Order is our favourite, but the truth is beyond order.

11.1 Numerical Indexing
11.1.1 List Indexing
In numerical indexing, each image I in the database has been represented as a k-

dimensional feature vector: X = (xq, Xy, ..., X;). The simplest way of a numerical
indexing is to create a list of (image_id, X) as shown in the following:

(I, x1) = [I, (x11, %12, - ., X1k
(I, %) = I, (x21, %22, . . ., X21)]
(In,xn) = [In, (n1,XN2, -+ X

where N is the total number of images in the database.

A list is simple and useful for a small image database, however, it’s impossible
to use it for a very large commercial image database, because it would take a long
time to search the entire list of millions even billions of images. Therefore, a more
efficient data structure is needed to index large image databases. One of the simplest
yet efficient data structure is the k-d tree indexing.

11.1.2 Tree Indexing

The simplest k-d tree is a binary tree. A binary k-d tree is an algorithm of repeatedly
splitting the database into two subsets by cyclically dividing the k dimensions of the
data. Given N number of k-dimensional feature vectors: Xi, X,, ..., Xy, a k-d tree
first divides the N data into two sets or branches of approximately equal size

© Springer Nature Switzerland AG 2019 263
D. Zhang, Fundamentals of Image Data Mining, Texts in Computer
Science, https://doi.org/10.1007/978-3-030-17989-2_11

®

Check for
updates

264 11 Image Indexing

X

(71, 71)

Y (26, 41)

x [(11,31)] [(36,91)] [(56, 2)] [(61, 81)]
y (2,19) (51, 52) (85, 72)

Fig. 11.1 A k-d tree for a 2D dataset of 10 data

according to the values of the first dimension of the N feature vectors. Next, each of
the left and right branches are further divided into two subbranches of approxi-
mately equal size according to the values of the second dimension of the feature
vectors. This division process continues until the kth dimension when the next
division returns to the first dimension. The cycle goes on until no node is divisible
any more.

Figure 11.1 shows an example of a k-d tree for a 2D dataset. Given a 2D dataset
of 10 data: (56, 2), (36, 91), (52, 76), (2, 19), (11, 31), (61, 81), (85, 72), (71, 71),
(51, 52), (26, 41), the binary k-d tree for this dataset is shown in Fig. 11.1. The
labels on the left-hand side of the tree are the splitting criteria or the dimensions to
be split.

A k-d tree reduces the search cost of a list of N data from an average O(N/2) to an
average of O(In N). For example, for a database of 10,000 images, the average
search cost of a k-d tree is integer [In (10,000)] ~ 14, which is way smaller than
5,000, which would be needed for an exhaustive search of a data list. For very large
image database, more efficient data structures can be used such as n-ary k-d tree,
quad-tree, octree, R-tree, cluster tree, etc.

11.2 Inverted File Indexing

The data structures described above are for numerical data. If images in a very large
database have been labeled with nominal or discrete values, they are equivalent to
structured textual documents as shown in Fig. 11.2 [1]. Therefore, labeled images
can be indexed using the same technique used for textual document indexing. In
this section, we first review the inverted file for textual documents indexing and
then introduce the inverted file for image indexing.

11.2 Inverted File Indexing 265

Sky

Fig. 11.2 An image with labeled regions

11.2.1 Inverted File for Textual Documents Indexing

In textual document indexing, a technique called inverted file is used. An inverted
file is a (terms, docs) table instead of an ordinary (docs, terms) table. The reason of
using an inverted file for document indexing is that a large amount of documents
(millions/billions, e.g., web pages) can be indexed using a much shorter list of
dictionary words (thousands). This makes the search for a large amount of docu-
ments very efficient.

The ith entry in an inverted file is a vector: (term;, docy, doc,, ..., doc,), where
every document doc; has term;. Because a term carries a different amount of
information in each of the documents, term; is given a different weight tw; for each
doc;. Therefore, an inverted file can be shown in Table 11.1.

Since the documents are typically sorted in descending order of importance
according to term weights (#w;), the term weights can be omitted after sorting.
Therefore, an actual inverted file is as simple as Table 11.2.

Table 11.1 A conceptual inverted file for textual document indexing

Term ID Terms Documents (weighted)

1 Apple (docyy, twyy), (docyz, twp), (docys, twyz), ...
2 Computer (docsi, twry), (docay, twao), (docys, twr3), ...
3 Tree (docsy, twiy), (docss, twi), (docss, tws), ...

n Zebra (docnls twnl)’ (dOCnZa twnZ)» (dOC,B, twn3)7

266 11 Image Indexing

Table 11.'2 An inverted file ey 1p Terms Documents (ranked)

after sorting
1 Apple docyy, docy,, docys, ..., docy,, ...
2 Computer docyy, docss, docss, ..., docy,, ...
3 Tree docsy, docsy, docas, ..., docsy, ...
n Zebra doc,,, doc,,, doc,s, ..., doc,,, ...

The term weight (tw) of a term ¢ in a document d is determined by two factors:
the term frequency of t in document d and the inverse document frequency of t in
the entire database D. Specifically, tw is defined as follows:

tw(t,d) = tf (t,d) x idf (t,D) (11.1)

where ¢f stands for term frequency and idf stands for inverse document frequency.
The #f and idf are given in (11.2) and (11.3), respectively.

_ f(@,d)
if (1,d) T S d) (11.2)
idf (t,D) = log <in(t”)) (11.3)

where

e f(t, d) is the number of occurrence of term ¢ in document d;

o df(t) stands for the document frequency of t, it is the number of documents in
D which have term #,

e ||D|| is the total number of documents in D.

Recent research shows that the location where a term appears in a document is
also a factor in determining the term weight, e.g., a term ¢ in the title or head section
of a web document is given a much higher score because the information of a term
in a title or a head is much more important than that in the body text.

11.2.2 Inverted File for Image Indexing

The inverted file indexing method can also be applied to image indexing. Once the
regions in an image database have been labeled with semantic concepts, images in
the database are essentially translated into textual documents. Therefore, images
can now be indexed and retrieved the same way as textual documents. Specifically,
images in the database are indexed using an inverted file structure, where each
index is a vector of the form: (term, imagel, image2, ...).

11.2 Inverted File Indexing 267

Since each term of an image is associated with a number of image regions, the
term weight of an image term is determined by three factors: area, position, and
spatial relationship [1, 2]. As a result, three corresponding weights have been
defined respectively: aw, pw, and rw.

11.2.2.1 Determine the Area Weight aw
Let

e aw(?) be the area weight of term ¢ in image I,
® R(t) be the area of a region which is labeled with term ¢ in image 1.

Then, aw(?) is defined as the sum of all R(7) in image I normalized by the area of
the image. aw(f) is equivalent to the term frequency in the textual document
indexing. Mathematically,

aw(t) = % (11.4)

For example, in Fig. 11.3 [2], the 4 pink and reddish regions in the center of the
image are all labeled as a term of “flower” by a classifier, therefore, the weight of
the term “flower” is determined by the total area of the 4 regions, which is the area
of the single flower in the image.

11.2.2.2 Determine the Position Weight pw

It is known that each type of objects usually has its natural position in an image,
e.g., sky is naturally located at the top, grass is naturally located at the bottom,
animals are naturally located at the center, etc. Based on this observation, a position
weight can be defined for each term of an image document.

Fig. 11.3 A flower in the
center with 4 segmented
regions

268 11 Image Indexing

(a) (b) c)

PR Ao

Fig. 11.4 Calculation of d and d,,,, for a animal, b sky and ¢ grass regions

Let

® R(7) be one of the regions in image [associated with term #;

e dy be the distance between the centroid of the region R(f) and the center of R(f)’s
natural position in image I;

® d,... be the maximum distance between the center of R(¢)’s natural position and
the boundary of image I.
Then, the position weight of term ¢ is defined as

dg
pw(t) = E 2 % (1 _dmax) (11.5)
R(t)el

Figure 11.4 shows three examples of computing dy and d,,, [1, 2].

11.2.2.3 Determine the Relationship Weight rw
It is found that many types of objects usually go together in images such as bird and
sky, computer and desk, beach and water, mammals and grass, flowers and tree, car
and road, clock and wall, window and building, etc. The co-occurrence relationship
can be used to determine the weight on a term in an image. For example, if both a
“bird” term and a “sky” term are detected in an image, the weight of the “bird” term
is doubled; if a “kangaroo” term appears together with a “tree” term and a “grass”
term, the weight of the “kangaroo” term is tripled, so on so forth.

Let r(f) be a term which co-occurs with term ¢ in the image I, then the rela-
tionship weight rw is given as

w(t) =Y r(t) (11.6)

r(nel

Now that we have defined the three factor weights of a term ¢ in image /, the final
term weight is defined as follows (11.7):

tw(t) = aw(t) x pw(t) x rw(t) (11.7)

11.2 Inverted File Indexing 269

Table 11.3 A conceptual inverted file for image document indexing

Term ID Terms Images (weighted)

1 Apple (imyy, twyy), (imya, tW12), (imy3, tws), ...

2 Computer (imy1, tway), (imaa, o), (imy3, twa3), ...

3 Tree (im31, tw31), (imzz, Way), (im3zs, twiz), ...

n Zebra (imy,y, twy1), (M0, W,2), (M3, Wy3), ...

Table 1.4 The simplified Term ID Terms Documents (ranked)

inverted file from Table 11.3 Aol i . : :

after sorting pple imyy, My, M3, ..., My, ...
2 Computer imyy, iMyy, iMy3, ..., Moy, ...
3 Tree imsy, iMsp, iM33, ..., iMa,, ...
n Zebra imy,1, iMyo, iMy3, ..., My, ...

11.2.2.4 Inverted File for Image Indexing

Since each term in the dictionary has been given a weight in each of the images in
the database, images in the database can be indexed using an inverted file the same
way as in the textual document indexing. An example of an inverted file for image
indexing is shown in Table 11.3.

After sorting the images at each row in descending order of importance
according to the term weights, the above-inverted file is simplified as Table 11.4.
The key difference between Tables 11.4 and 11.2 is that the terms in Table 11.4 are
extracted from content features and by machine instead of interpretations by
humans. Compared with textual documents, it’s more difficult to determine the
weight of a term in an image. We will show how the inverted file is used in image
retrieval in Sect. 13.5.

11.3 Summary

Image indexing is about to put images in an image database into a data structure or
order so that images in the database can be retrieved similar to retrieving alphabetic
data from a Relational Database Management System (RDBMS). There are gen-
erally two types of approaches: numerical indexing and inverted file indexing.

If images are represented in numerical features, they can be indexed either using
a list which is the simplest or using a tree structure. The list indexing is suitable for
a small image database, while for a very large image database, the tree structure
facilitates fast searching.

