
12Image Ranking

All that glitters is not gold.

12.1 Introduction

The image feature extracted is usually an N-dimensional feature vector which can
be regarded as a point in RN space. Once images are indexed into the database using
the extracted feature vectors, the retrieval of images is essentially the determination
of similarity between a query image and the target images in database, which in turn
is the determination of distance between the feature vectors in RN space. The
desirable distance measure should reflect human perception. That is to say,
perceptually similar images should have smaller distance between them while
perceptually different images should have larger distance between them.

Therefore, given a query, the higher the retrieval accuracy, the better the distance
measure. For online retrieval, computation efficiency is also a factor to be con-
sidered when choosing a distance measure.

Variety of distance measures have been used in image retrieval; they include city
block distance, Euclidean distance, cosine distance, histogram intersection distance,
v2 statistics distance, quadratic distance, and Mahalanobis distance [1]. In this
chapter, commonly used similarity measures will be described and examined.
A number of widely used performance measurements will also be discussed.

12.2 Similarity Measures

12.2.1 Distance Metric

A similarity measure d(x, y) between two feature vectors x and y is normally
defined as a metric distance. d(x, y) is a metric distance if for any of two data points
x and y in space; it satisfies the following properties:
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(1) d(x, y) � 0 (non-negativity)
(2) d(x, y) = 0 if and only if x = y (identity)
(3) d(x, y) = d(y, x) (symmetry)
(4) d(x, z) � d(x, y) + d(y, z) (triangle inequality).

12.2.2 Minkowski-Form Distance

The Minkowski-form distance is often called the Lp norm or Lp distance. Given a
N-dimensional feature vector of a query image x = (x1, x2,… xn) and a target image
in database y = (y1, y2, …, yn), the Lp distance is defined as

Lp x; yð Þ ¼
Xn
i¼1

xi � yið Þp
 !1

p

ð12:1Þ

When p = 1, L1 is called the city block distance or Manhattan distance:

L1 x; yð Þ ¼
Xn
i¼1

xi � yij j ð12:2Þ

When p = 2, L2 is called the Euclidean distance:

L2 x; yð Þ ¼
Xn
i¼1

xi � yið Þ2 ð12:3Þ

When p ! ∞, L∞ is called the Chebyshev distance:

L1 x; yð Þ ¼ max
1� i� n

xi � yij jf g ð12:4Þ

By varying the p values, various Minkowski distances can be created. However,
among the many Minkowski-form distances, L2 is the most widely used similarity
measures. This is because L2 is the most consistent with human perception of image
similarity. The agreement between distance and perception is demonstrated in
Fig. 12.1, where the unit circles of Minkowski distance with different p values are
shown. Points on each of the unit circles all have the same distance to the origin
under the corresponding p values. As can be seen, the L2 unit circle agrees most
with human perception among the three p values.

L2 tends to emphasize or amplify the dimensions with high values due to the use
of quadratic function. This can cause undesirable results because the distance value
is often determined by a few dominant feature dimensions which are often due to
local distortion or noise. This in turn can result in rejecting true positives which are
perceptually similar images to the query but have local distortion or noise, e.g., a
bite out apple would be rejected from the retrieval list using an intact apple as the

272 12 Image Ranking



query. Consequently, L2 distance can expect lower recall compared with L1 distance
although it can return a top retrieval list with higher precision.

One solution to overcome the lower recall issues of L2 distance is to apply a
logarithm transform to the feature values to suppress the very high feature values
and raise the lower feature values, so that all feature values have balanced contri-
butions to the final distance value. Figure 12.2 (top) shows an example histogram
from the flower image in Fig. 4.14, notice the histogram feature is dominated by the
bins at the end of the histogram. The log-transformed histogram feature vector is
shown at the bottom of the figure; it can be seen that while the difference between
the feature dimensions has been reduced significantly, the top profile of the his-
togram has been kept.

12.2.3 Mass-Based Distance

Minkowski-form distance-based similarity measures are basically a matching of
two images feature by feature. However, due to image features usually have very
high dimensions and features are imperfect, this kind of detailed feature by feature
matching can result in undesirable outcomes in many situations. For example,
different images can have the same feature vector as shown in Fig. 12.3, and similar
images can also have almost completely different feature vectors as shown in
Fig. 12.4. In both cases, the Lp-based similarity measure would give a totally
incorrect matching result.

The issue demonstrates Lp-based similarity measures that are not robust. This
drawback can be overcome by incorporating neighboring data in the
decision-making process.

To address the sensitivity issue of Lp, a mass-based similarity measure mp has
been proposed [2]. The idea of mp is to use neighborhood data to make a similarity
decision collectively instead of making a similarity decision just based on two
instances alone. Specifically, mp uses the neighborhood data mass at each subspace
of Rd to replace the difference at each dimension in the Minkowski-form distance.

(a) (b) (c)

Fig. 12.1 Unit circles of Minkowski distance with different p values. a p = 1
2; b p = 1; c p = 2

12.2 Similarity Measures 273



Fig. 12.3 The three images have the same histogram

Fig. 12.2 Top: a histogram feature vector; Bottom: the log-transformed histogram feature vector
from the top histogram
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The idea of mp is based on a distance–density model described by Krumhausl [3]
and a psychological discovery that two instances in a sparse region are perceptually
more similar than they are in a dense region.

Given two data points in Rn: x and y, mp works by defining a region R x; yð Þ
between the two instances (including the two instances) and finding the data mass
of the region. Data mass is the number of data instances from dataset that falls in
this region. R x; yð Þ is a d-dimensional region, and the ith dimension of R x; yð Þ is
given as Ri(x, y), i = 1, 2, …, n. The data mass of each Ri(x, y) depends on the
distribution of the data in Rn space.

Specifically, the mass-based similarity measure mp is defined as (12.5) [4]

mp x; yð Þ ¼ 1
n

Xn
i¼1

Ri x; yð Þj j
N

� �p
 !1=p

ð12:5Þ

where

• Ri x; yð Þj j is the data mass in region of Ri x; yð Þ,
• N is the total number of instances in the dataset,
• Ri x; yð Þ ¼ min xi; yið Þ � r;max xi; yið Þþ r½ �, and
• r is a small number and r� 0.

Fig. 12.4 The two images with different brightness have almost completely different histograms
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Figure 12.5 [4] illustrates a data distribution in 2D space and the calculation of
data mass between two data points x and y. For convenience of calculation, r is set
as 0. With this data distribution, the data mass in R1(x, y) = [x1, y1] is R1 x; yð Þj j ¼
63 while the data mass in R2(x, y) = [x2, y2] is R2 x; yð Þj j = 40.

Lp is essentially a fine similarity measure between two instances and is sensitive
due to the use of feature by feature matching between two instances. It can result in
completely incorrect match in cases shown in Figs. 12.2 and 12.3. On the other
hand, mp is essentially a coarse similarity measure between two instances, because
it is computed using collective info from neighborhood data mass. Therefore, mp

can be inaccurate in situations when the features of the two instances are close.
To overcome the limitations of both the Lp and mp, a hybrid similarity measure

called hp can be used, which is defined in (12.6)

hp x; yð Þ ¼
Xn
i¼1

xi � yij j � Ri x; yð Þj jð Þp
 !1

p

ð12:6Þ

hp is a compromise, it overcomes the sensitivity drawback of Lp while preserves its
accuracy. To prevent hp from being disproportionally determined by a few domi-
nant dimensional features, a log transform on mp is applied before computing hp.
The modified hp is given as (12.7)

h
0
p x; yð Þ ¼

Xn
i¼1

xi � yij j � log Ri x; yð Þj jð Þ½ �p
 !1

p

ð12:7Þ

Fig. 12.5 Illustration of mp dimension calculation between two data points x and y
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12.2.4 Cosine Distance

The cosine distance computes the distance between two vectors in terms of
direction, irrespective of vector lengths. The distance is computed based on the rule
of dot product:

x� y ¼ xj j � yj j � cos h ð12:8Þ

where h is the angle between vector x and y, and |x| and |y| are the magnitudes of
x and y, respectively. The cosine distance is then defined as

cos x; yð Þ ¼ 1� x � y
xj j � yj j ¼

Pn
i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x
2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p ð12:9Þ

If both xi and yi have been normalized to probability values between 0 and 1, cos
(x, y) becomes

cos x; yð Þ ¼ 1�
Xn
i¼1

xiyi ð12:10Þ

The key feature of the cosine distance is that it is invariant to scale change in
contrast to Minkowski distance. Figure 12.6 shows the comparison between the
cosine distance and the two Minkowski-form distances in two-dimensional space. It
can be observed that both L2 and L1 respond to scale changes, while cosine distance
does not. For example, in Fig. 12.6b, cos(x, y) = cos(x1, y), while L1(x, y) 6¼ L1
(x1, y) and L2(x, y) 6¼ L2(x1, y). The scale invariance can be useful in situations where
directional features are more important than magnitudes. For example, if cosine
distance is used, two similar colors will keep their similarity after scaling of the color
components.

Fig. 12.6 Comparison between the cosine distance and Lp distance. a L2(x, y) = L2; b cos(x,
y) = cosh; c L1(x, y) = d11 + d12
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12.2.5 v2 Statistics

In v2 test, both x and y are treated as random variables, the v2 statistics is then used
to test if the two variables are correlated/independent each other, and how much
they are correlated. Formally, v2 statistics is defined as (12.10)

v2 x; yð Þ ¼
Xn
i¼1

xi � mið Þ2
mi

ð12:11Þ

where mi = (xi + yi)/2, which is regarded as the expected value for dimension i.
A low v2 value means that both x and y are from the same probability distribution
and there is a high correlation between the two feature vectors, which indicates the
images represented by the two feature vectors are similar. An advantage of using v2

statistics is that it can overcome the mismatch between two histograms from images
with very different lighting conditions as shown in Fig. 12.4.

12.2.6 Histogram Intersection

A histogram is a distribution function with a particular shape of area. The histogram
intersection is to test how much area two distributions x and y share, the more area
they share, the more similar the two distributions are (Fig. 12.7). Mathematically,
a histogram intersection is defined as

HI x; yð Þ ¼
Pn

i¼1 min xi; yið Þ
min xj j; yj jð Þ ð12:12Þ

Fig. 12.7 Histogram intersection of two histograms shown as gray area
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If both xi and yi have been normalized to probability values between 0 and 1, HI
is simplified as (12.13)

HI x; yð Þ ¼
Xn
i¼1

min xi; yið Þ ð12:13Þ

For two identical histograms, their HI value is the maximum 1 and for two
similar histograms, their HI value is a high. For two different histograms such as the
two histograms shown in Fig. 12.4, their HI value is close to zero. The HI distance
is defined as

dHI x; yð Þ ¼ 1�
Xn
i¼1

min xi; yið Þ ð12:14Þ

dHI also has the same histogram mismatching issue as the Lp distance.

12.2.7 Quadratic Distance

The distances or measures we have introduced so far all make two implicit
assumptions: (a) the two feature vectors to be measured x and y have equal number
of dimensions; and (b) the dimensions of x and y are independent. However, there
are applications and situations where these two conditions are not met. For
example, the dominant color descriptors described in Chap. 4 typically have
different number of dimensions, and colors of neighboring histogram bins are
correlated with each other. The quadratic distance measure is one of the methods to
address the unequal number of dimensions between two feature vectors and capture
the cross dimension information in a feature vector.

The quadratic-form distance between two n-dimensional feature vectors x and
y is given by

dq x; yð Þ ¼ x� yð ÞTA x� yð Þ� �1
2 ð12:15Þ

where

• T means transpose,
• A = [aij] is an n � n matrix,
• aij is the similarity coefficient between dimensions i and j,
• aij = 1 − dij/dmax,
• dij = |xi − yj|, and
• dmax ¼ max1� i;j� n dij.
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For numerical calculations, (12.15) is expanded as (12.16)

dq ¼
Xn
i¼1

Xn
j¼1

aijxixj þ
Xn
i¼1

Xn
j¼1

aijyiyj � 2
Xn
i¼1

Xn
j¼1

aijxiyj

 !1
2

ð12:16Þ

The aij is the similarity coefficient between xi and yj; it is a weight on a
cross-dimensional element of the two feature vectors, the higher the correlation
between the two cross dimensions, the more the weight is given on that element.

For two feature vectors x and y with different dimensions n and m, respectively,
the quadratic distance between x and y is given as (12.17)

dq ¼
Xn
i¼1

Xn
j¼1

aijxixj þ
Xm
i¼1

Xm
j¼1

aijyiyj � 2
Xn
i¼1

Xm
j¼1

aijxiyj

 !1
2

ð12:17Þ

If the dimensions of both the two feature vectors x and y are independent each
other, e.g., after certain decorrelation operations, the quadratic distance between
x and y is given as (12.18)

dq ¼
Xn
i¼1

x2i þ
Xm
j¼1

y2j � 2
Xn
i¼1

Xm
j¼1

aijxiyj

 !1
2

¼
Xn
i¼1

Xm
j¼1

aij xi � yj
� �2 !1

2

ð12:18Þ

Equation (12.18) is a weighted Euclidean distance; one can expect that dq is a more
desirable similarity measure than both L2 and dHI; however, the determination of the
weights is an issue.

12.2.8 Mahalanobis Distance

The Mahalanobis distance is a special case of the quadratic-form distance (12.15)
in which the transform matrix is determined by the covariance matrix obtained
from a training set of feature vectors, that is, A = R−1. In order to apply the
Mahalanobis distance, a feature vector x is regarded as a multivariate random
variable x = (x1, x2, …, xn) from certain probability distribution. Then, the corre-
lation matrix is given by R where

• R = [rij]
• rij = E{xixj} which is the mean of the random variable xixj.
• The covariance matrix R is given by R = [r2ij].

• where r2ij ¼ rij � E xif gE xj
	 


.
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The Mahalanobis distance between two feature vectors x and y is given as

dm x; yð Þ ¼ ½ x� yð ÞR�1 x� yð Þ�12 ð12:19Þ

In the special case where xi are statistically independent but have unequal
variances, R is a diagonal matrix as follows:

R ¼
r21 0

r22
. .
.

0 r2n

2
6664

3
7775 ð12:20Þ

In this case, the Mahalanobis distance is reduced to a simpler form:

dm x; yð Þ ¼
Xn
i¼1

xi � yið Þ2
r2i

 !1
2

ð12:21Þ

Equation (12.21) is another weighted Euclidean distance. It gives more weight to
dimensions with smaller variance and less weight to dimensions with larger vari-
ance. dm can be regarded as a standard Euclidean distance. The Euclidean distance
is just a special case of Mahalanobis distance when the covariance matrix R is the
identity matrix.

12.3 Performance Measures

After image ranking, we need a measure to tell how good is the ranking by a
similarity measure we have discussed above. Specifically, we need to assess how
many relevant images have been retrieved on the top list and how many relevant
images have missed from the top list. The information from the top list of retrieval
lets us tell how well a similarity measure performs. A performance measure is
usually based on statistics of a subjective test which is a test of identifying relevant
images to the query and how relevant they are to the query. Different performance
measures often use different subjective tests, resulting in different definitions of
retrieval performance. In this section, several commonly used performance mea-
sures are described and discussed.

12.3.1 Recall and Precision Pair (RPP)

RPP is one of the most widely used retrieval performance measurements in liter-
ature. In RPP, for each query image, images in a dataset are divided into two
categories: relevant images (1) and irrelevant images (0), based on their similarity
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to the query. The similarity is determined by a subjective test on a group of
subjects. In the subjective test, each subject selects items relevant to the query from
the dataset. An item selected by more than a number of subjects as a relevant image
is given a label of “1”; otherwise, it is regarded as an irrelevant image and is given a
label of “0”.

Now given a query image I and a retrieval list returned by a similarity measure,
the precision (P) and recall (R) statistics are then computed based on the “0” and
“1” images presented on the top retrieval list:

P ¼ r

n1
¼ number of relevantretrieved images

number of retrieved images

¼ relevant imagesf g\ retrieved imagesf gj j
retrieved imagesf gj j

ð12:22Þ

R ¼ r

n2
¼ number of relevant retrieved images

number of relevant images inDB

¼ relevant imagesf g\ retrieved imagesf gj j
relevant imagesf gj j

ð12:23Þ

P can be interpreted as the probability that a retrieved image is relevant, while R can
be interpreted as the probability that a relevant image is returned by a retrieval.

The RPP is often given in the following form:

P ¼ t

tþ fp
ð12:24Þ

R ¼ t

tþ fn
ð12:25Þ

where t, fp, and fn stand for “True Positive” (a hit), “False Positive” (a mismatch),
and “False Negative” (a miss), respectively.

Precision measures the retrieval accuracy while recall measures the retrieval
robustness; both are important for a similarity measure. Precision and recall are
inversely related, i.e., precision normally degenerates as recall increases. Trans-
lating into actual image retrieval result, this inverse relationship means that the
shorter the retrieval list (low recall), the higher the accuracy and vice versa.

The RPP based on a single query does not provide a complete picture of the
performance of a similarity measure; usually, a number of queries are tested and the
P values at each of the R values are averaged. The average (R, P) values are then
plotted on a graph to get an approximate performance of a similarity measure.

Figure 12.8 shows an RPP curve from an averaged retrieval result. It can be
observed from the figure that, as the recall increases (longer retrieval list), the
precision goes down rather sharply in this case.
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The RPP curve gives a good picture of a similarity measure’s performance.
A good similarity measure will have an RPP curve with two characteristics: (a) a
high start (how high depends on applications), e.g., 70%+; and (b) a gentle
drop. However, it is often difficult to achieve both the two goals; a retrieval method
usually either targets high precision on the top list of a retrieval result or targets
higher recall depending on applications. Therefore, the P values at the lower recall
values are much more important than those at higher recalls. For example, in
Fig. 12.8, the P values before the 30% of recall are all above 70%, which indicates
a good retrieval result although the full RPP curve does not look good.

Although RPP is intuitive, there are several drawbacks to this performance
measure.

• Need a ground truth. In order to compute the R value, we need to know the total
number of relevant images in a database which is essentially a ground truth. This
limits the application of the RPP to databases with small scale.

• Unrealistic relevance values. The binary relevance value given to each of the
images in the database is not realistic, because image similarity is probabilistic
and between 0 and 1.

• Missing ranking information. All relevant images on the retrieval list are given
the same relevance value; ranking information is not considered in defining the
relevance values. However, a similar image at rank 1 is more relevant than a
similar image at rank 10.

• A pair of conflict values. It is often awkward to tell the performance of a
retrieval using two values which do not agree with each other. For example, if we
have a retrieval which gives P = 90% and R = 10%, it is difficult to tell how well
is the retrieval result. Therefore, we need a measure to reconcile the P and R pair.

A number of other performance measures have been designed to address the
above issues.
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Fig. 12.8 An RPP curve from an actual image retrieval
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12.3.2 F-Measure

A performance measure which reconciles the precision (P) and recall (R) into one is
called the F-measure. It is defined as harmonic mean of P and R, which turns out to
be the square of the geometric mean of P and R divided by the arithmetic mean of
P and R.

F ¼ P � R
PþR
2

¼ 2 � P � R
PþR

ð12:26Þ

It can be shown that the following is true:

F ¼ aPþ 1� að ÞR ð12:27Þ

where a ¼ tþ fp
2tþ fp þ fn

. Therefore, F turns out to be a weighted sum of P and R. The

weight a can be adjusted to suit a specific data or application.
Figure 12.9 shows the F curve against the same P-R curve from Fig. 12.8. It can

be observed that the F score has a low start and reaches the maximum value at the
point where the P score is the closest to the R score. Before the peak point,
precision is more important; after the peak point, recall is more important. There-
fore, the peak point is the optimal tradeoff between P and R. Overall, the higher the
F score, the better tradeoff between P and R. Therefore, for two similarity measures
or retrieval results, the one gives a higher F score is usually better.

The advantage of using F-measure is that a single value can be used to tell the
difference between two similarity measures or two retrieval results. However, it is
not as intuitive as the RPP and it is not easy to interpret an F score. It appears we
could have used an AUC or area under (the RPP) curve, as an alternative to
F-measure. The AUC would be not only a single value but also as intuitive as the
RPP. However, the AUC would not be able to differentiate an RPP with high start
but sharp drop (a sliding RPP) and an RPP with low start but relatively flat (a steady
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Fig. 12.9 The RPP curve and F curve from an actual image retrieval
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RPP). The former RPP is usually more preferable than the later one, even though
the former is not a good RPP either. Therefore, the AUC would not be as effective
as the F-measure. For example, Fig. 12.10 shows a sliding RPP and a steady RPP
with the same AUC. However, the maximum/optimal F score of the slide RPP is at
middle of the RPP curve, while the maximum/optimal F score of the steady RPP is
at the very end of the RPP curve, which is undesirable, because it is unlikely that a
user would wait until all the relevant images are shown up.

12.3.3 Percentage of Weighted Hits (PWH)

The PWH can be regarded as a weighted recall. The subjective test is the same as in
RPP, that is, each subject select items relevant to the query from the dataset.
However, instead of measuring recall based on binary relevance value as in RPP,
PWH assigns a weighted relevance value wi to each item in the dataset. The sum of
the weights wi is equivalent to the number of subjects selecting item i as relevant or
similar to the query. Therefore, PWH is defined as

PWH ¼
Pn

i¼1 wiPN
i¼1 wi

ð12:26Þ

where n is the number of items retrieved and N is the total number of items in the
database. It is easy to see that the R measure in RPP is a special case of PWH when
wi takes the value of 0 and 1. Similar to the R measure, PWH needs to identify
every item in the database as relevant or not relevant to the query, and this need for
ground truth of the database limits its usage.

12.3.4 Percentage of Similarity Ranking (PSR)

PSR is a performance measure of detecting the agreement between an algorithm
ranking and a human ranking [5]. In this method, each subject assigns a similarity
rank to each item i in the dataset based on the item’s similarity to the query j.
For each query j, the final result of the subject test is a matrix {Qj(i, k)}, where
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Fig. 12.10 The F curves for two different RPP curves with the same AUC
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• Qj(i, k) is the number of subjects ranking item i at kth position.
• �pjðiÞ and �rjðiÞ are the mean and variance of each row of {Qj(i, k)}.
• �pjðiÞ represents the average ranking of the ith image to query j.
• �rjðiÞ represents the degree of agreement among the subjects on ranking item i.

Given a query j, if a retrieval algorithm returns an item i at rank Pj(i), the
percentage similarity ranking Sj(i) is defined as

SjðiÞ ¼
XPjðiÞþ rjðiÞ

2

k¼PjðiÞ�rjðiÞ
2

Qjði; kÞ ð12:27Þ

A plot of Sj(i) as a function of item i shows the retrieval performance of the
retrieval algorithm. A high Sj(i) curve indicates a high retrieval accuracy of the
algorithm. An average PSR value can also be computed as the overall performance
of the retrieval algorithm.

The PSR takes into account the number and agreement of human ranking.
However, if for a query, the percentage of humans giving a particular item at
particular ranking is high (high degree of agreement on ranking the item), then the
variance for the ranking would be small. This would result in unusually low PSR if
the retrieval algorithm’s ranking differs from the subject mean ranking. On the other
hand, if the variance of a ranking is large, then the PSR would be unusually high
even if the ranking by the retrieval algorithm differs substantially from the subject
mean ranking.

12.3.5 Bullseye Accuracy

A simple Bullseye performance measure (BEP) is called Precision at K or P@K,
which is defined as the ratio of the “number of relevant images on the top K re-
trieval” to K. This ratio is called a Bullseye score. The higher the Bullseye score, the
better the retrieval. P@K is a very convenient and useful performance measure
because it does not need the ground truth of the database. P@K measure is widely
used in applications where the data is massive and the accuracy of the top retrievals
is the most important. For example, in online web search, users only care about the
relevance of the top pages returned by a search engine.

The K can be determined based on the actual data or application. If the total
number of relevant images in the database is known to be N, K is typically
determined as N or 2N. In practice, Bullseye scores are obtained from a number of
queries and an average Bullseye score is obtained as the overall performance value
for a retrieval algorithm.

The Bullseye score can also be defined as the Average rank (AR). In AR, instead
of precisions, the ranks of relevant images on the top K retrieval list are averaged.
The lower the AR, the better the retrieval result.

286 12 Image Ranking


