All that glitters is not gold.

12.1 Introduction

The image feature extracted is usually an N-dimensional feature vector which can
be regarded as a point in R space. Once images are indexed into the database using
the extracted feature vectors, the retrieval of images is essentially the determination
of similarity between a query image and the target images in database, which in turn
is the determination of distance between the feature vectors in R" space. The
desirable distance measure should reflect human perception. That is to say,
perceptually similar images should have smaller distance between them while
perceptually different images should have larger distance between them.

Therefore, given a query, the higher the retrieval accuracy, the better the distance
measure. For online retrieval, computation efficiency is also a factor to be con-
sidered when choosing a distance measure.

Variety of distance measures have been used in image retrieval; they include city
block distance, Euclidean distance, cosine distance, histogram intersection distance,
y* statistics distance, quadratic distance, and Mahalanobis distance [1]. In this
chapter, commonly used similarity measures will be described and examined.
A number of widely used performance measurements will also be discussed.

12.2 Similarity Measures

12.2.1 Distance Metric

A similarity measure d(x, y) between two feature vectors x and y is normally
defined as a metric distance. d(X, y) is a metric distance if for any of two data points
x and y in space; it satisfies the following properties:

© Springer Nature Switzerland AG 2019 271
D. Zhang, Fundamentals of Image Data Mining, Texts in Computer
Science, https://doi.org/10.1007/978-3-030-17989-2_12

®

Check for
updates



272 12 Image Ranking

(1) dx,y) =0 (non-negativity)

(2) dx,y)=0if and only if x =y (identity)

(3) d(x, y) = d(y, x) (symmetry)

@ dx,z) < dx,y) +dy,z) (triangle inequality).

12.2.2 Minkowski-Form Distance

The Minkowski-form distance is often called the L, norm or L, distance. Given a
N-dimensional feature vector of a query image X = (xy, xp, ... x,,) and a target image
in database y = (y1, ¥, ..., ¥»), the L, distance is defined as

Ly(x,y) = <§n:(x,- —y,-)”>ﬂ (12.1)

i=1

When p = 1, L, is called the city block distance or Manhattan distance:
Li(x,y) = lei = Vil (12.2)
i=1

When p = 2, L, is called the Euclidean distance:

n

Ly(x,y) =Y _(xi— ) (12.3)

i=1

When p — 00, L, is called the Chebyshev distance:

Loo(x,y) = max {|x; —yi|} (12.4)

1<i<n

By varying the p values, various Minkowski distances can be created. However,
among the many Minkowski-form distances, L, is the most widely used similarity
measures. This is because L, is the most consistent with human perception of image
similarity. The agreement between distance and perception is demonstrated in
Fig. 12.1, where the unit circles of Minkowski distance with different p values are
shown. Points on each of the unit circles all have the same distance to the origin
under the corresponding p values. As can be seen, the L, unit circle agrees most
with human perception among the three p values.

L, tends to emphasize or amplify the dimensions with high values due to the use
of quadratic function. This can cause undesirable results because the distance value
is often determined by a few dominant feature dimensions which are often due to
local distortion or noise. This in turn can result in rejecting true positives which are
perceptually similar images to the query but have local distortion or noise, e.g., a
bite out apple would be rejected from the retrieval list using an intact apple as the
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Fig. 12.1 Unit circles of Minkowski distance with different p values.ap =5 bp=1,¢p=2

query. Consequently, L, distance can expect lower recall compared with L, distance
although it can return a top retrieval list with higher precision.

One solution to overcome the lower recall issues of L, distance is to apply a
logarithm transform to the feature values to suppress the very high feature values
and raise the lower feature values, so that all feature values have balanced contri-
butions to the final distance value. Figure 12.2 (top) shows an example histogram
from the flower image in Fig. 4.14, notice the histogram feature is dominated by the
bins at the end of the histogram. The log-transformed histogram feature vector is
shown at the bottom of the figure; it can be seen that while the difference between
the feature dimensions has been reduced significantly, the top profile of the his-
togram has been kept.

12.2.3 Mass-Based Distance

Minkowski-form distance-based similarity measures are basically a matching of
two images feature by feature. However, due to image features usually have very
high dimensions and features are imperfect, this kind of detailed feature by feature
matching can result in undesirable outcomes in many situations. For example,
different images can have the same feature vector as shown in Fig. 12.3, and similar
images can also have almost completely different feature vectors as shown in
Fig. 12.4. In both cases, the L,-based similarity measure would give a totally
incorrect matching result.

The issue demonstrates L,-based similarity measures that are not robust. This
drawback can be overcome by incorporating neighboring data in the
decision-making process.

To address the sensitivity issue of L,, a mass-based similarity measure m,, has
been proposed [2]. The idea of m,, is to use neighborhood data to make a similarity
decision collectively instead of making a similarity decision just based on two
instances alone. Specifically, m, uses the neighborhood data mass at each subspace
of R to replace the difference at each dimension in the Minkowski-form distance.
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Fig. 12.2 Top: a histogram feature vector; Bottom: the log-transformed histogram feature vector
from the top histogram

Fig. 12.3 The three images have the same histogram
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Fig. 12.4 The two images with different brightness have almost completely different histograms

The idea of m,, is based on a distance—density model described by Krumhausl [3]
and a psychological discovery that two instances in a sparse region are perceptually
more similar than they are in a dense region.

Given two data points in R": x and y, m, works by defining a region R(xX,y)
between the two instances (including the two instances) and finding the data mass
of the region. Data mass is the number of data instances from dataset that falls in
this region. R(x,y) is a d-dimensional region, and the ith dimension of R(x,y) is
given as Ri(X, y), i = 1, 2, ..., n. The data mass of each Ri(X, y) depends on the
distribution of the data in R" space.

Specifically, the mass-based similarity measure m, is defined as (12.5) [4]

1/p
” _ (I~ (RN 12,5
x.3) (Z( x )) (125)
where

o |R;(x,y)| is the data mass in region of R;(x,Yy),
e N is the total number of instances in the dataset,
® R;(x,y) = [min(x;,y;) — o, max(x;,y;) + g], and
e ¢ is a small number and ¢ > 0.
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Figure 12.5 [4] illustrates a data distribution in 2D space and the calculation of
data mass between two data points x and y. For convenience of calculation, o is set
as 0. With this data distribution, the data mass in R{(X, y) = [xy, y{]is |R1(X,y)| =
63 while the data mass in Ry(X, y) = [xa, y-] is |Ra(x,y)| = 40.

Ly, is essentially a fine similarity measure between two instances and is sensitive
due to the use of feature by feature matching between two instances. It can result in
completely incorrect match in cases shown in Figs. 12.2 and 12.3. On the other
hand, m,, is essentially a coarse similarity measure between two instances, because
it is computed using collective info from neighborhood data mass. Therefore, m,
can be inaccurate in situations when the features of the two instances are close.

To overcome the limitations of both the L, and m,,, a hybrid similarity measure
called h, can be used, which is defined in (12.6)

1
n

hy(x,y) = (Z(Ixi - yil % IRi(x,y)l)p>p (12.6)

i=1

h,, is a compromise, it overcomes the sensitivity drawback of L, while preserves its
accuracy. To prevent A, from being disproportionally determined by a few domi-
nant dimensional features, a log transform on m, is applied before computing #,,.
The modified 4, is given as (12.7)

hy(x,y) = <Zn:[|xi — yi| x log(|Ri(x, y)I)]”>p (12.7)

i=1
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Fig. 12.5 Illustration of m, dimension calculation between two data points x and y



122 Similarity Measures 277
12.2.4 Cosine Distance

The cosine distance computes the distance between two vectors in terms of
direction, irrespective of vector lengths. The distance is computed based on the rule
of dot product:

X Xy =|x| X |y| X cosf (12.8)

where 0 is the angle between vector x and y, and |x| and |y| are the magnitudes of
x and y, respectively. The cosine distance is then defined as

Xy _ HZ,:ZI xiyin . (12.9)
x| - [yl \/Zi:l i \/Zi:l Vi

If both x; and y; have been normalized to probability values between 0 and 1, cos
(x, y) becomes

cos(x,y) =1—

cos(x,y) = 1= xiyi (12.10)

i=1

The key feature of the cosine distance is that it is invariant to scale change in
contrast to Minkowski distance. Figure 12.6 shows the comparison between the
cosine distance and the two Minkowski-form distances in two-dimensional space. It
can be observed that both L, and L; respond to scale changes, while cosine distance
does not. For example, in Fig. 12.6b, cos(X, y) = cos(xy, y), while Li(x, y) # L,
(x1,y)and Ly(x,y) # Ly(X;,y). The scale invariance can be useful in situations where
directional features are more important than magnitudes. For example, if cosine
distance is used, two similar colors will keep their similarity after scaling of the color
components.

X; e e

v
v

Fig. 12.6 Comparison between the cosine distance and L, distance. a Ly(X, y) = L»; b cos(x,
y) =cost; ¢ Li(x,y) =dy; + di»
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12.2.5 j? Statistics

In #* test, both x and y are treated as random variables, the ¢ statistics is then used
to test if the two variables are correlated/independent each other, and how much
they are correlated. Formally, y* statistics is defined as (12.10)

n

P (= my)?
Cxy) =Y (12.11)

p mi

where m; = (x; + y;)/2, which is regarded as the expected value for dimension i.
A low »* value means that both x and y are from the same probability distribution
and there is a high correlation between the two feature vectors, which indicates the
images represented by the two feature vectors are similar. An advantage of using j*
statistics is that it can overcome the mismatch between two histograms from images
with very different lighting conditions as shown in Fig. 12.4.

12.2.6 Histogram Intersection

A histogram is a distribution function with a particular shape of area. The histogram
intersection is to test how much area two distributions x and y share, the more area
they share, the more similar the two distributions are (Fig. 12.7). Mathematically,
a histogram intersection is defined as

?:1 min(x;, y;)

HI(x,y) = min(|x], [y|)

(12.12)

100 & . !

Fig. 12.7 Histogram intersection of two histograms shown as gray area
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If both x; and y; have been normalized to probability values between 0 and 1, HI
is simplified as (12.13)

HI(x,y) = i:min(xi,yi) (12.13)

For two identical histograms, their HI value is the maximum 1 and for two
similar histograms, their HI value is a high. For two different histograms such as the
two histograms shown in Fig. 12.4, their HI value is close to zero. The HI distance
is defined as

du(x,y) =1— Zmin(xia)’i) (12.14)

i=1

dyy also has the same histogram mismatching issue as the L, distance.

12.2.7 Quadratic Distance

The distances or measures we have introduced so far all make two implicit
assumptions: (a) the two feature vectors to be measured x and y have equal number
of dimensions; and (b) the dimensions of x and y are independent. However, there
are applications and situations where these two conditions are not met. For
example, the dominant color descriptors described in Chap. 4 typically have
different number of dimensions, and colors of neighboring histogram bins are
correlated with each other. The quadratic distance measure is one of the methods to
address the unequal number of dimensions between two feature vectors and capture
the cross dimension information in a feature vector.

The quadratic-form distance between two n-dimensional feature vectors x and
y is given by

ol—

dy(x.y) = [(x = y) A(x —y)] (12.15)

where

e T means transpose,

e A = [ag;] is an n X n matrix,

e q;; is the similarity coefficient between dimensions i and j,
o a; =1 — dijldyax,

e d;=|x;, — y| and

o dmax =maXj<ij<n d,j
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For numerical calculations, (12.15) is expanded as (12.16)

(ZZ“UX X; + ZZaUy,yJ ZZZaUx,yj> (12.16)

i=1 j=1 i=1 j=1 i=1 j=1

The a;; is the similarity coefficient between x; and yj;; it is a weight on a
cross-dimensional element of the two feature vectors, the higher the correlation
between the two cross dimensions, the more the weight is given on that element.

For two feature vectors x and y with different dimensions n and m, respectively,
the quadratic distance between x and y is given as (12.17)

1
n n m m n m 2
= <Zzazjxlxj + ZZaijyiyj — 22 Za,-,-x,-») (12.17)

i=1 j=1 i=1 j=1 i=1 j=1

If the dimensions of both the two feature vectors x and y are independent each
other, e.g., after certain decorrelation operations, the quadratic distance between
x and y is given as (12.18)

m n m %
4= (zx 3 zz)
=1 j=1

1

n m ) 2
= (Z aij(x; — ;) )
i=1 j=1

Equation (12.18) is a weighted Euclidean distance; one can expect that d, is a more
desirable similarity measure than both L, and dy;; however, the determination of the
weights is an issue.

(12.18)

12.2.8 Mahalanobis Distance

The Mahalanobis distance is a special case of the quadratic-form distance (12.15)
in which the transform matrix is determined by the covariance matrix obtained
from a training set of feature vectors, that is, A = X~ '. In order to apply the
Mahalanobis distance, a feature vector x is regarded as a multivariate random
variable x = (xy, x», ..., x,,) from certain probability distribution. Then, the corre-
lation matrix is given by R where

* R =[ryl

ri = E{xx;} which is the mean of the random variable x;;.
e The covariance matrix X is given by X = [aizj].
e where al.zj =ry — E{x;}E{x;}.
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The Mahalanobis distance between two feature vectors x and y is given as

1=

dn(x,y) = [(x — y)Z ' (x — y)] (12.19)

In the special case where x; are statistically independent but have unequal
variances, Z is a diagonal matrix as follows:

s = . (12.20)

In this case, the Mahalanobis distance is reduced to a simpler form:

1=

dn(x,y) = (Z(x;—zy)z> (12.21)

i=1 i

Equation (12.21) is another weighted Euclidean distance. It gives more weight to
dimensions with smaller variance and less weight to dimensions with larger vari-
ance. d,, can be regarded as a standard Euclidean distance. The Euclidean distance
is just a special case of Mahalanobis distance when the covariance matrix X is the
identity matrix.

12.3 Performance Measures

After image ranking, we need a measure to tell how good is the ranking by a
similarity measure we have discussed above. Specifically, we need to assess how
many relevant images have been retrieved on the top list and how many relevant
images have missed from the top list. The information from the top list of retrieval
lets us tell how well a similarity measure performs. A performance measure is
usually based on statistics of a subjective test which is a test of identifying relevant
images to the query and how relevant they are to the query. Different performance
measures often use different subjective tests, resulting in different definitions of
retrieval performance. In this section, several commonly used performance mea-
sures are described and discussed.

12.3.1 Recall and Precision Pair (RPP)

RPP is one of the most widely used retrieval performance measurements in liter-
ature. In RPP, for each query image, images in a dataset are divided into two
categories: relevant images (1) and irrelevant images (0), based on their similarity
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to the query. The similarity is determined by a subjective test on a group of
subjects. In the subjective test, each subject selects items relevant to the query from
the dataset. An item selected by more than a number of subjects as a relevant image
is given a label of “1”’; otherwise, it is regarded as an irrelevant image and is given a
label of “0”.

Now given a query image [ and a retrieval list returned by a similarity measure,
the precision (P) and recall (R) statistics are then computed based on the “0” and
“1” images presented on the top retrieval list:

r  number of relevantretrieved images

P=_ =
ni number of retrieved images
. . . (12.22)
_ |{relevant images} N {retrieved images}|
B |{retrieved images}|
R— r number of relevant retrieved images
"~ nmy number of relevant images in DB
(12.23)

|{relevant images} N {retrieved images}|

|{relevant images}|

P can be interpreted as the probability that a retrieved image is relevant, while R can
be interpreted as the probability that a relevant image is returned by a retrieval.
The RPP is often given in the following form:

ot
Ct+f,

(12.24)

. t
RN

(12.25)

where ¢, f,,, and f, stand for “True Positive” (a hit), “False Positive” (a mismatch),
and “False Negative” (a miss), respectively.

Precision measures the retrieval accuracy while recall measures the retrieval
robustness; both are important for a similarity measure. Precision and recall are
inversely related, i.e., precision normally degenerates as recall increases. Trans-
lating into actual image retrieval result, this inverse relationship means that the
shorter the retrieval list (low recall), the higher the accuracy and vice versa.

The RPP based on a single query does not provide a complete picture of the
performance of a similarity measure; usually, a number of queries are tested and the
P values at each of the R values are averaged. The average (R, P) values are then
plotted on a graph to get an approximate performance of a similarity measure.

Figure 12.8 shows an RPP curve from an averaged retrieval result. It can be
observed from the figure that, as the recall increases (longer retrieval list), the
precision goes down rather sharply in this case.
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Fig. 12.8 An RPP curve from an actual image retrieval

The RPP curve gives a good picture of a similarity measure’s performance.
A good similarity measure will have an RPP curve with two characteristics: (a) a
high start (how high depends on applications), e.g., 70%+; and (b) a gentle
drop. However, it is often difficult to achieve both the two goals; a retrieval method
usually either targets high precision on the top list of a retrieval result or targets
higher recall depending on applications. Therefore, the P values at the lower recall
values are much more important than those at higher recalls. For example, in
Fig. 12.8, the P values before the 30% of recall are all above 70%, which indicates
a good retrieval result although the full RPP curve does not look good.

Although RPP is intuitive, there are several drawbacks to this performance
measure.

¢ Need a ground truth. In order to compute the R value, we need to know the total
number of relevant images in a database which is essentially a ground truth. This
limits the application of the RPP to databases with small scale.

o Unrealistic relevance values. The binary relevance value given to each of the
images in the database is not realistic, because image similarity is probabilistic
and between 0 and 1.

e Missing ranking information. All relevant images on the retrieval list are given
the same relevance value; ranking information is not considered in defining the
relevance values. However, a similar image at rank 1 is more relevant than a
similar image at rank 10.

e A pair of conflict values. It is often awkward to tell the performance of a
retrieval using fwo values which do not agree with each other. For example, if we
have a retrieval which gives P = 90% and R = 10%, it is difficult to tell how well
is the retrieval result. Therefore, we need a measure to reconcile the P and R pair.

A number of other performance measures have been designed to address the
above issues.
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12.3.2 F-Measure

A performance measure which reconciles the precision (P) and recall (R) into one is
called the F-measure. It is defined as harmonic mean of P and R, which turns out to
be the square of the geometric mean of P and R divided by the arithmetic mean of
P and R.

P-R P-R

It can be shown that the following is true:
F=aP+(1—a)R (12.27)

t+fp
2t+fp +fa'

weight o can be adjusted to suit a specific data or application.

Figure 12.9 shows the F curve against the same P-R curve from Fig. 12.8. It can
be observed that the F score has a low start and reaches the maximum value at the
point where the P score is the closest to the R score. Before the peak point,
precision is more important; after the peak point, recall is more important. There-
fore, the peak point is the optimal tradeoff between P and R. Overall, the higher the
F score, the better tradeoff between P and R. Therefore, for two similarity measures
or retrieval results, the one gives a higher F' score is usually better.

The advantage of using F-measure is that a single value can be used to tell the
difference between two similarity measures or two retrieval results. However, it is
not as intuitive as the RPP and it is not easy to interpret an F score. It appears we
could have used an AUC or area under (the RPP) curve, as an alternative to
F-measure. The AUC would be not only a single value but also as intuitive as the
RPP. However, the AUC would not be able to differentiate an RPP with high start
but sharp drop (a sliding RPP) and an RPP with low start but relatively flat (a steady

where o = Therefore, F turns out to be a weighted sum of P and R. The
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Fig. 12.9 The RPP curve and F curve from an actual image retrieval
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Fig. 12.10 The F curves for two different RPP curves with the same AUC

RPP). The former RPP is usually more preferable than the later one, even though
the former is not a good RPP either. Therefore, the AUC would not be as effective
as the F-measure. For example, Fig. 12.10 shows a sliding RPP and a steady RPP
with the same AUC. However, the maximum/optimal F score of the slide RPP is at
middle of the RPP curve, while the maximum/optimal F score of the steady RPP is
at the very end of the RPP curve, which is undesirable, because it is unlikely that a
user would wait until all the relevant images are shown up.

12.3.3 Percentage of Weighted Hits (PWH)

The PWH can be regarded as a weighted recall. The subjective test is the same as in
RPP, that is, each subject select items relevant to the query from the dataset.
However, instead of measuring recall based on binary relevance value as in RPP,
PWH assigns a weighted relevance value w; to each item in the dataset. The sum of
the weights w; is equivalent to the number of subjects selecting item i as relevant or
similar to the query. Therefore, PWH is defined as

PWH — 2z (12.26)

where n is the number of items retrieved and N is the total number of items in the
database. It is easy to see that the R measure in RPP is a special case of PWH when
w; takes the value of O and 1. Similar to the R measure, PWH needs to identify
every item in the database as relevant or not relevant to the query, and this need for
ground truth of the database limits its usage.

12.3.4 Percentage of Similarity Ranking (PSR)

PSR is a performance measure of detecting the agreement between an algorithm
ranking and a human ranking [5]. In this method, each subject assigns a similarity
rank to each item 7 in the dataset based on the item’s similarity to the query j.
For each query j, the final result of the subject test is a matrix {Q(i, k)}, where
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® O, k) is the number of subjects ranking item i at kth position.

® pi(i) and ;(i) are the mean and variance of each row of {Q,(i, k)}.

e p;(i) represents the average ranking of the ith image to query ;.

e ;(i) represents the degree of agreement among the subjects on ranking item i.

Given a query j, if a retrieval algorithm returns an item i at rank P(i), the
percentage similarity ranking S,(i) is defined as

Pj(i)z*‘:#
k=P;(i)—

P

)
Si(i) = 0;(i, k) (12.27)
2

A plot of Syi) as a function of item i shows the retrieval performance of the
retrieval algorithm. A high S;(i) curve indicates a high retrieval accuracy of the
algorithm. An average PSR value can also be computed as the overall performance
of the retrieval algorithm.

The PSR takes into account the number and agreement of human ranking.
However, if for a query, the percentage of humans giving a particular item at
particular ranking is high (high degree of agreement on ranking the item), then the
variance for the ranking would be small. This would result in unusually low PSR if
the retrieval algorithm’s ranking differs from the subject mean ranking. On the other
hand, if the variance of a ranking is large, then the PSR would be unusually high
even if the ranking by the retrieval algorithm differs substantially from the subject
mean ranking.

12.3.5 Bullseye Accuracy

A simple Bullseye performance measure (BEP) is called Precision at K or P@K,
which is defined as the ratio of the “number of relevant images on the top K re-
trieval” to K. This ratio is called a Bullseye score. The higher the Bullseye score, the
better the retrieval. P@K is a very convenient and useful performance measure
because it does not need the ground truth of the database. P@K measure is widely
used in applications where the data is massive and the accuracy of the top retrievals
is the most important. For example, in online web search, users only care about the
relevance of the top pages returned by a search engine.

The K can be determined based on the actual data or application. If the total
number of relevant images in the database is known to be N, K is typically
determined as N or 2N. In practice, Bullseye scores are obtained from a number of
queries and an average Bullseye score is obtained as the overall performance value
for a retrieval algorithm.

The Bullseye score can also be defined as the Average rank (AR). In AR, instead
of precisions, the ranks of relevant images on the top K retrieval list are averaged.
The lower the AR, the better the retrieval result.



