The devil is in the detail.

5.1 Introduction

Texture is a general pattern that can be attributed to almost everything in nature. For
a human, texture patterns relate to specific and spatially repetitive structure of
surfaces formed by repeating a particular element or several elements in different
spatial positions. Generally, the repetition involves local variations of scale, ori-
entation, or other geometric and optical features of the elements.

Texture is an inherent feature of an object. For example, we can easily tell if an
object surface is fine or rough, regular or natural, quiet or busy, etc. It is found that
human beings tend to recognize texture by its structure or how often it changes. As
the result, the texture methods designed in the last few decades are along two
directions: spectral methods and spatial methods. Spatial texture methods attempt to
capture the primitive patterns of objects and compute the structural features; while
spectral texture methods attempt to capture the change patterns of objects and
compute the frequency of changes. Spatial methods are generally more intuitive,
while spectral methods are generally more efficient and robust. In this chapter, we
discuss those important texture methods for image representation.

5.2 Spatial Texture Feature Extraction Methods

In spatial approach, texture features are extracted by computing the pixel statistics
or finding the local pixel structures in the original image. These methods include the
Tamura textures, co-occurrence matrix method, Markov random field
(MRF) method, and fractal dimension (FD) method. Tamura et al. are among the
earliest researchers to formally define texture features [1]. The most cited Tamura
texture features in literature consist of six perceptual characteristics of images such
as the degree of contrast, coarseness, directionality, linearity, roughness, and
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82 5 Texture Feature Extraction

regularity. In most of the cases, only the first three Tamura features are used as the
other three features are defined based on the combinations of the first three features.
Tamura features are nice because they are high-level perceptual features and suit-
able for texture browsing. However, it is difficult to define more such types of
high-level features. Therefore, Tamura features are not enough to distinguish all the
textures in the world.

5.2.1 Tamura Textures

Tamura et al. [1] introduce six statistical features. These include coarseness, con-
trast, directionality, line-likeness, regularity, and roughness. The last three features
are defined based on the first three features. Therefore, most of the image retrieval
systems only use the first three Tamura features.

Coarseness relates to the size of the primitive elements (textons) forming the
texture, and it measures the image granularity. It is calculated as the average of the
largest window sizes needed to identify texture elements centered at different pixel
positions. Formally, it is defined as

fors = %izﬂjzﬁ(x,y) (5.1)

x=1 y=1

where n x n denotes the image size of I(x, y), and k is obtained as the value which
maximizes the differences of the moving averages of Ay = ﬁzz:l Z;Z: (),
taken over a 2% x 2% neighborhood along the horizontal and vertical directions. The
specific procedure is to compute the differences between the average signals for the
nonoverlapping windows of different size:

(1) At each pixel (x, y), compute six averages for the windows of size 2k x 2%,
k=0,1, ..., 5, around the pixel.

(2) At each pixel, compute absolute differences E; (x, y) between the pairs of
nonoverlapping averages A, in the horizontal and vertical directions.

(3) At each pixel, find the value of k that maximizes the difference E; (x, y) in
either direction and set the best size Speq (¥, y) = 2k,

(4) Compute the coarseness feature f,,, by averaging Spes; (x, ¥) over the entire
image. Textures with multiple coarseness can be computed from the histogram
of Sbest (x’ J’)

Contrast tells how well an object is distinguishable from other objects or
background. It measures how gray levels g vary in the image I and to what extent
their distribution is biased to black or white. The second-order ¢* and normalized
fourth-order central moments 4 of the gray level histogram (empirical probability
distribution P) are used to define the contrast feature:
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g

fcon =

(5%)

where y, = 70" (g — m)*P(q|I) is the kurtosis; o* = e (@ — m)*P(q|I) is the
variance, and m is the mean gray level.

Directionality tells if there exists any directional pattern in an image, like ver-
tical, horizontal, diagonal, etc. The degree of directionality is measured using the
frequency distribution of oriented local edges against their directional angles. The
edge strength e(x, y) and the directional angle a(x, y) are computed to approximate

the pixelwise x and y derivatives of the image:

(5.2)

Sl

e(x,y) = (|4c(x, )| + |4y(x,)]) /2 (5.3)

P (x,y) = arctan(4y(x,y)/ Ax(x, y)) (5:4)

where 4,(x, y) and 4,(x, y) are the horizontal and vertical gray level differences
between the neighboring pixels, respectively. They are computed by using Prewitt
edge detectors

A histogram hg;(¢p) of quantized direction values ¢ is constructed by counting
the numbers of the edge pixels with the corresponding directional angles and the
edge strength greater than a predefined threshold. The histogram is relatively uni-
form for images without strong orientation and exhibits peaks for highly directional
images. The directionality feature is defined as the sharpness of the histogram:

fir = 1= my 30 5 (6 — ) b (9) (5.5)

p=1 ¢ew,

where n,, is the number of peaks, ¢, is the position of the pth peak, w,, is the range
of the angles attributed to the pth peak (that is, the range between valleys around the
peak), r denotes a normalizing factor related to quantising levels of the angles ¢,
and ¢ is the quantized directional angle.

Figure 5.1b shows the edge map of an original image in Fig. 5.1a. To compute
Juirs hair 1s first computed by quantizing ¢ and counting the number of edge pixels
with e(x, y) greater than a threshold and the edge histogram of angles is shown in
Fig. 5.1c. The angles ¢ in the horizontal axis are in the range of —90° to +90° and
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Fig. 5.1 An example of computing directionality

are quantized into 12 intervals and the quantized angles are —75°, —60°, —45°, ...,
+90°. The vertical axis shows the percentage of edge pixels at different angles [2].

After computing the h,,, all peaks and valleys in A, are detected. Figure 5.1d
shows the peaks and valleys in green and blue, respectively. Suppose, there are n,
peaks in the histogram. For each peak p, let w,, be the window of bins from the
previous valley to the next valley (a window contains a peak in it), and ¢, be the
angular position of the peak in w,. Based on the definition of f;,, the more
directional an image, the higher the directionality the image. However, f;;, is not
invariant to rotation, rotation of an image causes a circular shift of the A, his-
togram, and this can cause false peak detection. For example, the first peak in
Fig. 5.1d is actually a part of the hill defined by the last peak of the histogram.
Therefore, in practice, several rounds of circular shift are needed to find out the real
peaks of the histogram.

Tamura textures are intuitive in terms of definitions, however, the computation
processes are complex. This affects the robustness and the overall performance of
the computed features.

5.2.2 Gray Level Co-occurrence Matrices

Many statistical texture features are based on gray level co-occurrence matrices
(GLCM) or its color counterpart color correlogram. A GLCM represents how
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frequent is every particular pair of gray levels in an image, separated by a certain
distance d along a certain direction a.
Formally, given an n x m image I(x, y), a cell in a GLCM is defined as

Caeny(is)) ZZ{ 1, ifI(x,y) =iandI(x+ Ax,y+Ay) =j (5.6)

pry s 0, otherwise

For an image with 256 gray level values, a GLCM is a 256 x 256 matrix. With
the combination of Ax and Ay, a large number of GLCMs can be created. In
practice, only four GLCMs are created by capturing the following four structures:
horizontal, vertical, left lean diagonal, and right lean diagonal.

Figure 5.2 shows an example GLCM of an image I(x, y) with 8 gray level values.
In this case, the structure to be captured by the GLCM is the horizontal structure.
The arrows in the figure link the pixel pairs in the image with their corresponding
entries in the GLCM.

GLCM
1 2 3 4 5 6 7 8
1 1
I(x, ¥)
2 /A—~>% 1
2 (216 |7 |8 B
—— I I I I | 1
(3 |46 8 |2 i 5
5 |6 |8 |2 |
e | I 1
8 [6 |2 |36
e 6 |1 |1 1|2
4 |6 |1 |2 |7 . ;
8 1 1

Fig. 5.2 Computation of a GLCM. An 8 gray levels image I(x, y) on the left and its GLCM on the
right
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A GLCM itself is a gray level image, therefore, a number of statistical features
called Haralick features can be computed from each GLCM image, such as the
homogeneity, contrast, correlation, energy, entropy, variance, etc. [3].

Suppose p(i, j) is the normalized value of a GLCM entry, it is equivalent to the
probability of a particular structural distribution in the image; N, is the number of
gray levels in the quantized image. The three major texture features angular second
moment, contrast, and correlation are given in the following:

Angular second moment:

fi=2_2 Ani)y? (57)

i

Contrast.
Ny—1
h= ZnZ{ZZ@(i,mw—ﬂ =n}} (5.8)
n=0 i J

Correlation:

> 2 (WP )) =ttty

00y

fi= (5.9)

where u,, u,, 0., and o, are the means and standard deviations of the marginal
probabilities p, and p,, respectively. f; is a measure of homogeneity of the image
and f; is a measure of gray tone linear dependencies in the image.
Because a GLCM is usually a large matrix and needs a number of GLCMs to
capture different texture structures, GLCM features are expensive to compute.

5.2.3 Markov Random Field

MREF texture methods model image pixel location as a random variable, as a result,
an image is a random field. Each type of textures is characterized by a joint
probability distribution of signals that accounts for spatial interdependence, or
interaction among the signals. The interacting pixel pairs are usually called
neighbors, and a random field texture model is characterized by geometric structure
and quantitative strength of interactions among the neighbors.

Among the many MRF texture methods, the Simultaneous Auto-Regressive
(SAR) model is the most widely used, as it uses fewer parameters. In SAR, the
intensity I(x, y) at pixel (x, y) is estimated as a linear combination of the neighboring
pixel values I(s, f) and an additive Gaussian noise &(x, y).
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I(x,y) = p+ Y 0(s,0)(s,1) +(x,) (5.10)

(s,)eN
where

e u is the mean of the image,

e N is the neighborhood of (x, y), e.g., a 3 x 3 window,

e O(s, 1) are the weights or coefficients associated with each of the neighborhood
pixels,

e and &(x, y) is a Gaussian error with zero mean and standard deviation of a.

The set of parameters 6 and ¢ are the measurement of the texture, they can be
estimated using either the least square error (LSE) technique or the Maximum
Likelihood Estimation (MLE). Both LSE and MLE involve complex optimization
which is computationally expensive. A higher ¢ value indicates finer granularity or
less coarseness; a higher O(x, y + 1) and 0(x, y — 1) values indicate that the texture
is vertically oriented, so on so forth.

Rotation-Invariant SAR model (RISAR) can be created by replacing N with a
circular neighborhood. In order to make SAR more robust, Multiresolution MRF
(MRMREF) can also be created, where an image is represented by a multiresolution
Gaussian pyramid before applying the MRF model.

The number of parameters or the feature dimensions of a SAR depends on the
size of the neighborhood, e.g., a 3 x 3 neighborhood results in 9 parameters while
a 4 x 4 neighborhood results in 16 parameters. To be scale invariant, SARs with
multiple window size are needed, this makes the computation of MRF features
prohibitively expensive.

5.2.4 Fractal Dimension

The fractal dimension (FD) method [4] is based on the theory of fractal geometry
which characterizes the shapes or patterns of self-similarity. The idea of fractal is to
find the smallest structure which replicates the whole pattern. According to fractal
theory, a bounded set S in Euclidean space R” is self-similar if S is the union of N
(r) distinct (nonoverlapping) copies of itself scaled up or down by a ratio r, and the
relationship between N(r) and r is given by

N(r) ~ c(l)d (5.11)

where d is the fractal dimension or FD.
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In image applications, FD method models a gray level image as a 3D terrain
surface, and a differential box counting is done under the surface to measure how
rough the surface is. In logarithm term, the above relationship means the number of
boxes under the surface is inversely proportional to the size of the boxes, which is
expected. d is given by the following approximation:

im logN
d= lim L(lr) (5.12)
r—20 log -

or

d%M (5.13)
log -

From (5.13), the logN(r) and log(1/r) have an approximately linear relationship,
therefore, FD can be estimated from a least square fitting of the two variables. By
fitting a straight line for the logN(r) versus log(1/r) curve, the slope of the straight
line is taken as the approximation of FD.

Since FD only models the roughness feature, other features like directionality
and contrast are missed from FD. Therefore, in [4], six FDs have to be computed
from a number of modified images derived from the original image, such as, the
original image, low gray-valued image, high gray-valued image, horizontally
smoothed image, vertically smoothed image, and the second moment of the original
image. Despite of these additional FD features, FD can be very sensitive due to the
triple approximation during the box counting, linear fitting, and image modification.

5.2.5 Discussions

Spatial texture methods are based on the ideas of capturing the elemental or
microstructures of a textured image. The definitions of the structures are based on
how humans describe a textured image, such as rough versus fine, regular versus
natural, directional versus random, etc. The advantage of these methods is that they
are intuitive and semantically meaningful. However, there are infinite types of
textural structures in the nature, and human beings can only define or describe a
small number of them. This can limit the application of spatial texture methods.

Another major issue with spatial approach is that spatial features are sensitive to
noise. Furthermore, spatial texture methods are usually complex to compute, and
they often involve complex optimization which is very expensive to compute.
These issues affect the robustness and the overall performance of spatial texture
methods.
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5.3 Spectral Texture Feature Extraction Methods

Instead of defining and describing specific structures in an image, which is difficult,
spectral texture methods attempt to capture how frequent the patterns change in a
textured image. Spectral texture methods are based on Fourier Transform (FT),
Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Gabor
filters, curvelet transform, etc.

Global power spectra computed from the DFT are not effective in texture
classification and retrieval, compared with local features computed from small
windows such as DCT. At present, the most promising features for texture retrieval
are based on multiresolution features obtained with orthogonal wavelet transforms
or Gabor filters. These features describe spatial distributions of oriented edges in the
image at multiple scales.

5.3.1 DCT-Based Texture Feature

Compared with the traditional spatial texture methods, DCT is a simple yet robust
method to capture local textures of an image. The idea is equivalent to STFT or
applying FT on a small window. However, due to the use of 1D cosine transform on
both rows and columns, the computation is very efficient.

For a color image 1, it is first converted to Y'CbCr or YBR colors. The image is
then divided into a set of overlapping 8 x 8 regions or blocks, which are obtained
by a sliding window that moves by two pixels between consecutive samples. At
each location of the three YBR color channels, apply the DCT on the local 8§ x 8
window. Each block is then represented by

x = [x",x" x"] (5.14)

where [XY, X2, XR] is the concatenation of the DCT vectors extracted from each of
the YBR color channels by a zigzag scanning. For efficient computation, the 192-
dimensional YBR-DCT vector is usually shortened by only retaining the first few
coefficients from each of the YBR channels. This is because of the well-known
energy compaction properties of the DCT.

To compute the texture features of the image I, a Gaussian mixture model of
eight components is computed using the EM algorithm. This produces the fol-
lowing conditional distribution for each image:

[}

P(X|I) =Y mG(x, 1, 0}) (5.15)
k=1

where 7 is the weight and g and ¢% are the maximum likelihood parameters of
mixture component k. The (,u’,‘, af ) pair is then organized into a feature vector which
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is used for texture representation. For a gray level image, the DCT method just
needs to replace the three color channels with a single gray channel.

DCT computation is efficient due to the use of FFT, however, the EM is an
optimization method which incurs significant computation cost.

5.3.2 Texture Features Based on Gabor Filters

5.3.2.1 Gabor Filters
Although DCT is efficient to compute locally, the image level texture features are
complex to compute due to the use of EM algorithm. An alternative is to use Gabor
filters. Gabor filters are based on traditional filter-based image processing approach,
which computes one filtered value at each pixel as opposing to computing multiple
transformed values at each location as in the DCT. Different from traditional filters,
by combining both Gaussian and FT, Gabor filters simulate the powerful properties
of perceptual vision of mammals. Furthermore, they can be tuned to different
orientations and scales.

Gabor transform creates a filter bank consisting of Gabor filters with various
scales and orientations. For a given image I(x, y) with size PxQ, its discrete Gabor
transform is given by a convolution:

K K
G (x,Y) ZZI x—s,y—t)gn.(s,1) (5.16)
s=0 1=0

where K is the filter mask size, and g, is the complex conjugate of g,,, which is a
class of self-similar wavelets generated from dilation and rotation of the following
mother wavelet:

(x,y) = 1 1 [ x? n y?
exp|—= =+ =
g%y 210,0y ) 2 a2

y

- exp(j2nWx) (5.17)

where W is called the modulation frequency. The self-similar Gabor wavelets are
obtained through the generating function

gmn(x’Y) = a_mg()NC,SJ) (518)

where m and n specify the scale and orientation of the wavelet respectively, with
m=0,1,.M—1,n=0,1,...,N— 1, and

= a " (xcos 0 +ysin 0) }

X
y=a"(—xsin0+ycos0) (5.19)

where a > 1 and 0 = nn/N.
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Fig. 5.3 FWHM sampling of spectral responses of Gabor filters in frequency plane

In order to decide the bank of Gabor filters, the parameters in (5.17) to (5.19)
have to be determined. The Gabor wavelets generated using (5.17) through (5.19)
are complete but not orthogonal wavelets, it implies there is redundancy in the
filters. Therefore, we may design a bank of Gabor filters so that redundancy will be
significantly reduced while image texture will be well represented by the set of
individual filter response. Due to the same functional form of Gabor wavelet
function g(x, y) and its frequency response ¥(u, v) (i.e., its 2-D Fourier transform):

Y(u,v) =exp{—=[———— + 5|} (5.20)

where o, = 2no,) ! and o, = (27wy)71, an optimal representation of an image in
spatial domain can be achieved by finding an optimal representation of the image in
frequency domain. The idea of achieving so is to use the full width at half maxi-
mum (FWHM) of the Gabor spectral functions to form a complete coverage of the
frequency plane within the modulation frequency bandwidth (Sect. 2.2). Specifi-
cally, the design follows three principles [S]: (i) Uniform sampling of orientation
angles; (ii) Exponential sampling of modulation bandwidth W; (iii) Continuous
coverage of the frequency space. This strategy is illustrated in Fig. 5.3.

Let U, and U, be the lowest and highest frequencies of interest, such that the
coarsest scale filter and the finest scale filter are centered in the frequency domain at
distances U; and U, from the origin, respectively. By the above strategy of
redundancy reduction, the parameters of Gabor filters in spatial domain can be
determined as follows:

a = (Uy/U)*T (5.21)
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__(a+hv2m2 5.22)
B 2mam(a — 1)U, '
1
Oy,mpn = (5.23)

v 2
il ho 1
2m tan () \ /770 (2nox,,,,_,,)

The parameters are independent of orientations (n), in other words, the param-
eters repeat in every orientation. In practice, the following parameter values are
used:

U, = 0.05,U; = 0.4,K = 60

5.3.2.2 Gabor Spectrum

Figure 5.4 shows the Gabor filtered subband images from the lady image of
Fig. 3.2. It shows how different image features are captured by Gabor filters from
different scales and orientations. It can be observed that low-frequency information
are captured at lower scales and as scale increases (in spectral domain), more fine
details can be seen.

scale

(O}

1 2 3 4 5 6 orientation

Fig. 5.4 Gabor filtered subbands for the lady image
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5.3.2.3 Texture Representation
After applying Gabor filters on the image with different orientation at a different
scale, a set of magnitudes is obtained:

P 0
=3 > Gumx,y),m=0,1,... M=1;n=0,1,...,N—1 (5.24)
x=0 y=0

where

e m is the scale

e 1 is the orientation

e M is the maximal scale

e N is the maximal orientation

e P x Q is the size of the input image

The magnitudes represent the energy map at a different scale and orientation of
the image under transform (Fig. 5.5 right) [6].

The main purpose of texture-based retrieval is to find images or regions with
similar texture. It is assumed that we are interested in images or regions that have
homogenous texture, therefore the following mean u,,, and standard deviation a,,,
of the magnitude of the transformed coefficients are used to represent the
homogenous texture feature of the image or region:

_ E(mn)
Honn = P x Q

5 (5.25)
S (G )] = o)

P xQ

A feature vector f (texture representation) is created using ,,, and g,,, as the
feature components. Five scales and six orientations are used in common imple-
mentation and the Gabor texture feature vector is thus given by

scale
e s R S B S ) |

1 2 3 4 5 6
orientation

Fig. 5.5 Computation of Gabor texture descriptor. A straw image on the left and its energy map
on the right. The higher the energy the brighter the block
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f= (:u()()7 000, Ho15 0015 - - -5 Has, 645) (526)

In order to remove the influence of various lighting issues of the camera, the
features 4, and @,,, can be normalized to [0, 1] using the maximum of the
respective components. The similarity between two texture patterns is measured by
the city block or Euclidean distance between their Gabor feature vectors.

5.3.2.4 Rotation-Invariant Gabor Features
The above-acquired texture feature is not invariant to rotation, similar texture
images with different direction may be missed out from the retrieval or get a low
rank. A simple circular shift on the feature map can be used to solve the rotation
variant problem. Specifically, the orientation with the highest energy is detected as
the dominant direction of the image and the feature elements in the dominant
direction are moved to the first elements in f. The other elements are then circularly
shifted accordingly. For example, if the original feature vector is “abcdef” and “c”
is at the dominant direction, then the normalized feature vector will be “cdefab’ [7].
This circular shift approach is based on the theory that image rotation in spatial
domain is equivalent to circular shift in spectral domain. Assume the original image
is I(x, ), 14(x, y) is the result of I(x, y) after rotation of angle ¢, by using (1.40), we
have the following:

Iy(x,y) = 1(x,y) - 7 (5.27)

For notation convenience, the Gabor transform of I(x, y) and I4(x, y) at scale
s and angle 6 are denoted as G(I, s, 0) and G(I,, s, 0), respectively. Then according
to (5.16), we have

G(I,s,0) =I(x,y) * gwo(x,y) (5.28)

and by the commutability of convolution, we have

G(ly,s,0) = Iy(x,y) * gso(x,y)
= [I(x,y) - e 7] % gu(x,) (5.29)
= I(xay) * [gs()(xay) 'e_jd)]
Equation (5.29) indicates that applying a Gabor filter on a rotated image

is equivalent to applying a rotated Gabor filter on the original image. Since
20X, y) - €77 = g.0.(x, ), we have

G(1¢7s7 0) = I(x,y) * [gw(x’ y)eiifb]
=1(x,y) * g0+ (x,y) (5.30)
=G(I,S,0+ ¢)
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Fig. 5.6 Computation of (a)
rotation-invariant Gabor :
texture descriptor. a A straw
image; b energy map of (a);
¢ a rotated image of (a);

d energy map of (c). The
higher the energy, the brighter
the block

1 2 3 4 5 6
orientation

(d)

scale
- k) W s n

123 4 56
orientation

Equation (5.30) indicates that a rotation of the input image I(x, y) by an angle ¢
is equivalent to a translation of the output energy G(I, s, 0) by the same amount ¢
along the orientation axis. Figure 5.6 demonstrates this fact. It shows two texture
patterns and their feature maps, pattern (c) is a rotation of 90° of pattern (a). Form
feature map (b), it can be seen that pattern (a) has a dominant direction feature in
orientation 2 (60°), while in feature map (d), this dominant direction feature has
moved to orientation 5 (150°) and features in other directions are circularly shifted
accordingly. In other words, the spectrum (d) is the circularly shifted version of
spectrum (b) [6].

If a texture pattern has directional features, it will show dominant energy at
certain direction on the energy map. If the direction of the highest energy is cir-
cularly shifted to zero degree, the resulting f is a rotation-invariant feature. If a
texture pattern does not have dominant direction feature, the matching between
rotated patterns can be made at any direction, and the rotation normalization does
not affect the matching in this situation.

In image analysis, there is always a compromise between spatial resolution and
frequency resolution. Gabor filters achieve optimal joint localization/resolution in
both space domain and frequency domain. However, due to the truncation at half
peak magnitude, the spectral cover of Gabor filters is not complete, this results in
information loss in the spectral domain. For example, in Fig. 5.7, black holes are
left at the FWHM in Gabor transformed spectral domain. Consequently, the
high-frequency components, which are considered to be the most important in
characterizing image textures, are not completely captured. Abundant redundancy
also exists between transformed images at different scales because Gabor filters use
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Fig. 5.7 Frequency tiling of half frequency plan by Gabor filters, the ovals are the covered
spectrum while the black holes are the lost spectrum

overlapped window and do not involve image down sampling. These limitations
can be easily overcome by using wavelet transform.

5.3.3 Texture Features Based on Wavelet Transform

5.3.3.1 Selection and Application of Wavelets
The key idea of wavelet transform is to analyze an image using multiresolution
approach by using filters of different size, called wavelets. This is equivalent to look
at the image from different distance. The whole decomposition process provides us
with an array of DWT coefficients obtained from each subbands at each scale.
These coefficients can then be used to represent the texture features of an image.
Given a 2D image fim, n), 0 < m < M—1,0 < n < N—1,its DWT is
given by (5.31):

1 N-1M-1

Witk,1) = =375 f(m, )] (m.n) (5.31)

J
2 n=0 m=0

where j is the scale and (k, /) is the spatial location of the wavelet and:

lp]i](m7n) —y (m —2j2./k> y <n —2j2./l) (5.32)

Different wavelets have been used to capture the texture features of an image.
Commonly used wavelets include Haar, Mexican hat, Morlet, Daubechies,
biorthogonal, symlet, Coiflet, and Meyer wavelet. Both Haar and symlet are special
members of Daubechies wavelet family. Haar wavelet has been introduced earlier
in Sect. 3.3.1. Figure 5.8 shows the 1D profiles six wavelets from some of the
wavelet families, while Fig. 5.9 provides a 3D view for 4 of the wavelets.
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Fig. 5.8 Mexican hat, Morlet, Daubechies, Meyer, Symlet 4, and Coiflet wavelets

Figure 5.10 shows the spectra of the Lena image from some of the common
wavelet transforms. It can be seen, that the spectra images are similar but with the
subtle difference due to the different shapes of the wavelets. Some are more efficient
due to capturing more low-frequency information while discarding more
high-frequency information.
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Fig. 5.9 Wavelets in 3D space. Top left: Daubechies 2; Top right: Symlet 4; Bottom left: Coiflet 1;
Bottom right: Mexican hat

Discrete wavelets are differentiated by their shapes, orders (vanishing moments)
and compact support. The combination of the three factors determines the result of
a wavelet transform. The choice of a wavelet usually depends on the nature of the
data and applications such as image analysis, image processing, or image com-
pression. Often it requires a number of trials to determine the optimal combination
of the three factors. Results of a wavelet transform also depend on whether the
wavelet is overlapped or not. The Maximal Overlap Discrete Wavelet Transform
(MODWT) has found popular application in image analysis.

Shape of a wavelet. The shape of a wavelet is characterized by its symmetry and
regularity. A symmetric wavelet shows no preferred direction in time/space, while
an asymmetric wavelet gives an unequal weighting to different directions. Regu-
larity is related to how many continuous derivatives a function has. Therefore,
regularity is a measure of smoothness of a wavelet. Generally, to detect an edge in
the data, a wavelet needs to be sufficiently regular. The regularity is also related to
the order, the higher the order, the smoother the wavelet.

For image analysis, however, research has shown that the shape of a wavelet
does not have a significant influence on classification results [8].

Vanishing moments. An important property of a wavelet function is the number
of vanishing moments, which characterize how a wavelet interacts with various
signals. The names for many wavelets are derived from the number of vanishing
moments. For example, db6 is the Daubechies wavelet with six vanishing moments
and sym3 is the symlet with three vanishing moments. Generally, a wavelet with
N vanishing moments is orthogonal to polynomials of degree N — 1. For example,
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Fig. 5.10 Wavelet spectra for the Lena image

Daubechies 2 wavelet has two vanishing moments. When the Daubechies 2 wavelet
is used to transform a data, both the mean and any linear trend are removed from
the data. A higher number of vanishing moments implies that more moments
(quadratic, cubic, etc.) will be removed from the data, which results in fewer
significant wavelet coefficients. It also means higher order wavelets can capture or
represent more frequency bands in the data. Higher order wavelets typically have
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more oscillations and require wider support. A wavelet with N vanishing moments
must have a support of at least length 2N — 1.

The choice of wavelet order depends on the nature of the data, while usually, it
requires a number of empirical tests on the data. Theoretically, the order of the
wavelet should be greater than 2H + 1, where H is the Hurst exponent of a signal or
data [8, 9]. H can be determined using a similar technique of finding the fractal
dimension as described in Sect. 5.2.4.

Compact support. This value measures the effective width of the wavelet
function. A narrow wavelet function such as haar, db2, or sym2 can capture closely
spaced or finer features and are fast to compute, but a narrow wavelet tends to have
low-frequency resolution. Conversely, a wavelet with large compact support such
as the Daubechies 24 is smoother and has finer frequency resolution which is
usually more efficient for denoising.

Wavelets with large support tend to result in coefficients that do not distinguish
individual features. Research has shown that wavelets with wider compact support
provide increased sensitivity to group differences, which leads to higher classifi-
cation accuracy [8]. However, wavelet with very large compact support can
decrease the localization of prominent features and more coefficients are affected by
boundary conditions. In practice, wavelets with an optimal compact support can be
found using an empirical test.

MODWT. MODWT is highly redundant and invariant under circular shift. This
causes MODWT preserving the smooth time-varying structure in regional time
series that is otherwise lost during the application of DWT [8]. MODWT is adaptive
to any signal length and emphasizes on variance analysis, which is desirable for
feature extraction. Research shows that MODWT has superior performance than
ordinary DWT [8]. This is supported by the fact that in literature, Gabor filters are
usually preferred than ordinary DWTs.

5.3.3.2 Contrast of DWT and Other Spectral Transforms
If we give a comparison between wavelets, sinusoids (FT), STFT and Gabor filters,
we have the following contrasts:

¢ Orthogonality. Both wavelets and sinusoids are orthogonal (1.2-1.6), while
Gabor filters are not.

e Window. Wavelets, STFT, and Gabor filters are windowed transforms, while FT
is not.

e Window attenuation. Both wavelets and Gabor filters attenuate towards the
border of a window, while STFT does not.

e Various window size. Wavelets vary window size, while STFT and Gabor filters
do not.

¢ Directionality. Both wavelets and Gabor filters are directional transforms, while
FT and STFT are not.
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o Multiresolution. Wavelets are multiresolution transforms, while Gabor filters,
FT, and STFT are not.

Overall, wavelets have more advantage over FT, STFT, and Gabor filters. It can
be observed from Fig. 5.10 that different from both FT and STFT, wavelets suc-
cessfully capture the edge information of the image which is the most useful texture
feature. The next is to focus on extracting texture features from the DWT spectrum.

5.3.3.3 Multiresolution Analysis

Space (time)-frequency methods attempt to find a specific frequency at a specific
location, which is the main shortcoming of FT and STFT. However, it is not
possible to find a specific frequency at a specific location simultaneously, just like
we cannot get both a global view (zooming out) and a local view (zooming in) of a
map at the same time (we lose global view when getting too close to the map for
details and we lose details when we zoom out for a global view of the map). The
solution is to use multiresolution or multi-view to create a tradeoff between spatial
resolution and frequency resolution.

Multiresolution methods are designed to obtain a good spatial resolution but less
accurate frequency resolution at high frequencies or a good frequency resolution
but less accurate spatial resolution at low frequencies (Fig. 3.1 left). By using
multiresolution or multi-view approach, both global view and local view of an
image are obtained and a complete picture of an image is preserved, although not
simultaneously. This approach is useful when a signal or an image contains both
fine details in small areas and homogenous patches in larger areas. Usually, 2-D
images follow this type of frequency patterns. The multiresolution analysis effec-
tively overcomes the window size problem of STFT. Therefore, multiresolution
approaches are more effective in image analysis and they overcome the frequency
and location dilemma found in both FT (global view) and STFT (local view).

The coefficients at each subband of a wavelet transform are usually scarce, and
they are not suitable for direct image representation. Statistics such as those pro-
posed in the GLCM and Gabor filters can be computed from each subband of a
wavelet transform. More robust features can be computed from each subband by
using Gaussian mixture model. Since high-frequency components are more
important for texture representation, features from lower scale subbands are usually
given more weight.

Because digital wavelet transform (DWT) is done by two passes of 1D wavelet
transform on rows and columns, respectively, wavelets can only capture edge
information on horizontal, vertical, and diagonal directions. This gives Gabor filters
an edge over wavelet on texture representation and retrieval because Gabor filters
can be tuned to more directions than conventional wavelets. However, neither
wavelets nor Gabor filters can effectively capture highly anisotropic elements like
the curves from an image, and this is the rational behind the introduction of curvelet
in the next section.



102 5 Texture Feature Extraction
5.3.4 Texture Features Based on Curvelet Transform

5.3.4.1 Curvelet Transform

Both Gabor filters and wavelets let us do space—frequency analysis of images.
Gabor filter is an improvement to STFT by using a Gaussian window and
multi-orientations, however, it still uses a fixed window size for different fre-
quencies. This is equivalent to looking at an image for details from a fixed distance,
which is difficult. Wavelets use different window sizes for different frequencies, and
this creates a multiresolution view of an image and is equivalent to looking for
different levels of details of an image from different distance. Therefore, wavelet is
a more accurate simulation to human vision system. However, wavelet can only
capture texture features from three directions, which are not sufficient for image
analysis.

Curvelet [10] has been introduced in literature to take the advantages of both
Gabor filters and wavelet, while overcome the limitations of both. Specifically, a
curvelet is orthogonal and multiresolution like a wavelet, while it can be tuned to
multi-orientation like Gabor filters as well. In other words, a curvelet is a wavelet
tuned to multi-orientations and can capture curved or nonlinear edges in an image
instead of just linear edges. Therefore, it is a more powerful tool for image analysis.

Basically, curvelet transform extends the ridgelet transform to multiple scale
analysis. Given an image f(x,y), the continuous curvelet transform are defined as
[11, 12]

Ry (a,b,0) = // Vo () (5, y)ddy. (5.33)

where a (a > 0) is the scale, b is the translation, 6 is the orientation, and  is the
curvelet which is defined as follows:

(5.34)

1, (xcosO+ysinf —b
banal) =a )

a

where 0 is the orientation and a is the scale of the curvelet. A curvelet is constant
along the lines: x cosf + y sinf = b and transverse to these ridges are wavelets.
Compared with wavelet definition, the location parameters (b;, b;) of wavelet are
replaced by the line and orientation parameters (b, 6) in a curvelet. In other words,
the two transforms are related by [12]

Wavelet: lpscale,pointposition

Curvelet: i/

scale, line position

In contrast, Gabor filters are Gaussian-shaped wavelets tuned to different ori-
entations and scales.
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Fig. 5.11 Comparison of curvelet, wavelet and Gabor filter. a A curvelet; b a Daubechies wavelet
and ¢ a Gabor filter

1 (xcosf+ysinf —by —xsinf+ycos — b,
a0 b, (X,y) =a g

: > (5.35)

a a

where the mother wavelet g(x, y) is a Gaussian envelope modulated by a sinusoid
wave. The shapes of the three types of wavelets are shown in Fig. 5.11 [11]:

It can be seen from the above figure, compared with both the wavelet and Gabor
filter, a curvelet is the most sensitive to lines and edges in an image.

Similar to Gabor filters, a mother curvelet can be tuned to different orientations
and different scales to create the curvelets (Fig. 5.12).

Curvelet takes the form of a basis element and obtains a high anisotropy.
Therefore, it captures the edge information more effectively because it is sharper
than a wavelet and a Gabor filter. Although a curvelet is linear in its edge direction,
due to its elongated and orientated design, it aligns with curved edges much better
than conventional wavelets do. The contrast between wavelet and curvelet on
capturing curved edge information is shown in Fig. 5.13 [12, 13]. It can be
observed that curvelets, at higher scales, capture the edge information more accu-
rately and tightly than wavelets.

Fig. 5.12 A curvelet and curvelet tiling in spatial domain. Left: a single curvelet with width 2~/
and length 277/2; Right: curvelets tuned to 2 scales at different orientations
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wavelets curvelets

Fig. 5.13 Edge representation using wavelets and curvelets

5.3.4.2 Discrete Curvelet Transform
Given a digital image fim, n), 0 < m < M — 1,0 < n < N — 1, the discrete
curvelet transform is given as follows:

2

—1M-1
Cio(k, 1) J(m, ) o i(m,n) (5.36)

n

Il
=3

m=0

where Vo, (m, n) is a discrete curvelet; j, 0 are the scale and orientation
respectively; and k, [ are the spatial location parameters. The frequency response of
a curvelet is a wedge, and the curvelet tiling of frequency plane is shown in
Fig. 5.14.

Curvelets exhibit an oscillating behavior in the direction perpendicular to their
orientation in frequency domain. A few curvelets at different scales and their fre-
quency responses are shown in Fig. 5.15 [3], and the scales shown on the figure are
scales in frequency domain.

Spectrum at
scale 4 and
orientation 4

Fig. 5.14 Curvelet tiling of frequency plane with 5 level curvelets
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Fig. 5.15 Curvelets at different scales are shown in the spatial domain (left) and in the frequency
domain (right) respectively
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Fig. 5.15 (continued)
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It can be observed that the curvelet is nondirectional at the coarsest scale.
Whereas, at highest scales, the curvelet waveform becomes so fine that it looks like
a needle shaped element. With increase in the resolution level, a curvelet becomes
finer and smaller in the spatial domain and shows more sensitivity to curved edges
which enables it to effectively capture curves in an image.

Although curvelet has an advantage of capturing nonlinear edges in an image,
the computation of curvelet transform is more complex than both the Gabor filters
and wavelet. Similar to Gabor filters, to achieve efficiency, curvelet transform is
implemented in the frequency domain. That is, both the curvelet and the input
image I are transformed into FT domain using FFT and the two FFTs are then
multiplied in the FT domain. The product is then transformed back using the
inverse fast Fourier transformed (FFT_I) to obtain the curvelet coefficients. The
process can be described as

Curvelet transform (/) = FFT~'[FFT(curvelet) x FFT(I)] (5.37)

However, due to the FFT of the curvelet is a wedge, the product of the two FFTs
needs to be wrapped back into a rectangle before it can be used for the FFT~". This
wrapping process increases the computation cost.

5.3.4.3 Curvelet Spectra

Figure 5.16 shows some of the spectra of the curvelet transform on a flower image
at different scales (in frequency domain) and orientations [11, 13]. The size of the
spectra is adjusted for better viewing.

To contrast, the spectra of wavelet and Gabor filters are shown in Fig. 5.17.

It can be observed from the above two figures, the spectra of Gabor filters have
more redundancy than both the wavelet spectra and curvelet spectra due to the use
of overlapping windows during the transform. The spectra of Gabor filters also look
more granular than those of both the wavelets and the curvelets. The spectra of
wavelets are the most sparse and the most efficient in terms of reducing redundancy,
therefore, wavelets are the choice for compression. Curvelet spectra are in between
those of wavelet and Gabor filters. Curvelets are more sensitive to edges than Gabor
filters and capture edges from more directions than wavelet. Furthermore, curvelets
have little redundancy between different subbands. Curvelets also have a complete
covering of the spectrum plane and this has overcome the spectra leakage of Gabor
filters. However, due to there is a need to wrapping the wedge shape into a rectangle
in order to do the invert FFT in (5.37), the computation is more complex than both
Gabor filters and wavelets.

5.3.4.4 Curvelet Features

The feature extraction from curvelet transform is similar to Gabor filters. Once the
curvelet transform is applied and the coefficients are obtained at each scale and
orientation, the mean x and standard deviation ¢ are computed for each of the
subbands as follows:
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A b [

(a) Input image (b) subbands @ scale 3 (c) subbands @ scale 4

(d) subbands @ scale 5 (e) subband @ scale 6

Fig. 5.16 Curvelet subbands at different scales for a flower image (512 x 512). Each subband
captures curvelet coefficients of the input image from one orientation

(a)

Fig. 5.17 Spectra of wavelets and Gabor filters for the flower image in Fig. 5.16a. a Wavelet
spectra; b Gabor filters spectra
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E(s,0) VS, (€l )] = 0)?
050 =

'uS()_mxn’ mxn

(5.38)

where s is the scale, 0 is the orientation, m and n are the dimensions of the
corresponding subband, and E(s,0) = > > [Cy(x,y)] is the total spectral energy

of the subband.

Therefore, for each curvelet, two texture features are obtained. If / curvelets are
used for the transform, 2! texture features are obtained. A 2/ dimension texture
feature vector is used to represent each image in the database for image retrieval. To
mitigate the dynamic range of the spectral energy, both the mean and standard
deviation features are normalized using the maximum values of the corresponding
features in the database.

Based on the curvelet subband division in Fig. 5.14, with 5 levels curvelet
decomposition, 82 (= 1 + 16 + 32 + 32 + 1) subbands of curvelet coefficients are
computed (only one subband is chosen from the last scale). However, due to the
symmetry property, curvelet at angle 6 produces the same coefficients as curvelet at
angle 0 + m. Therefore, half of the subbands at scale 2—4 are discarded. As the
result, 42 (= 1 + 8 + 16 + 16 + 1) subbands of curvelet coefficients are computed,
and a 2 x 42 = 84 dimension feature vector is generated for each image. This
dimension is higher than the feature vector from Gabor filters with the same scales
due to Gabor filters usually use fewer orientations.

Rotation-invariant curvelet features can also be created by using the circular shift
method in Gabor filters.

5.3.5 Discussions

Several texture features based on spectral transforms have been introduced in this
section, including DCT, Gabor filters, wavelets, and curvelets. Although wavelets
are orthogonal and more sensitive to edges, Gabor filters are more directional. This
makes Gabor filters a better texture method in many applications. The performance
of curvelet based texture features can be affected by the computation complexity
due to the irregular frequency response of curvelets.

Generally, spectral texture methods are much more robust than spatial texture
methods when they are applied on homogenous texture images, due to their model
simplicity and computation efficiency. However, spectral transforms are usually
done in a squared window, therefore, it is often difficult to apply spectral texture
methods in irregular image regions, especially when the region size is not big
enough. In these situations, the DCT-based texture method can be used because the
8 x 8 window is small enough to fit with most of image regions.



