Every picture tells a story, by colors.

4.1 Introduction

Arguably, color is the most important feature of an image. After all, people see this
world as colors or the world presents itself to us as colors. However, color is a
complex topic and difficult to understand. As a matter of fact, few people are good
at painting a picture or image. There are infinite number of colors in this world and
colors can be created from different types of palettes. Computers use a trichromatic
palette to mix all the colors in this world. That means each color in computers is
represented as a three-dimensional vector (cy, ¢;, ¢3). These color vectors created a
3D color space. Depending on how each of the trichromatic colors is defined,
different color spaces or color models have been created.

The most commonly used color space is the RGB color space, where each of the
colors is defined by adding three primary colors in the visible light spectrum (red,
green, and blue) with various proportions. Other commonly used color spaces
include LUV, HSV/HSL/HSI, YCrCb.

Color spaces are models for the representation of pixel values. To compare and
classify color images, however, we need to analyze and understand the color
patterns in an image. In order to understand the color patterns in an image, we
extract color features from the image and compare them with features of other
images. Color features are usually based on color statistics computed from an image
or regions of an image.

A number of color features have been proposed in the literature including color
histogram, color moments (CM), color coherence vector (CCV), color correlo-
grams, etc. MPEG-7 also standardizes a number of color features including dom-
inant color descriptor (DCD), color layout descriptor (CLD), color structure
descriptor (CSD), and scalable color descriptor (SCD).
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Fig. 4.1 Visible light spectrum and the tristimulus

4.2 Color Space

To process and analyze color images, we need to understand how different color
models work, and their applications in image processing and analysis. Color is a
complex theory, there are infinite number of colors in this world and colors can be
created using a variety of ways. There needs a standard color model so that colors
can be reproduced with accuracy and colors produced in different applications by
different devices can be translated interchangeably. The first step is to find a way of
representing each color numerically and identify the space or gamut of all visible
colors.

The building of a standard color model is made possible thanks to the three
scientists: Isaac Newton, James Clerk Maxwell, and Hermann Grassmann. Newton
laid the foundation of our understanding of colors by first splitting a light source
into spectral or pure colors (rainbow colors, Fig. 4.1). This lets us to understand that
a light is a mixture of pure colors and colors are just reflectance of lights of different
wavelengths by objects. Maxwell found that by projecting and superimposing the
three red, green, and blue monochromatic pictures on the screen, other colors in the
scene such as orange, yellow, purples, etc., also showed up, suggesting other colors
can be created by mixing red, green, and blue colors. Grassmann found that colors
are additive. That means any color can be matched by a linear combination of three
other colors (primaries), provided that none of those three can be matched by a
combination of the other two; and a mixture of any two colors can be matched by
linearly adding together their primary components.

4.2.1 CIE XYZ, xyY Color Spaces

Modern color models are all based on XYZ color space created by CIE (Interna-
tional Commission on Illumination) in 1931. The CIE XYZ color space was created
using Maxwell’s tristimulus theory, which is based on the theory of trichromatic
color vision found by Young and Helmbholtz [1], who discovered that human vision
consists of three types of cones, which are sensitive or responsive to three narrow
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Fig. 4.2 CIEXYZ color 2
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bands of visible lights. Figure 4.2 shows the three color matching functions which
indicate human eyes’ response to visible colors. It can be observed that three
functions peak at around 600 nm, 550 nm, and 450 nm, respectively. It demon-
strates that human vision is most sensitive to three bands of lights, which are
perceived as red, green, and blue.

Based on this discovery, CIE uses three primary colors to match out all the
spectral colors, i.e., pure colors or colors with a single wavelength (Fig. 4.1) [2].
The three primary colors are all pure colors, they are R (700 nm), G (546.1 nm),
and B (435.8 nm), respectively, which are shown on the visible color spectrum in
Fig. 4.1. The choice of the three particular primaries was due to practical reason at
that time. The primaries G (546.1 nm) and B (435.8 nm) were chosen because they
could easily be reproduced using mercury excitation lines. The 700 nm primary
color was chosen is because the hue near that wavelength is homogenous and nearly
constant, therefore, slight inaccuracy in production of the wavelength of this
spectral primary would introduce no error at all.

The three primary stimulus are projected on a screen with relative power and are
mixed/added by various proportions to match out each of the spectral colors in the
visible color spectrum using Grassmann’s laws. Each color can now be represented
as a three-value tuple (R, G, B). The R, G, B values are then normalized using the
formulas in (4.1) to remove the intensity from the color representation. The nor-
malised r, g, b values are purely chromatic values. This creates three color matching
functions (CMF) (1), g(4), and b(1), where 1 is the wavelength. The color space
created based on the three CMFs is called CIE RGB color space.

— R
r—R+g+B
8 =R+G+B (4.1)
b B

~R+G+B
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Fig. 4.3 Color matching function of spectral colors. Left: rgb curve of spectral colors; Right:
projection of the rgb curve onto the 2D rg plane (cyan)

Now if we plot the (r, g, b) coordinates of all the spectral colors in 3D space, it
forms a curve (Fig. 4.3 Left) [3]. It is easy to see from (4.1) thatr + g + b =1 or
b =1 —r — g, which means b is a dependent function of r and g, so there is no
need to keep the information b. Therefore, by projecting the rgb curve into the 2D
rg plane, we get the horseshoe-shaped 2D rg curve which is shown as cyan color in
Fig. 4.3 Right.

This rg curve is then transformed to the CIE xy curve by aligning the g(1) with
the CIE luminosity function V(1) and removing the negative values in r(4). The
color space created based on the xy curve is called CIE XYZ color space.

The colors on the 2D xy curve are all spectral colors, to obtain nonspectral
colors, i.e., mixed colors or colors with multiple wavelengths, we draw a straight
line between any two points on the xy curve. Then each point on the straight line
represents a nonspectral color mixed by the two colors at both ends of the line
according to Grassmann’s second law. For example, by connecting the two primary
colors R (700 nm) and B (435.8 nm) on the xy curve, purple colors are created. By
this way, all possible nonspectral colors can be created. In practice, a white color or
white point is first defined, such as D65 which represents the midday Sunlight, and
lines are drawn from the white point to each of the spectral colors on the xy curve.
Then colors of different purity are created by mixing the white color with each of
the pure colors on the curve. Figure 4.4 shows the color gamut of CIE XYZ color
space or CIE xy gamut [2]. The color gamut created in this way is a hue and
saturation gamut.
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Fig. 4.4 CIE xy color gamut 09
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CIE xy gamut is a chromaticity domain, it does not specify luminance or
brightness of colors. To create object colors, the luminance/brightness must be
given as the third dimension, named as Y. Therefore, CIE xyY color space is created
and is called the object color space, where x and y are chromaticity values, and Y is
the luminance value.

CIE XYZ color space is a cornerstone for modern color modeling. The signif-
icance of CIE XYZ color space can be summarized in the following:

¢ Provides a color gamut with all possible colors,

e Specifies each color with a three-value tuple or a 3D vector (x, y, 2),
¢ Provides a reference for all other color models,

e It is a device-independent color space.

4.2.2 RGB Color Space

Digital images are generated using RGB colors. RGB colors are device dependent,
which means that each type of digital devices typically uses a different set of RGB
primaries to generate colors. For example, computers use a standard RGB color
model or sSRGB, which is based on the following three primaries chosen from the
CIE XYZ color gamut.
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Chromaticity X y Y

R 0.6400 0.3300 0.2126
G 0.3000 0.6000 0.7125
B 0.1500 0.0600 0.3290
Wihite) 0.3127 0.3290 1.0000

The three primaries of SRGB color model are shown in Fig. 4.5 [4]. The gamut
of sSRGB color space is a triangle inside the CIE XYZ gamut.

The RGB color gamut can be regarded as a color palette. All possible colors
created by the RGB palette can be visualized in a 3D cube, called RGB color space
as shown in Fig. 4.6. The colors in the RGB color cube are usually quantized for
the convenience of viewing. Given the pixel values (r, g, b) from a color image, a
color ¢ can be defined in the RGB color space and reproduced by mixing the three
primaries using ¢ = ¥R + gG + bB.

It is clear that the gamut of any RGB color model is a triangle inside the CIE
XYZ color gamut, consequently, a RGB color space cannot represent all visible
colors. In case of a color out of the RGB color gamut, an approximation has to be
made. For a color C out of the RGB gamut, the approximation of C is given by the
color C4 at the intersection of the RGB triangle and line CW which is the con-
nection between color C and white point W. The approximation is usually
acceptable because C, is just a desaturated color from C.

Fig. 4.5 The sRGB triangle 09
gamut shown inside the CIE
XYZ gamut
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Fig. 4.6 RGB color space in
3D

Cyan

L

------ n Yellow

RGB module is useful for color display and printing, however, it is not desirable
for image processing and analysis. This is because the three channels are dependent
on each other and there is a high correlation between the three channels, which
means, change any one of the color channels will change the other two color
channels. Furthermore, RGB color space is not perceptually uniform, meaning that
the same amount of numerical change in color values does not correspond to about
the same amount of visually perceived change. This leads to color spaces with
separation of luminance from chromaticity and color spaces with uniform color
distance.

4.2.3 HSV, HSL and HSI Color Spaces

RGB color model is efficient because it just uses three primaries to create all
required colors. However, the RGB color model is not intuitive because it does not
conform to how human beings understand and make colors. For example, artists
and painters do not use RGB mixture to make colors, instead, they use pigments to
mix with either white or black or both (gray) to make required colors. The pigments
are equivalent to pure colors or spectral colors, when they are mixed with white or
black, lighter or darker colors are created; when they are mixed with gray, colors
with different purity or saturation are created. Figure 4.7a shows how different tints,
shades, and tones of reddish colors are created by artists.

The way artists and painters making colors is the idea behind the HSV color
model. It demonstrates that a color can be specified by three components/properties:
Hue, Saturation, and Value or (H, S, V), where Hue is a pure color and
Value = Brightness. The Hue tells what color it is, it is determined by the dominant
wavelength on the visible color spectrum (Fig. 4.1). The Saturation tells how much
or how colorful is the color, the more saturated the color, the more vibrant or vivid
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Fig. 4.7 a Artists’ way of making reddish colors. b Components of HSV

the color is. The Value tells how bright or dark is the color, colors become dis-
appearing when they are too dark or too bright. Therefore, a color specified by the
(h, s, v) values makes a lot more sense than that given by the (r, g, b) values.
Multimedia editors and image processing software nowadays all provide intuitive
HSV color picker simply because users have better chance to make the desired
colors using HSV model than using other color models.

Figure 4.7b demonstrate the HSV color making using red colors as an example.
The first bar shows all the pure colors or hues; the second bar shows red colors with
a different purity or saturation (but with the same brightness); the third bar shows
red colors with different brightness.

To create the HSV color model, pure colors (spectral colors) are first collected
and put on a circle or a ring (Fig. 4.8 Left), colors with different saturation are
created along the radii of the circle to create a hue—saturation disk/wheel (Fig. 4.8
Right). Hue-saturation disks with different brightness are then generated and
stacked on top of each other to make a color cylinder which is the HSV color space,
shown in Fig. 4.9a. For HSV, the most saturated colors are on the top of the
cylinder and the top of the cylinder has a V value of 1. For HSL, the most saturated
colors are in the middle of the cylinder and the top of the cylinder is the white color
(L = 1), this is shown in Fig. 4.9b.

It is observed from the Value strip of Fig. 4.7b that as colors become darker or
brighter, they become less colored, consequently, as shown in Fig. 4.9a, b, colors
on the HSV and HSL cylinders become more and more redundant as they go down
the cylinders and as they go up the HSL cylinder. Therefore, the actual HSV color
space is often shown as a single cone (Fig. 4.9c) while HSL color spaces is often
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Fig. 4.8 Hue and saturation. Left: pure colors on a ring; Right: hue-saturation wheel

(a) (b)

Fig. 4.9 HSV and HSL color spaces. a HSV cylinder; b HSL cylinder; ¢ HSV cone; d HSL
double cone
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shown as a double cone (Fig. 4.9d). Because every slice of the HSV/HSL cone is
colorful, the radiuses of the cone are called chroma instead of saturation.

Digital images are represented using RGB colors. To derive HSV, HSL and HSI
color values, RGB values are normalized into 0-1. Given a (R, G, B) color, the H, S,
V values are computed using the following guidelines.

e The Hue values are organized into 0°-360° around a pure color circle, with red
color at 0°/360°, green at 120°, and blue at 240°;

e To determine the H value of a (R, G, B) color, the maximum of the three values is
used to determine the dominant hue on the pure color circle and the difference of
the other two values tells what side is the RGB color located at the dominant hue;

e The Value/Intensity/Lightness of the (R, G, B) color is determined by either the
maximum of the three RGB values or the average or in between;

e The Saturation of a color is determined by how far the color is from the pure color
circle (Hue) which has a color saturation of 1. Saturation is given in percentage,
e.g., 40%.

Let

M = max(R,G,B)
m = min(R, G, B)
C=M-m
The maximum of the three RGB channels M dominants the hue and brightness

of a color. The C value, called chroma, is proportional to saturation of a color. With
these in mind, HSV values can be computed using the following formulas:

0 ifM=m
60° x ¢z +0°,  if M = Rand G>B
H={ 60° x 8 +360°, if M =Rand G<B (4.2)

60° x R +120°, ifM =G
60° x 86 +240°, if M =B

S:{‘g_l " ifM=0 (4.3)
5= 1—14, otherwise
V=M (4.4)
For HSL model:
H is the same as (4.2)
1
LZE(M+m) (4.5)
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0 ifM=m
S=1 3. ifL<; (4.6)
v >3
For HSI model:
H is the same as (4.2)
1
I:§(R+G+B) (4.7)
_Jo ifI=0
§= {IT’” =1-14, otherwise (4.8)
HSV values can also be derived using the following formulas:
_ i
H = arctan S (4.9)
S=1/o2+ (4.10)
V = max(R, G, B) (4.11)
where
1 3
4=R~5(G+B), ﬁ:%(c;_g) (4.12)

The H and S components are invariant to lighting variations or intensity changes.
Intensity changes are only reflected in the V component, which can be corrected by
a linear scaling.

Figure 4.10 shows a color image and its H, S, V channels. In the H image, white
and black are starting and arrival points on the color wheel, they represent Red
color and Yellow color. Gray intermediate levels are corresponding to intermediate
hues on the wheel. Both the S and V channels are in the 0-1 range. For S channel,
white is pure color and black is minimum saturation. For V channel, white is very
bright and black otherwise.

It can be observed from the S and V channels that both the yellow plants at the
bottom left of the image are highly saturated and also very bright, while the red leaf
tree is highly saturated but with moderate brightness. Notice the shadow at the
bottom left of the color image has no to little effect on the H and S channels, it only
affects the V channel.



60 4 Color Feature Extraction

Fig. 4.10 A color image on the left and its H, S, V channels on the right columns

4.2.4 CIE LUV Color Space

The CIE XYZ color space is nonuniform in terms of color differences, so is RGB
color space. Nonuniform means that the calculated difference between the two
colors is not proportional to their perceived color difference. This phenomenon is
shown as MacAdam ellipses in the CIE xy gamut in Fig. 4.11. Each ellipse shown
in the figure represents colors within the just-noticeable-difference (JND) threshold.
In other words, colors within each ellipse are perceivably the same. As can be seen,
the sizes of the ellipses in different areas of the gamut vary significantly. This
implicates that colors within certain distance may be perceived as the same color in
one area but as different colors in another area. This causes confusions for many

Fig. 4.11 MacAdam ellipses o.e
(magnified 10 times) on the
CIE xy gamut 08
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color applications including displaying, image processing, and image analysis,
which rely on computing color differences.

To overcome the nonuniform color spread problem, CIE Luv (1960) and CIE Lu'v’
(1976) color spaces have been created. Both Luv and Lu'v’ spaces are transformed
from CIE XYZ space, and the two color spaces are only different at the v component.
The idea is to stretch or squeeze the CIE xy gamut at certain directions so that the
MacAdam ellipses are made to equal size.

1
116(%)3—16 if ¥ > 0.008856

' (4.13)
903.3 (Yl) if £ <0.008856
4X 4x
= = 4.14
"TXYI5Y13Z 3 _2x+12y (4.14)
6Y 6y
= = 4.15
YTXT15Y 132 3—_2xt 12y (4.13)
W=u V=15v (4.16)
where Y, is the luminance of the white point and
__ X
x_XJrll;JrZ} (417)
Y=x¥v+z

L" scales from 0 to 100 due to the relative luminance (Y/Y,,) scales from O to 1.
The cubic root function of L* is nonlinear and is intended to mimic the logarithmic
response of human eyes to lightness. The transformed uv and u'v' gamuts marked
with the MacAdam ellipses are shown in (4.12). It can be seen that the differences
between the sizes of the ellipses are considerably reduced (refer to Fig. 4.11)
(Fig. 4.12).

Fig. 4.12 CIE Luv and Lu'v'. Left: MacAdam ellipses on CIE uv gamut; Right: MacAdam
ellipses on CIE u'v' gamut
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The nonuniformity can be further reduced by using the u’v" chromaticity:
u' =13 (u' — u)) (4.18)

vi=13L" (v =) (4.19)

where (u/ V!

', v,,) are the coordinates of the white point on the (', v') gamut.
To derive LUV from RGB color space, RGB values are first transformed into
XYZ values using the following matrix, where RGB values have been normalized

to 0-1.

X 0.4124 0.3576 0.1804 | | R
Y| =1[02126 07152 00722 |G (4.20)
Zz 0.0193 0.1192 09503 | | B

Although CIE LUV color spaces are close to uniform color spaces, the source
RGB primaries are assumed to be known, so that a specific transform matrix of
(4.20) can be used. This can be an issue for image applications, because the source
(device) RGB primaries are usually unknown.

4.2.,5 Y'CbCr Color Space

Both HSV and LUV color spaces are based on the same idea, i.e., the separation of
luminance from chromaticity. This idea has been found ideal and desirable for most
of the color applications including image processing and feature extraction. Y'CbCr
is another such kind of color space, which is often used for image compression and
representation. The transformation from RGB space to Y'CbCr space is given by
the following equation:

Y 0 0.299 0.587 0.114 R
Ch| = (128 |+ | —0.169 —-0.331 0.500 G (4.21)
Cr 128 0.500 —-0.419 —-0.081| B

where Y' is the luminance, Cb is the blue component, and Cr is the red component.
Both RGB values and Y'CbCr values are in the range of [0, 255].

By separating the luminance Y’ from the chromaticity Cb and Cr, most of the
image information has been concentrated onto Y'. This is ideal for image com-
munication and representation, because each channel can now be treated inde-
pendently instead of treating all the three channels equally as in the RGB space. For
example, more importance can be given to Y’ as in many situations. This makes the
communication more efficient (e.g., fewer bits for color channels) and representa-
tion more compact.

Figure 4.13 shows an example of Y'CbCr channels from a flower image. It can
be seen that the Y’ channel is basically the gray level version of the original image,
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Fig. 4.13 The flower image on the leftmost and its Y’, Cb, and Cr channels on the right

while the Cb and Cr channels are just for the color information, both Cb and Cr
channels contain very little information compared with the Y' channel. In the TV
broadcast, the Y’ channel can be sent out independently to be compatible with the
old noncolor TVs.

4.3 Image Clustering and Segmentation

Digital images are complex data. Unlike textual documents which are made of
words from a dictionary of a small vocabulary, there is no visual dictionary or
vocabulary for images. Each image consists of thousands to millions of pixels
which represent color values, and the possibilities of the pixel colors are almost
infinite. Therefore, the first step to analyze an image is usually to group the image
pixels into a small number of regions or objects so that further analysis can be
carried out, this is called image clustering or segmentation. There are many seg-
mentation and clustering algorithms in the literature, in the next, we discuss two
widely used algorithms in image feature extraction.

4.3.1 K-Means Clustering

One of the simplest segmentation methods is the K-means clustering. K-means
clustering attempts to divide a dataset into K clusters with each data point belonging
to the cluster with the closest mean, which serves as the centroid of the cluster. The
K-means clustering algorithm is given as follows:

K-means (K) {
Input: X = {xy, X5, ..., X,,}, a set of data points
Output: C = {cy, ¢y, ..., cx}, a set of clusters

1. Randomly select K cluster centers or seeds;

2. Calculate the distance between each data point and all the K cluster means
my;

3. Assign the data point to the cluster with the nearest cluster mean;
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4. Recalculate the new means for each cluster;
5. Repeat from step 2 until no data point needs to be reassigned.

}

K-means clustering algorithm aims at minimizing an objective function known
as the sum of squared error or SSE function, which is given by

J(C) = f:;k (4.22)
k=1

and J; is the SSE of the kth cluster:

|ex]

Je = (% — my])? (4.23)

i=1

where my, is the mean of cluster ¢ and | ¢; | is the number of instances in cluster ¢;.

K-means is one of the most commonly used clustering algorithms in image
processing and analysis. It is especially useful for many color-based clustering such
as color quantization, which aims to group similar colors and reduce the number of
colors in an image. The key issue with a K-means clustering algorithm is the
parameter K. The performance of the clustering depends on a good guess of K,
however, there is no easy solution. This leads to other more sophisticated algo-
rithms to improve the method.

4.3.2 JSEG Segmentation

JSEG method is based on the belief or assumption that color regions and textures
agree with each other in an image, which means that a region with similar colors
also has a similar texture. Based on this idea, the method attempts to find an
agreement between the two types of features. The procedure of JSEG is summarized
as follows [5]:

e Color quantization. At first, pixel colors of the image are quantized into a
number of classes using a clustering algorithm such as K-means clustering.

¢ Color map. Pixels in the image are then replaced with the color class labels, such
as 1,2, 3, .... A class map is then formed and region growing is followed on the
class map (Fig. 4.14b).

e J-image. The key to JSEG method is the computing of a J-image, which is
computed by moving a local window through each pixel and calculating the SSE
over the window (4.23). The SSE is related to the variance over a local neigh-
borhood, neighborhoods with relatively uniform colors (or little to no texture)
tend to have small J values while neighborhoods with high J values correspond to
region boundaries or edges. The window size determines the sharpness of the J-
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Fig. 4.14 An image segmentation using JSEG. a An original color image; b result of color
quantization with 13 colors; ¢ J-image at scale 3; d J-image at scale 2; e segmentation result at
scale 3; f segmentation result at scale 2; g final result of segmentation after merging

image and the size of the regions that can be detected. The J-image computed
using larger local window is more blurred than that computed using a smaller
window (Fig. 4.14c, d).

¢ Region growing. Based on the J-image, a region growing method is carried out
starting from areas with the lowest J values. After each region growing, the total
J values of each region k (J; of (4.23)) and the average J values (J) of all the J;
are computed. The region growing is then repeated using a J-image with smaller
scale until the J value stops decreasing (Fig. 4.14e).
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e Merging. The region growing can result in over segmentation due to texture
variations (Fig. 4.14f). Therefore, a merging process is followed by merging J-
segmented regions with similar colors (Fig. 4.14g).

Due to the use of both color and texture features and a merging process, JSSEG
gives a less fragmented segmentation than K-means clustering. However, the per-
formance of JSEG segmentation depends on several parameters such as the num-
bers of quantized colors, the seed selection threshold during the region growing,
and the threshold of color similarity during the region merging. The computation is
also very expensive, the segmentation of a 512 x 512 image can take about 4 min
on a PC.

4.4 Color Feature Extraction
4.4.1 Color Histogram

The simplest feature of a color image is its histogram, which describes the color
distribution within an image. To create a histogram for an image, a number of bins
(N) are first created, each bin represents a group of similar colors. Each pixel in the
image is then examined and put into a bin with similar colors to the pixel. After all
pixels in the image are checked, the pixels in each bin are counted and each bin is
represented as a value which is the number of pixels in the bin. A bar chart consists
of all the N bin values is created and it’s called a color histogram, which is a
sequence of (c, n) pairs shown in a graph, where c is the color of the bin and n is the
number of pixels in the bin. Figure 4.15 shows the three color histograms of the R,
G, B channels of the Lena image in one graph.

In terms of histogram feature extraction, there are three ways to create a his-
togram for a color image: component histogram, indexed color histogram, and
dominant color histogram.

Fig. 4.15 RGB histograms of the Lena color image. Non-RGB colors are the areas of overlap
between the R, G, B channels. Each channel is quantized into 256 colors or bins, which are on the
horizontal axis, vertical axis shows the number of pixels in each bin or color
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4.4.1.1 Component Histogram

The first way of color histogram is to split a color image into individual R, G, B
channels (Fig. 4.16 top row), each individual channel is equivalent to a gray level
image (Fig. 4.16 bottom row). A contrast with Fig. 4.13 tells that there is a lot of
redundancy or correlation between R, G, and B channels. A histogram is first
created for each individual channel. The three individual channel histograms can
then be concatenated into a single histogram. If each individual color channel is
represented by I/, m, and n bins, respectively, the final histogram will have
N =1+ m+ n bins.

For example, for Lena image in Fig. 4.15, each R, G, B channel is represented
by 8 bits and a total of 256 colors/bins. By concatenating the three histograms, the
final histogram would have N = 3 x 256 = 768 bins. This is, however, too long for
image representation, therefore, the colors of each individual R, G, B channel is
usually quantized to reduce the number of colors.

To quantize the color channels, colors in each channel are divided into equal
intervals and each interval is used as a bin. For example, to create a 4-bin histogram
for R channel, the 256 colors in R channel are divided into the 4 intervals: (0, 63),
(64, 127), (128, 191), (191, 255). Figure 4.17 shows a 216-bin histogram by
quantizing each of the R, G, B histograms in Fig. 4.15 into 72 bins. This is less than
one-third of the length of the histogram without color quantization.

Fig. 4.16 RGB channels of a color image. Top row: R, G, B channels of the flower image;
Bottom row: corresponding gray level images of the R, G, B channels at the top row
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Fig. 4.17 Concatenation of histograms of individual R, G, B channels into a single histogram
(216 bins, 72 bins for each channel)

4.4.1.2 Indexed Color Histogram
Another way to create a color histogram is to quantize the RGB color space (instead
of each color plane) into N colors and use the N colors as bins to create a color
histogram. This is equivalent to indexed colors and the N colors are equivalent to a
global color palette, i.e., a palette representing all image colors or a palette for all
the images in the world.

To quantize the RGB color space, the R, G, B planes are divided into [, m,
n intervals, respectively, using the same way as in the first method, the RGB color
space (a big cube) is then divided into N = [ x m x n small color cubes (Fig. 4.6).
Each small cube represents a group of similar colors and is used as a histogram bin.

To create a histogram for a color image using the indexed colors, each pixel in
the image is examined and put into a bin with similar colors to the pixel. A his-
togram is then created by counting the number of pixels in each of the bins.
Figure 4.18a shows the flower image with 216 quantized or indexed colors and the
216-bin histogram for the quantized color image is shown in Fig. 4.18b.

4.4.1.3 Dominant Color Histogram

A histogram created from a global palette (a single fixed palette for all images) is
usually sparse (Fig. 4.18b), this is because when a global palette is used, most of
the colors in an image are often missing from the color representation, this effect is
shown up in both the quantized image and the color histogram (Fig. 4.18a, b). In
practice, an adaptive or native palette created from the image itself can be used, a
histogram created from adaptive indexed colors is essentially a dominant color
histogram. Figure 4.18c, d shows the flower image quantized with an adaptive
palette of 216 colors and its histogram. Dominant colors can be obtained by either
using a histogram thresholding or using a K-means clustering.

A histogram is invariant to translation and rotation changes, scale invariance can
be achieved by normalizing each bin value with the total number of pixels in the
image. The key issue with a histogram is the difficulty to determine the number of
bins. If the number of bins is too small, the colors in a bin can vary so much that it
causes too many confusions during the matching. On the other hand, if the number
of bins is too large, it causes overfitting, means there are too few pixels in a bin, this
too can cause confusions during the matching. In practice, there is always a
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(b)

(d)

Fig. 4.18 Indexed color histograms of a color image. a The flower image quantized with a global
palette of 216 indexed colors (notice the visible distortion on the sky and grass); b indexed color
histogram of (a) (216 bins); ¢ the flower image quantized with an adaptive palette of 216 indexed
colors; d dominant color histogram of (c)

compromise on the number of bins. Regardless, features based on color histograms
usually have very high dimensions, e.g., 512 and 1024 dimensions are common.

Another issue with the histogram method is that a color histogram does not tell
pixels’ spatial information. Therefore, visually different images can have similar
color histograms. This is undesirable for image representation. A number of other
color feature extraction methods have been designed to address these two issues,
they are discussed in the next.

4.4.2 Color Structure Descriptor

One of the key drawback of a histogram is the absence of spatial information of
pixel colors in an image. The spatial information of pixel colors tells the patterns of
colors, or how colors are spread out inside an image. Without the spatial infor-
mation of pixel colors, perceptually different images can have the same histogram
and this can lead to incorrect image retrieval or classification. For example,
Fig. 4.19 shows two perceptually different binary images with the same size and the
same number of red pixels. The image on the left is visually structured and the red
color is perceived as a regular shape, in contrast, the image on the right is visually
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Fig. 4.19 Computation of color structure descriptor. Left: a color image with a 3 x 3 structure
moving through the image. The structure captures the red color 56 times; Right: a color image with
a 3 x 3 structure moving through the image. The structure captures the red color 218 times

unstructured and the red color is perceived as being cluttered. However, the two
images have exactly the same color histogram.

One solution to detect color patterns inside an image is to use a structure element
or window as the color picker instead of the pixel color picker/counter used in the
ordinary histogram computation. When the window moves throughout an image,
only the colors (e.g., white, red, gray, brown, etc.) inside the window are counted
instead of counting the pixels of each color inside the window. The histogram
created in this way is called color structure (CS) histogram. A CS histogram has a
multiplying effect on the counting of isolated or scattered colors, the larger the
structure window is used, the more the counting is multiplied. While the CS his-
togram only has a mild over-counting of grouped or clumped colors.

For example, in Fig. 4.19, both images have 41 red pixels, however, by moving
a 3 x 3 structure window throughout the images, the red color in the right image
are counted for 218 times, while the red color in the left image is only counted for
56 times. The large difference between the two figures accurately reflects the sharp
difference between the two red patterns.

To create a CS histogram for an image, the image is first converted to HSV color
space and is quantized into a smaller number of colors, e.g., 256, 128, 64, or 32
colors. A structuring element (e.g., square) is then moved throughout the image.
Bin i of the histogram records how many times the structuring element captures at
least one pixel with color i. If the window is of size 1 pixel, the CS histogram is just
an ordinary histogram. In this sense, the ordinary histogram is just a special case of
a CS histogram.

For example, the left-hand side of Fig. 4.20 shows a color image with 5 colors
and the 4 x 4 window (black) capturing three types of colors: blue, green and
brown [6]. The right-hand side shows how the CS histogram accumulates the three
colors (green, blue. and brown) captured by the window into corresponding
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Fig. 4.20 Accumulation of color structure descriptor. a A 5-color image and a 4 x 4 structuring
element. b The accumulation of color structure histogram at a particular position of the structuring
element in the image

histogram bins (1, 2, and 4). The CS histogram is then normalized with a total
number of counts of the histogram, and the normalized CS histogram is the CSD.

It can be expected that the CSD is more robust than an ordinary histogram,
because it captures the information about local spatial structure as well as the color
distribution of an image. The spatial information makes the CS histogram sensitive
to certain color patterns to which an ordinary histogram is blind.

Furthermore, a CSD uses a window of size greater than 1 pixel, it is less
susceptible to noise. However, the performance of CSD depends on the size and
structure of the window. Scale invariance can only be achieved by varying the size
of the structure element and doing the best match between two images. Rotation
invariance can be achieved by using a circular element instead of a squared one.

4.4.3 Dominant Color Descriptor

It is understood that an image is visually interpreted based on a few dominant
colors. Those other colors are either noise or just for details, they are not important
and can be ignored. Therefore, a dominant color histogram will better describe an
image than a common histogram. The Dominant Color Descriptor (DCD) is just
based on this idea, it’s a variation of a common histogram.

To derive a DCD, a histogram # of all colors (without quantization) in an input
image I is first created. A thresholding is then applied to 4 to eliminate those bins
whose values are less than a threshold 7. The remaining n colors are called dom-
inant colors. Each dominant color is represented as (c;, p;), i = 1, 2, ..., n, where ¢;
is a 3D color vector and p; is the percentage of pixels in the image having color ¢;. A
DCD is just the n dominant colors in a sequence:

DCD = {(¢;,p;),i = 1,2,...,n} (4.24)
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The DCD significantly reduces the dimensions of a color histogram, but it still
does not address the absence of spatial information from the colors. Therefore, an
image is usually segmented into regions and a DCD is extracted from each region
of the image.

The number of selected dominant colors in a region depends on the threshold .
However, statistics based on more than 36,000 image regions show that over 98%
of image regions can be described by no more than 4 DCDs (Fig. 4.21) [6-8].
MPEG-7 recommends 1-8 DCDs for each image region.

Figure 4.22 shows some examples of the segmented image regions and their
corresponding DCDs [6-8].

Small proportions of colors in a DCD are usually due to segmentation errors or
region boundary, they can be discarded without affecting performance. Figure 4.23
shows a few segmented regions and their corresponding DCDs after discarding
insignificant colors [6—8].

Region-based DCDs are not only compact but also reflect spatial information in
an image, they are a desirable representation for color images. However, unlike
conventional color histogram, the order of colors and the number of colors in two
DCDs are usually not the same, the matching of two DCDs needs to use
many-to-many quadratic matching (12.18).

DCDs can be easily translated into color names, which can be used to describe
color images. Human beings tend to describe the visual world using color names,
and we can only describe a few hundreds of colors. It is possible to annotate an
image with color names based on DCDs [9].

4.4.4 Color Coherence Vector
An ordinary histogram does not tell spatial information about the colors in a bin.

The color coherence vector (CCV) is a method to incorporate spatial information
into a conventional histogram. The idea is to divide each histogram bin into two
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Fig. 4.22 Segmented regions and their dominant colors underneath. The dominant colors are
shown according to their percentages in the region

Fig. 4.23 Removal of noisy colors from segmented regions. a Three sample regions; b dominant
colors of corresponding regions above; ¢ DCDs after discarding insignificant colors from (b)

components: coherent (C) and noncoherent (N). The coherent component includes
those pixels which are spatially connected, while the noncoherent component
includes those pixels that are isolated. A CCV can be computed by using the
following procedure:

1. Create a conventional histogram H of k bins for image / using a method in
Sect. 4.4.1
2. For each of the histogram bins B; in H
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2.1. Create a binary image I; from I by marking all pixels with color B; as 1
(white) and others as 0 (black)

22. Setj=0

2.3. For each white pixel p in I;

2.3.1. If p’s West, North West, North, and North East are all black

2.3.1.1. Create a new region R;
23.13. j=j+1

2.3.2. Otherwise, R; = R; + p
2.4. For each region R;

2.4.1. Count the total number of pixels n in R;
242. Ifn > 1,C;=C; + n/ltis a threshold
2.4.3. Otherwise, N;=N; + n

3. The normalized sequence {(%, %), i=1,2, ..., k} is the CCV

By dividing each histogram bin into coherent colors and incoherent colors, CCV
captures spatial information in an image, it usually performs better than a color
histogram. However, the dimension of a CCV is twice of that of a conventional
histogram.

4.4.5 Color Correlogram

A color correlogram is the color version of gray level co-occurrence matrix
(Sect. 5.2.2), which is used for texture feature extraction. It characterizes the dis-
tribution of color pairs in an image. A color correlogram can be viewed as a 3D
histogram, where the first two dimensions represent the colors of any pixel pair
and the third dimension is their spatial distance. Thus, in a correlogram, each bin
(i, j, k) represents the number of color pairs (i, j) at a distance k.

An input image [ is first quantized into m colors {cy, c3, ..., ¢;,}. The compu-
tation of a color correlogram is then to find the probability of pixel pairs (py, p,),
which meet the following two conditions:

(@ C(py) = ¢;and C(p2) = ¢;
®) |py—pof =k

where C(p;) = ¢; means the color of p; is c;.
Mathematically, each element of a correlogram is given by
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Fig. 4.24 Computation of color correlogram. a A 4-color image; b the color correlogram of a for
horizontal distance k = 1

7 (1) = Pr{(p1.p2)|C(p1) = 1. C(p2) = cyand [p1 —pa| =k} (4.25)

If ¢; = ¢;, (4.25) becomes an autocorrelogram which is the probability of finding
identical colors at distance k:

ok =1t (1) (4.26)

Figure 4.24 shows an example of computing a color correlogram [6]. The color
correlogram in Fig. 4.24 is calculated for k = 1. Correlograms for other distance
k€ {1, 2, ..., d} can be calculated in similar way.

In total, d correlograms (matrices) can be computed from an image. If the colors
are globally quantized, i.e., colors of all images are quantized using a single global
palette, two corresponding correlograms from two images can be matched element
by element. However, if a local (adaptive) palette is used to quantize each image,
either a many-to-many matching is needed or the matching is done through
statistics computed from the correlogram matrices (Sect. 5.2.2).

Matching between two color correlograms involves matrix matching which is
expensive. In practice, however, only autocorrelograms are used because they are
sufficient to produce a good result. Autocorrelograms of each color form a d-
dimensional vector, which can be matched using a conventional distance such as L,
[10].

The performance of the color correlogram is better than the CCV, because it not
only captures the special information but also the patterns of the spatial information.

4.4.6 Color Layout Descriptor

It is well known that a spectral transform can capture the frequency of texture
changes in an image, and the frequency information is used for identifying most
important information from the image. This idea can also be used to capture the
frequency of color changes in an image. The color layout descriptor (CLD) is just
based on this idea.



76 4 Color Feature Extraction

The computation of CLD consists of four stages: image partitioning, color
quantization, DCT transform, and zigzag scanning.

¢ Image partitioning. In the first stage, an input image / is divided into an 8 x 8
grid of 64 blocks. If the size of the input image is M x N, then the size of each
block of the grid will be (M/8) x (N/8). The reason to divide all images into an
equal number of blocks is to ensure resolution or scale invariance.

Color quantization. In the second stage, a single dominant color is computed
from each block. The DCD method in Sect. 4.4.2 can be used for the dominant
color extraction, but the simplest method is to use the average of pixel colors as
the representative color. Once the color of each block is quantized, the input
image I is converted into an 8 x 8 color image I,.

DCT transform. In the third stage, the RGB colors of I, are converted to Y'CbCr
colors (4.21). Then, each of the three Y'CbCr channels of /, is transformed by an
8 x 8 discrete cosine transform or DCT, so three sets of 64 DCT coefficients are
obtained.

Zigzag scanning. In the final stage, three sets of 64 DCT coefficients are zigzag
scanned respectively and the first few coefficients of each set, e.g., 4-8, are
chosen. The selected coefficients are then organized into (DY’, DCb, DCr) which
is used as the CLD. The reason of only choosing the first few coefficients is
because they represent the low-frequency information of the image and they are
the most significant coefficients, the remaining coefficients are too small and can
be neglected.

CLD allows scalable representation of an image by controlling the number of
selected coefficients. MPEG-7 recommends using a total of 12 coefficients, 6 for
luminance and 3 for each chrominance, for most of the images. CLD is both
compact and scalable, however, it is not robust to rotation change.

4.4.7 Scalable Color Descriptor

As can be seen from the CLD above, a spectral transform like DCT can dramati-
cally reduce the data dimension. This idea can also be used to reduce histogram
dimension. A histogram can be regarded as a 1D time series with fluctuations in the
vertical direction. Each histogram has a unique pattern of fluctuations or changes
along the horizontal direction. This pattern can be effectively captured by using
efficient 1D wavelet transform. Because coefficients from a wavelet transform are
scalable, i.e., the number of selected coefficients depends on requirement or
applications, the result of the wavelet transform is a scalable color descriptor or
SCD. A SCD is derived using the following procedure.

¢ RGB to HSV. An input image is first converted from RGB color space to HSV
color space.
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¢ Color quantization. The HSV color space is quantized into 256 colors by
dividing the H, S, and V channels into 16, 4, and 4 intervals respectively.
A 256-bin color histogram is then created for the image.

¢ Bin value quantization. Each bin value is then nonlinearly quantized into a 4-bit
integer to give high significance to small values.

e Harr wavelet transform. The histogram is then applied with Harr wavelet
transform. Each round of Harr wavelet is a two-pass transform, i.e., low pass and
high pass. The low pass of Harr wavelet transform takes two neighboring bins
and calculates their sum, while the high pass calculates their difference. There-
fore, after the first round, two histograms with half of the original histogram
length are obtained: a summed histogram and a differenced histogram. Repeat the
transform on the summed histogram for a number of rounds until the two his-
tograms are shortened to the desired length, e.g., 64, 32 or 16 bins.

¢ SCD formation. The final results from the wavelet transform are two short
histograms: a summed histogram and a differenced histogram. The two his-
tograms are concatenated to be used as the SCD. However, since the values of the
differenced histogram bins are so small that the magnitudes of the bin values are
discarded and only the signs of the bins are kept. The sign patterns are sufficient
to retain the finer details of the original histogram.

SCD is useful for applications which need short or compact histogram features,
however, it does not include spatial information as other color descriptors such as
CLD, therefore, its performance is generally lower.

4.4.8 Color Moments

It is well known in data analysis community that descriptive statistics provide a
good summary of a dataset and provide a quick understanding of the characteristics
or distribution of the dataset such as central tendency, variability, skewness, etc. An
image is just a set of color pixel data, therefore, it can also be described by the
mean, variance, skewness, etc., which are called color moments (CM).

To compute color moments, an input image [ is decomposed into individual
channels, such as R, G, B channels or H, S, V channels. The moments are then
computed from each channel using the following equations:

lN
M == pi 427
N 427

- o
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where

e N is the total number of pixels in image /

e 1 is the order of a color moment, r = 2, 3, ...

e p; is the ith pixel value in the color channel

e M, is the first-order color moment, or the mean color of the color channel
e M, is the second-order color moment, or the variance of the color channel
® M5 is the third-order color moment, or the skewness of the color channel

Color moments can also be computed from a color histogram £ using the fol-
lowing equations:

I
M)~

M, hyCy (4.29)
k=1
1
K r
M, = > h(Ce— M) (4.30)
k=1

where

e /i is the value of the kth bin of histogram &
e C; is the color of kth bin of histogram &

e K is the number of bins of 4,

e 1 is the order of a color moment: 2, 3, ...

Typically, only the first three order color moments are computed for a color
channel or an image. If three color moments are computed for each color channel,
the moments from each of the three channels are concatenated to form a
9-dimensional feature vector which is used to describe the image.

Color moments are a very concise description of an image, however, it can be
very inaccurate, e.g., the mean or average color of an image is usually a very coarse
description of the image color. Furthermore, color moments do not tell the spatial
information of the colors. Therefore, color moments are usually calculated for
image regions.

4.5 Summary

Color is often the first feature to be considered during image processing and
analysis. A number of preprocessing or preparation are usually performed before
the actual color feature extraction such as color space conversion, noise reduction,
image scaling, clustering, and segmentation.



