It’s a changing world, static is not an option.

2.1 Introduction

2D Fourier transform is a powerful tool to capture the frequency information of an
image. The frequency information tells how frequent a pattern changes. This fre-
quency of changes reflects the structural or textural features which are observed by
human beings during pattern analysis. The frequency information is crucial to
understand the content of an image.

However, Fourier spectrum is captured using the entire image as the window, it
is a global information. In other words, we know there is a frequency in the image,
but we cannot tell where the frequency is in the pattern. This is not a problem if the
pattern has a homogenous structure across the pattern. For non-homogenous pat-
terns, however, Fourier spectrum is not an effective representation, because dif-
ferent patterns can have similar Fourier spectrum. Figure 2.1 shows this
phenomenon [1], although the two images are very different, however, their FT
spectra are quite similar. This is a problem for image classification and retrieval.
Therefore, we need a better tool to let us have a closer look at the patterns inside the
images.

2.2 Short-Time Fourier Transform

The natural way to overcome this problem is to analyze the signal section by
section or window by window. This is Short-Time Fourier Transform (STFT)
which provides a way to analyze the signal in both time and frequency. In STFT, a
window function is chosen in such a way that the portion of a nonstationary signal
which is covered by the window function seems stationary. This window function is
then convoluted with the original signal so that only the part of the signal covered
by the window is selected. FT is then applied to the newly generated stationary
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26 2 Windowed Fourier Transform

Fig. 2.1 Two images and their corresponding Fourier spectra on the right

signal. The window is then moved to the next slot of signal, and FT is applied
repeatedly until the whole signal is completely analyzed. For signal f{x), its STFT is
defined as

N
STFT(t,) = Y _f(x) * W(x — 1)e /" (2.1)
x=0

where W(x) is the window, * means convolution, 7 represents the spatial position of
the window, and o represents the frequency captured at time 7. Similarly, the 2D
STFT is given as

N N

STFT (11,12, w Z Zf (x,y) * W(x — 11,y — 1p)e 72" (2.2)
x=0 y=0

Figure 2.2 shows the different spectrum layouts of FT and STFT on a 1D signal.
The FT is applied on the entire signal which is equivalent to a single big window; it
can be seen that the frequency resolution is higher than that of STFT. STFT is
applied on four smaller windows, as can be expected the frequency resolution is
lower than that of FT; however, the spatial resolution is higher than that of FT,
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(a) FT in time-frequency plane (b) STFT in time-frequency plane

Fig. 2.2 Time—frequency illustration for FT and STFT
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because we can now examine the signal at four different locations. Therefore, STFT
achieves a trade-off between frequency resolution and spatial resolution.

2.2.1 Spectrogram

When a signal fix) (x € [0, T]) is analyzed by STFT, instead of a single FT
spectrum, it results in a series of STFT spectra. Each of the STFT spectra is a
windowed analysis of the signal f{x) in a particular time slot r € [0, T]. By con-
catenating the series of the STFT spectra vertically (in column) on the timeline, it
creates a spectrogram. Figure 2.3 shows a spectrogram of a short sound wave.
It can be observed that most of the energy is concentrated at the low frequencies;
however, there are a number of particular high frequencies at different times of the
sound, which are marked by the bright horizontal stripes.

Although STFT lets us do time—frequency analysis, the usually square win-
dowing causes several side effects. First, the windowing causes the loss of low
frequencies which are the most important information for signal representation.
This is because low-frequency signals have longer periods/cycles, and in order to
capture the low frequency, a signal must complete at least one full cycle within the
window. Therefore, a window can only capture frequencies up to a certain limit.

For example, given a signal with a Nyquist sampling rate of 44,800 Hz:

e A window of 128 samples is equivalent to a period of 128/44,800 = 0.00285 s.
e Therefore, the lowest frequency the window can capture is 1/0.00285 s = 350 Hz.
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Fig. 2.3 The spectrogram of a sound wave
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¢ In other words, the lowest frequency you can analyze with a window size of 128
samples at a sample rate of 44.8 kHz is 350 Hz.

e The second frequency which can be fit into the window is a two-cycle sine wave
or a sine wave with a period of half of the window size; therefore, the second
frequency a 128 window captures is 2 x 350 = 700 Hz.

e Similarly, the third frequency a 128 window captures is 3 x 350 = 1,050 Hz, so
on so forth.

e In other words, the step size of the windowed frequency resolution (bin size Au)
is 350 Hz for a 128 window instead of 1 Hz for an ordinary FT. This has been
shown in (1.25).

e Similarly, for a window of 64 samples, Au = 700 Hz, while for a window of 256
samples, Au = 175 Hz, so on so forth.

e Therefore, with STFT, we not only lose low frequencies but also lose frequency
resolution, due to using only a single sized window.

Another issue with STFT is the shape of the window. The typical rectangular
window causes severe frequency leakage, that is, a burst of high frequencies at both
sides of the window. This is undesirable for signal or image representation which
requires a compact spectrum. These issues related to STFT can be overcome to a
certain extent by using non-rectangular and overlapping windows.

2.3 Gabor Filters
2.3.1 Gabor Transform

This leads to the use of Gaussian window which attenuates high frequencies at both
sides of the window. The STFT with Gaussian window is called Gabor transform:

NN
Gt 12,0) = Y > fx,y) *glx — 11,y — T)e ™ (2.3)

x=0 y=0

where g(x, y) is the Gaussian function:

1 1{x>
- L 2.4
g(x.) 2no,0y &P [ 2 <0'2 + a?)] 24)

and o,, g, are the horizontal and vertical standard deviations which determine the
size of the window. The window size can be varied to achieve the optimality
between time and frequency.

Because convolution in spatial domain is equivalent to multiplication in fre-
quency domain, in practice, STFT is computed by multiplying the Fourier trans-
forms of f{x, y) and g(x, y).
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It is found that the frequency response or Fourier transform of g(x, y) is also a
Gaussian G(u, v), and the window size of G(u, v) is inversely proportional to that of
g(x, y), that is,

(2.5)

(2.6)

This relationship can be used to determine the window size in spatial domain. It
is known that lower frequencies are more important than higher frequencies for
signal analysis and representation. Therefore, in the frequency plane, lower fre-
quencies are given higher resolution than higher frequencies. This is achieved by
giving the lower frequencies narrower bandwidth while giving the higher fre-
quencies wider bandwidth. Typically, the bandwidths are arranged in octave.

2.3.2 Design of Gabor Filters

Because both Gabor function and its frequency response are Gaussians, and the
relationship of the two Gaussians is given by (2.5) and (2.6), Gabor filters are
designed on frequency domain. Because a 2D Gaussian function extends to infinity,
there is too much overlap or redundancy between two adjacent Gaussian functions.
To remove the redundancy, the 2D Gaussian functions in Gabor filters are cut at the
half height, and the top half of the function is used as the Gaussian window. For a
Gaussian function with standard deviation of ¢, the Full Width at Half Maximum

(FWHM) is 2v/2In20 (Fig. 2.4).
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Fig. 2.5 The half-amplitude 4
of Gabor filters in the v
frequency domain using four

scales and six orientations

v

Fig. 2.6 Bandwidth tiling in
frequency plane using
Gaussian windows

Based on the above discussions, the half-amplitude of Gabor filters tiling of the
spectrum plane is given in Fig. 2.5.

e Suppose the lowest and highest horizontal frequencies are U; and U,
respectively.

e The window at U, has the smallest width (bandwidth) a;.

e The next window at aU; has a width of a g;.

e The mth window at a™U, has a width of a” ;.

e The width of the window at U, = ¢ 'U, is a” ! o).

e The octave is then rotated at an interval of 6 = 7/k to tile the half frequency plane
(Fig. 2.6).

With this arrangement, the parameters of the window at are obtained as follows

[2]:

_a—l Ul
a+1 /2In2

Ull

(2.7)
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T Uﬁ
v = 1 — —h _ 52 .
ov=tan (2k) 2m2 7 (238)

The Gabor transform lets us do a better time and frequency analysis than STFT,
due to the use of Gaussian and overlapping windows. However, because the Gabor
function is an infinite window, there is much overlap between Gabor windows. This
translates to redundancy in the extracted information from the transformed coeffi-
cients. Although the FWHM truncation reduces the redundancy, it causes missing
spectral information in frequency plane. Neither case is desirable for image analysis
and representation. To overcome this issue, orthogonal wavelets with multireso-
lution are introduced in the following section.

2.3.3 Spectra of Gabor Filters

Based on the above design, each Gabor filter is determined by two parameters: scale
(o or bandwidth) and orientation; therefore, by changing the scales and orientations,

Fig. 2.7 Spectra of Gabor filters at different scales and orientations
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various Gabor filters are generated. Figure 2.7 shows the real components of Gabor
filters at different scales and orientations. On 2D plane, each Gabor filter is
oval-shaped, and the center of the filter is given higher weight. The scale determines
the granularity, with lower scale filters capturing rough features of an image and
higher scale filters capturing fine features of an image. The orientation let the filters
capturing image profiles and edges from different angles. The combination of both
scales and orientations provides Gabor filters a powerful capability on image
analysis.

2.4 Summary

In this chapter, two windowed FT methods are introduced and discussed in detail.
Both STFT and Gabor filters allow for time/space—frequency analysis. Because of
using shifting windows, the output of STFT on a 1D signal is a 2D spectrogram
instead of a single 1D FT spectrum. It can be observed that the spectrogram reveals
a lot more frequency information than a single FT spectrum. However, due to the
use of windows, we sacrifice some frequency resolution. That means, instead of 1
frequency per bin in an FT spectrum, a bin in STFT represents a band of fre-
quencies. The bandwidth of an STFT bin depends on the window size; the narrow
the window, the wider the bin. We also lose some low frequencies due to win-
dowing. Therefore, it is important to learn the trade-off between window size and
bin size when using STFT.

Compared with STFT, Gabor filters provide a better solution in terms of the
trade-off, because Gabor filters use multiple filter size. Furthermore, the use of
Gaussian window by Gabor filters produces more desirable results than the rect-
angular window.

2.5 Exercises

1. Match each of the following signals to its corresponding spectrogram under-
neath the signals and explain why you match it that way.



