Þ

where pi and pj are the number of instances of class Ci in T and T j
i ;

respectively.

3:7:2 Remove those samples from subset T j
i whose class probability P0

i is less
than a threshold k.

3:7:3 Remove T j
i if it is an empty subset after sample removal.

Figure 10.5 shows a DT learnt from a dataset of 570 image regions which have
been quantized into 19 classes (30 images/class), and the pre-pruning threshold is
k = 0.1 [8]. The meanings of the leave labels are as follows: A = Grass, B =
Forest, C = Sky, D = Sea, E = Flower, F = Sunset, G = Beach, H = Firework,
I = Tiger, J = Fur, K = Eagle, L = Building, M = Snow, N = Rock, O = Bear,
P = Night, Q = Crowd, R = Butterfly, S = Mountain, and U = Unknown.

A DT generated from the above algorithm can still be very complex and
imbalanced. A post-pruning procedure is usually applied after the initial tree has
been generated; this can be added as step 4 in the above DT algorithm. The
post-pruning is a procedure to remove those isolated branches and merge them with
neighboring nodes.

1. Post-pruning [7]:

a. If for more than one value of the attribute Ai, the outcome class labels are
identical, i.e., Ci, then all the leaf nodes corresponding to these attribute
values are merged as a single leaf node labeled with class Ci.

b. If the outcomes for all the possible values of attribute Ai are identical, i.e., Ci,
then the sub-tree rooted at Ai is replaced with a single leaf node with Ci as an
outcome.

Figure 10.6 shows the DT from Fig. 10.5 after post-pruning; it is a much simpler
and more robust DT [7, 8].

10.5.3 Image Classification and Annotation with DT

Once the DT is generated from a training dataset, a set of rules or a DT model can
be formulated from the DT by traversing the tree from the root to each of the leaf

10.5 DT for Image Classification 255

Fig. 10.5 A DT for image classification without post-pruning, CT = color and texture

256 10 Image Annotation with Decision Tree

nodes. This DT model is to be used as an image classifier. The following is the DT
model formulated from the DT shown in Fig. 10.6.

IF CT is 1 (or 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17) THEN

 {

Region is Forest (or Sky, Sea, Flower, Sunset, Beach, Firework, Fur, Eagle, Building,

Snow, Bear, Butterfly, Crowd, Mountain respectively)

 }

ELSE IF CT is 0 AND

 {

IF color is 13 THEN Region is Rock

ELSE Region is Grass

 }

ELSE IF CT is 8 AND

 {

IF color is 8 AND

IF texture is 7 THEN Region is Firework

ELSE Region is Tiger

ELSE Region is Tiger

 }

ELSE IF CT is 13 AND

 {

IF texture is 4 THEN Region is Flower

ELSE IF texture is 11 THEN Region is Tiger

ELSE Region is Rock

 }

ELSE IF CT is 15 AND

 {

IF texture is 9 THEN Region is Fur

ELSE IF TEXTURE IS 15 AND

IF color is 10 THEN Region is Eagle

ELSE Region is Night

ELSE Region is Night

 }

 END

Given a new or unknown image, it is also segmented into regions using the same
algorithm as that used by the training dataset. Each region is then represented as
three discrete attribute values: R = (ind1, ind2, ind3), using the learnt visual dic-
tionaries. Each of the regions R is then analyzed using the DT model as shown in
the above and is classified into a class.

10.5 DT for Image Classification 257

As can be observed, a DT model is completely transparent and comprehensible
to a human user. A classifier working in this way can be easily modified and
fine-tuned to adapt to the data. The other advantage of the DT model is that issues
can be found and corrected at learning stage without much difficulty.

10.6 Summary

DT is a powerful image classification tool. Due to its hierarchical nature and
piecewise approximation of data, it offers a middle ground between generative and
discriminative approaches. Compared with other classification tools, DT has a
number of advantages.

• DT is a tool known for its simplicity, transparency, and comprehensibility.
• DT can handle both numeric and categorical attributes.
• DT can handle both noisy and missing data.
• DT offers an intuitive and step-by-step analysis based on selected attributes.
• DT does not require complex computation.
• DT generates rules which are easy to interpret.

A DT may grow too complex and imbalanced due to noise, fragmentation, and
missing data. Therefore, a pruning mechanism is essential to a DT algorithm.
Common practice is to apply a post-pruning technique after the tree has been
generated. However, many misplaced instances would have a better chance to be

Fig. 10.6 The DT from Fig. 10.5 after pruning

258 10 Image Annotation with Decision Tree

