To understand the realworld zoom in zoom out.

3.1 Discrete Wavelet Transform

Gabor transform can be written as
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where * means complex conjugate and the Gabor function g, . (x,) is given as
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The group of Gabor functions g, . (x,y) are windowed waveform functions,
called wavelets. But the Gabor wavelets are not orthogonal, which means there is a
correlation between different Gabor wavelets. This correlation results in redundancy
in the extracted wavelet features computed from images or signals. The FWHM
approach in Sect. 2.3 causes loss of frequency. This is undesirable for image or
signal representation. The window size is also an issue similar to that of STFT. These
issues can be overcome by using orthogonal wavelets with varying window size.

The general form of a 2D orthogonal wavelet can be formulated as follows:
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where a;, a, are the scale parameters and by, b, are the position parameters. Similar
to a 2D FT, a 2D wavelet also has the property of separability:

ejanx (3 2)
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The Discrete Wavelet Transform (DWT) on a function or image f(x, y) is given
as

WD =15 ;ﬂm,nw(”%") o) (35)

where (k, [) is the position of the wavelet and s is the scale. If we compare a wavelet
with a magnifying glass, the position vector (k, [) represents the location of the
magnifying glass and the scale s represents the distance between the magnifying
glass and the image. By adjusting the position and scale, the wavelet can analyze an
image in the same way as we analyze an image using a magnifying glass.

3.2 Multiresolution Analysis

As explained in Sect. 1.4, the window size (time) and the frequency band are
inversely proportional. That is, when the window size is halved, the frequency band
captured by the window is twice higher. The frequency bandwidth is typically
arranged in octave, that is, the next bandwidth is twice the width of the previous
one. The inverse relationship between window size and frequency of a DWT can be
demonstrated using a 1D signal with a Nyquist sampling rate of 1,024 Hz. As can
be seen in the following table, as the wavelet decomposition level (scale) and the
window size increases, the bandwidth becomes narrower and narrower until it
reduces to a single point, which is equivalent to a FT frequency.

Decomposition level Window size Frequency band
1 2 512-1,023
2 4 256-511

3 8 128-255

4 16 64-127

5 32 32-63

6 64 16-31

7 128 8-15

8 256 4-7

9 512 2-3

10 1,024 1

The above table can be illustrated using a time—frequency plane. Figure 3.1
shows the time—frequency planes of both DWT and STFT side by side. The wavelet
time—frequency plane is shown on Fig. 3.1 Left. In contrast, STFT uses one win-
dow size for all frequencies as shown in Fig. 3.1 Right. Compared with STFT, a
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Fig. 3.1 Different frequency tiling of spectral plane. Left: the wavelet spectrum; Right: the STFT
spectrum

DWT yields very high resolution at lower frequencies while sacrifices resolution at
higher frequencies. Therefore, a DWT is a multiresolution tool.

Wavelets analyze and represent a signal with multiresolution. This is extremely
useful, because lower resolution represents a summary and higher resolution rep-
resents fine details of a signal, both are essential in signal analysis and represen-
tation. The multiresolution representation is done through repeating rounds of
scaling (low pass, L) and wavelet transform (high pass H) on a signal. The scaling
captures the low frequency information of the signal and the wavelet captures the
high frequency information of the signal. At each round of the wavelet transform, a
low-resolution signal (low frequency L) and a fine details signal (high frequency H)
are obtained, both are half the size of the original signal. Since the information in
the fine details signal is usually scarce, most of the information in the original signal
is captured by the lower resolution version, this achieves great efficiency of signal
representation. To recover the signal, the inverse wavelet transform is applied,
which is done through repeating rounds of expansion.

3.3 Fast Wavelet Transform
3.3.1 DTW Decomposition Tree

For a 2D image, the rows and columns are treated as 1D signals. Due to the
separability property of DWT, the two passes at each round of the DWT are done at
the rows and the columns separately. The 2D digital wavelet transform on an image
is illustrated in Figs. 3.2, 3.3 and 3.4.

¢ Horizontal transform. At the first step of level 1 decomposition, each row of the
image is scaled (weighted average) and wavelet transformed (weighted
difference).
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Fig. 3.2 The 2D DWT decomposition tree for a lady image
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Fig. 3.3 Illustration of 2D DWT process on a lady image. a Horizontal transform; b vertical
transform; ¢ spectrum of level 1 2D DWT decomposition
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Fig. 3.4 Two levels of 2D wavelet decomposition. a The spectrum plane of two levels of 2D
DWT; b the spectrum of two levels of 2D DWT on the lady image; ¢ the complete decomposition
of the lady image



3.3 Fast Wavelet Transform 39

— The result from the first step are two half images, one with scaling coefficients
(L) and the other with wavelet coefficients (H), both are half width of the image
row (Fig. 3.3a).

e Vertical transform. In the next, the scaling (L) and wavelet transform (H) are
applied on each column of the two half images from the previous step (Fig. 3.3b).

— The result from the second step is four quarter sized images, which are:
summary (LL, top left), vertical details (LH, bottom left), horizontal details
(HL, top right), and diagonal details (HH, bottom right) (Fig. 3.3c).

e Level 2 decomposition. The above steps are repeated on the LL image for the
next round of DWT (Fig. 3.4b).

¢ DWT spectrum. The level 1 decomposition process can be repeated until the
summary image can no longer be decomposed further, the final spectrum of the
wavelet transform on the lady image is shown in Fig. 3.4c. It can be observed that
the DWT spectrum captures the essence of the image while discarding all the
redundant details. This is very useful for image analysis.

This process can be summarized in mathematical terms. Suppose the scaling and
wavelet functions are ¢, /, respectively. At each level of decomposition, the fol-
lowing 4 quarter sized images are resulted from the DWT by using (3.5):
average/summary image ¢(x, y), horizontal difference/details image y/"(x, y), vertical
difference/details image 1" (x, y), and diagonal difference/details image y/"°(x, y).

d(x,y) = ¢(x) ¢(y) —LL (3.6)
YH(xy) = d(x)y(y) —HL (3.7)
Y (xy) = ¥(x) o(y) —LH (3-8)
YP(xy) =y () y(y) —HH (3.9)

3.3.2 1D Haar Wavelet Transform

The DWT can be demonstrated using Haar wavelet, the scaling function and
wavelet function of Haar transform are shown in Fig. 3.5. Given the unique
characteristic or shape of the Haar transform functions, the scaling and wavelet
transform of Haar wavelet become simply the average and difference (or details).

Suppose x and y are two neighboring points, the scaling coefficient and wavelet
coefficient are given by s and d, respectively:
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Fig. 3.5 Harr scaling function and wavelet function

s=(x+y)/2 and d=(x—y)/2 (3.10)

The inverse Haar transform is then given by addition and subtraction:

x=s+d and y=s—d (3.11)
e Given an even length discrete signal of (ag, ay, ..., dz G2pi1)-
e It is first organized into pairs ((ag, ay), ..., (A2n, A2,41))-

e By applying the first round of Haar transform, the coefficients of the transform are
given by ((sg, S1, ---» Sp)s (dos dy, ..., d,)).

e The second round of Haar transform can be performed on the sequence of s, and
so on so forth.

For example, suppose [11, 9, 5, 7] is a 4-point digital signal, the following
demonstrates the process of a Haar wavelet transform on the signal.

Resolution Averages Details
4 [11,9,5,7]

2 [10, 6] [1, —1]
1 (8] (2]

Therefore, the Haar wavelet transform of [11, 9, 5, 7] is given by [8, 2, 1, —1].
As can be seen, after the wavelet transform, the first value captures the most
significant information while the last two values are very small. This is helpful in
signal processing and analysis, because more attention can be given to the most
significant information.

The wavelet transform can be performed more efficiently by using matrix mul-
tiplication. The following is an example of 4 x 4 Haar wavelet transform matrix.
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1 1 1 1

111 1 -1 -1
H=210 5 o o (3.12)

0 0 2 -2

For the above 4-point signal, using the Haar wavelet transform matrix, the
transform coefficients are given by

1 1 1 1711 8
1l 1 =1 —1]]9 2

=312 2 o ol|ls|=|1 (3.13)
0 0 2 —2||7 1

3.3.3 2D Haar Wavelet Transform

For a 2D image, this is done on both the rows and columns separately.
Suppose the following is a 4 x 4 image I:

102 56 68 152
24 62 46 32
52 92 72 84
76 60 92 60

Step 1. Horizontal scaling of image I (horizontal pairwise average, L):

79 110
43 39
72 78
68 76

Step 2. Horizontal wavelet transform of I (horizontal pairwise difference, H):

23 —42
-19 7
—20 —6

8 16

The image I.. after horizontal transform by combining the results from the above
two steps:

79 110 23 —42
43 39 -19 7
72 78 =20 -6
68 76 8 16
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Step 3. Vertical scaling of 1. (vertical pairwise average, LL, HL)

61 74.5 2 -175
70 77 -6 5

Step 4. Vertical wavelet transform of I. (vertical pairwise difference, LH, HH)

18 35.5 21 —24.5
2 1 -14 -11

The image after the first round of Haar wavelet transform by combining the
results from Step 3 and 4:

LL 61 74.5 2 -175 HL
70 77 -6 |5
LH 18 355 21 -245 | HH
2 1 =14 -11

The second round of Haar DWT repeats the Steps 1-4 on the LL band and this
process can be continued until required levels of decomposition is achieved. Similar
to the 1D case, the first quarter of the wavelet transformed image contains the most
significant information.

3.3.4 Application of DWT on Image

Figure 3.6 demonstrates the complete process of computing the Haar wavelet
transform on the lady image using the DWT decomposition tree of Fig. 3.2. At each
next level of the decomposition, the image is halved, therefore, the DWT is very
efficient and fast.

3.4 Summary

Wavelets are an extension or an improvement to windowed FT in two aspects:
orthogonality and multiresolution. Orthogonality means that there is no redundancy
between DWT channels. Multiresolution means to analyze an image by zooming in
and zooming out, which is like studying a map with a magnifying glass. This is
achieved by adapting image resolution to wavelet size/scale.

The contrast between wavelets and windowed FT can be easily understood in
frequency plane as shown in Fig. 3.1. Basically, with DWT, we retain higher
resolution at very low-frequency band at the cost of losing resolution at
high-frequency band. This is sensible because low-frequency information is much
more important than high frequency information to human perception.



