
7Bayesian Classification

History tells the future.

7.1 Introduction

All Bayesian classification methods are based on the Bayes’ theorem which is given
below:

P AjBð Þ ¼ PðBjAÞP Að Þ
P Bð Þ ¼ PðBjAÞP Að Þ

PðBjAÞP Að ÞþPðBj�AÞP �Að Þ ð7:1Þ

where

• A and B are random events and �A is the complement of A.
• A is a hypothesis to be tested or predicted.
• B is the new data or observation, it is the new evidence to predict A.
• P(A) is called the prior probability and P(B|A) is called the likelihood, they
represent our experience or prior knowledge.

• P(B) is the observation probability or the chance to observe event B.
• P(A|B) is called the posterior probability.

The idea of Bayes’ theorem is to convert the computation of probability of P(A|B)
to P(B|A) which is easier to compute. This is extremely helpful when two random
events A and B are dependent on each other and the prediction of event A is difficult
due to lack of evidence or information; in this situation, the information about B can
be employed to help predicting A more accurately. The information about B can
usually be obtained from historical data or experience.
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This idea of predicting one event using other related events has been practiced
by human beings all the time, for example, we use symptoms to predict a disease,
use cloud to predict rain, use a man’s culture/background to predict his behavior,
use rainfall to predict harvest, etc. In the following, we use two simple examples to
get some firsthand understanding of how Bayesian theorem works in real-world
applications.

For the first example, we are planning for a sports event at a weekend in a local
club and we want to know if the weather will be fine at the weekend. We know the
weather and humidity are highly related, we can use humidity to help us predict if
the weather is fine so that the sports can go ahead. Formally, let

R ¼ Rain �R ¼ No rain H ¼ High humidity ðhumidity[ 80%Þ

Suppose we know from history (e.g., Bureau of meteorology) the following prior
information:

P Rð Þ ¼ 35% P �Rð Þ ¼ 65% P Hj�Rð Þ ¼ 30%

Suppose further we know there will be high humidity at the weekend based on
the most recent day weather, then we can predict the chance of no rain at the
weekend by the Bayes’ theorem as given below:

P �RjHð Þ ¼ PðHj�RÞP �Rð Þ
P Hð Þ ¼ PðHj�RÞP �Rð Þ

PðHj�RÞP �Rð ÞþPðHjRÞP Rð Þ
¼ 0:3� 0:65

0:3� 0:65þ 1� 0:65
¼ 0:195

0:845
� 23%

This information is useful for making a reasonable decision on if the sports event
should go ahead. Notice that without the prior information of P �Rð Þ and P Hj�Rð Þ, the
prediction and decision would have been made arbitrarily. In practice, factors such
as humidity, temperature, and atmospheric pressure are combined to obtain an even
more accurate prediction.

Another example is the application of the Bayes’ theorem on image classifica-
tion. Suppose we have detected some black and white strips (through feature
extraction) in an image, based on our experience, we believe it is likely a zebra
image. But how likely the image is a zebra, 70% of the chance, 80 or 99%? For
many other cases like financial, economic, or military situations, this likelihood is
crucial to make a right decision. It is clear we need more evidence to determine the
accurate likelihood. The answer is in statistics.

If we were able to sample all the images in the world just like a population
census in a country, we would be able to calculate the statistics and tell how many
non-zebra images would have the black and white strips. This statistic would help
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us to determine how likely the image with black and white strips is a zebra image.
Unfortunately, we are not able to do a census on all the images in the world, all we
can do is to sample part of the image population and create an image database, then
use the statistics calculated from the image database to approximate those in the
image population.

Formally, let

Z ¼ Zebra image �Z ¼ non-Zebra image BWS ¼ Black andwhite strips

Now, suppose we know the following probabilities from a training set or an
image database (our experience or prior information):

PðBWSjZÞ ¼ 1:0 P Zð Þ ¼ 0:05 PðBWSj�ZÞ ¼ 0:01

Then, given the black and white strips in an image, we can predict if there is a
zebra in the image by the Bayes’ theorem as given below:

P Z jBWSð Þ ¼ PðBWSjZÞP Zð Þ
P BWSð Þ ¼ PðBWSjZÞP Zð Þ

P BWSjZð ÞP Zð ÞþPðBWSj�ZÞP �Zð Þ
¼ 1:0� 0:05

1:0� 0:05þ 0:01� 0:95
¼ 0:05

0:0595
� 84%

Therefore, we can say there is a high chance that the image is a zebra image and
we have high confidence to classify the image into the zebra image category.

Bayes’ theorem can be extended to multiple events A1, A2, …, An as follows:

P AijBð Þ ¼ PðBjAiÞP Aið Þ
P Bð Þ ¼ PðBjAiÞP Aið Þ

PðBjA1ÞP A1ð Þþ � � � þPðBjAnÞP Anð Þ ð7:2Þ

In this case, B is related to or dependent on multiple other events Ai, and based
on what we know about the relationship or dependency between B and each Ai: P(B|
Ai), we can predict if a new observation of B is from any of the events Ai.

For example, fever (B) can be caused by many diseases or medical conditions
(Ai), such as infection, flu, pneumonia, chickenpox, measles, HIV, meningitis,
cancers, malaria, Dengue, etc. However, each disease or medical condition has
different chances of causing fever: P(B|Ai). Now, given a patient with fever, (7.2)
can be used to determine if the patient has flu: P(Ai|B). In clinical practice, however,
symptoms are typically combined to nail a disease, e.g., by combining fever with
running nose and headache, flu can be diagnosed with very high accuracy.
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7.2 Naïve Bayesian Image Classification

7.2.1 NB Formulation

The naïve Bayesian (NB) methods are based on a simple application of the above
Bayes’ theorem on numerical and high-dimensional image data.

• Given a set of N images: I = {I1, I2, …, IN}.
• And a set of n semantic classes C = {C1, C2, …, Cn} (events).
• I 2 C.
• Each image I is represented by a feature vector x = (x1, x2, …, xm) (observation).

According to Bayes’ theorem, the classification or annotation of image I to class
Ci is given by

P CijIð Þ ¼ P Cijxð Þ ¼ PðxjCiÞP Cið Þ
P xð Þ ¼ PðxjCiÞP Cið Þ

PðxjC1ÞP C1ð Þþ � � � þPðxjCnÞP Cnð Þ
ð7:3Þ

or

P CijIð Þ ¼ P Cijxð Þ ¼ PðxjCiÞP Cið ÞPn
k¼1 PðxjCkÞP Ckð Þ ð7:4Þ

Because the denominator P xð Þ ¼Pn
k¼1 PðxjCkÞ � P Ckð Þ is independent of class

Ci (i = 1, 2, …, n) and is a constant, (7.4) can be written as follows:

P CijIð Þ ¼ P Cijxð Þ ¼ 1
Z
P xjCið ÞP Cið Þ ð7:5Þ

where Z ¼Pn
k¼1 PðxjCkÞP Ckð Þ is a scaling factor. The class of image I can be

decided using the maximizing a posterior (MAP) criterion

P CjjI
� � ¼ bC ¼ arg maxi PðCijxÞ ¼ arg maxifP(xjCiÞP Cið Þ ð7:6Þ

The prior probabilities P(Ci) is usually uniform for all classes; otherwise, they
can be found by the frequency or proportion of samples belonging to class Ci

among all classes. Therefore, the classification of image I comes down to modeling
the likelihood probability of P(x|Ci).

Since image features are typically numerical and continuous, they need to be
discretized before the likelihood modeling. In practice, the following procedure is
used to compute the P(x|Ci) in (7.6).
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Training:

• A training database of images from all the n classes {C1, C2, …, Cn} are created.
• Image features from the training database are clustered into m clusters Xj using a
certain vector quantization algorithm.

• Next, a cluster centroid xj is computed for each of the clusters Xj: xj, j = 1, 2, …,
m.

• Then, the likelihood P(xj|Ci) is calculated by finding the frequency of samples in
Xj belonging to class Ci.

P xjjCj

� � ¼ No: of samples in Xjwhich are from class Ci

Total no: of samples in cluster Xj
ð7:7Þ

Classification/Annotation:

• Given a new image I with feature x.
• Match feature x to the closest cluster centroids xj’s.
• Apply the MAP of (7.6) by replacing the likelihood P(x|Ci) with (7.7) to obtain
the posterior probability P(Cj|I).

The classification and annotation of an image with Naïve Bayesian method is
illustrated in Fig. 7.1 [1, 2]. There are two major modules in an NB classifier:
training and annotation, and each of the major modules consists of three
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Fig. 7.1 Image classification with Naïve Bayesian method
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sub-modules. The training module consists of feature extraction, clustering, and
model building, while the annotation consists of feature extraction, matching, and
decision-making using MAP.

7.2.2 NB with Independent Features

Assume x1, x2, …, xm are independent of each other, then the likelihood is given as
follows:

P xjCið Þ ¼
Ym
j¼1

PðxjjCiÞ ð7:8Þ

There are many situations where the features of a data are independent on each
other, e.g., nominal features extracted by a web crawler, such as tree, grass, sand,
water, etc. Suppose we are using a set of nominal features x = (sand, water, sky,
people) to classify a collection of images into “beach” and “non-beach” categories,
then (7.8) can be employed to modeling the likelihood in the Bayes’ theorem. Often
different types of numerical image features are combined into a more powerful
feature vector, e.g., x = (color, shape, texture), again, the likelihood probability in
the Bayes’ theorem can be computed using (7.8).

7.2.3 NB with Bag of Features

If an image I is segmented into k regions, and each region is represented as a feature
vector xj, j = 1, 2, …, k, I can be represented as a bag of features: I = {x1, x2, …,
xk}. Typically, regions in an image are independent of each other; therefore, the
conditional probability of P(I|Ci) is given by

PðIjCiÞ ¼ Pðx1; x2; . . .; xkjCiÞ ¼
Yk
j¼1

PðxjjCiÞ ð7:9Þ

7.3 Image Annotation with Word Co-occurrence

In the above naïve Bayesian classification, images are not individually labeled,
instead, they are simply classified into categories. The categories can be regarded as
implicit image annotation or collective image annotation. However, individual
images can be pre-labeled and the annotation of images can be done explicitly. Vast
amount of labeled images are available on the web, they can be employed to
annotate new images. One of the earliest works on explicit image annotation or
individual image annotation is the Word Co-occurrence model (WCC) introduced
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by Mori et al. [3]. The idea is to establish the relationship between image features
and the labels, and use the relationship as a likelihood model to label new images.
Specifically, features from pre-labeled image are clustered into clusters and a word
histogram is computed from each cluster as the likelihood model. The idea of their
method can be summarized as follows:

1. Collecting training images with pre-labeled keywords,
2. Divide each image into parts and extract features from each part,
3. Each divided part inherits all words from its original image,
4. Make clusters from all divided images using vector quantization,
5. Accumulate the frequencies of words of all partial images in each cluster, and

calculate the likelihood for every word,
6. For an unknown image, divide it into parts, extract their features, and match the

image parts with the above clusters. Combine the likelihoods of the image parts
and determine which words are most plausible.

The algorithm of the word co-occurrence model is given as follows:

• Collect and label training images. Given a training dataset of n images I = (I1,
I2, …, In) and each image Ii is pre-labeled with a set of semantic words wi:

I;wð Þ ¼ I1;w1ð Þ; I2;w2ð Þ; . . .; In;wnð Þf g

• Obtain the vocabulary of the training images. The semantic vocabulary of the
dataset consists of m words:

w ¼ w1;w2; . . .;wmð Þ

• Divide training images into blocks. Each training image is divided into small
blocks and each block inherits all the annotations from its parent image.

• Vector Quantization (VQ)

– Blocks from all the training images are clustered into v clusters represented by
the centroids c1, c2, …, cv.

– Each cluster ci is represented as a feature vector xi (each cluster is called a
visual word or VW, which is corresponding to a region in the training images):

c ¼ c1; c2; . . .; cvð Þ ¼ x1; x2; . . .; xvð Þ

• Obtain a word histogram in each cluster. Because each block has inherited a
set of words from its parent image, by counting the occurrence of words, a
histogram of words from the vocabulary can be created:
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PðwjjciÞ ¼ PðwjjxiÞ ¼ W1;W2; . . .;Wmð Þ ð7:10Þ

where Wj represents the frequency of word wj in cluster ci, P(wj jci) represents the
likelihood of word wj.

• Annotate an unknown image

– Given an unknown image Iu, it is also divided into small blocks and the blocks
of the unknown image are also clustered into clusters.

– Each unknown cluster is matched with the VWs and the nearest l VWs are
found for the unknown image.

– The matching is done by calculating the distance between each feature of the
unknown image xu and each VW xi: xu � xik k.

– The annotation of image Iu to a semantic word wj (j = 1, 2, …, k) is given by
first summing up of the histograms of matched clusters ci (i = 1, …, l) and then
selecting the top k bins as the annotations:

P w1; . . .;wkjIuð Þ ¼ top k bins
Xl
1

P wjjci
� � !

ð7:11Þ

The co-occurrence annotation method can be illustrated in Fig. 7.2 [1, 2]. There
are two key differences between Figs. 7.2 and 7.1. The first is in the training
module, while the NB builds a model of p(xi|c), the WCC builds a model of p(w|c).
The second difference in the annotation module, while the NB makes a decision
based on MAP, the WCC makes a decision based on top histogram bins which
means an image can be classified into several classes.
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Although the co-occurrence method uses image blocks for the VQ, the blocks
can be replaced with pre-segmented image regions. This is because regardless of
blocks or regions, they are all represented with a feature vector x, and the VQ is
done based on feature vector x.

7.4 Image Annotation with Joint Probability

The word co-occurrence model is a significant development to traditional image
classification, it can be generalized into a joint probability model which is described
in the following:

• Given a training dataset of n pre-annotated images:

I;wð Þ ¼ I1;w1ð Þ; I2;w2ð Þ; . . .; In;wnð Þ

• The semantic vocabulary of the dataset consists of m words:

w ¼ w1;w2; . . .;wmð Þ

• The annotation or association of an unknown image I to a word w in the
vocabulary can be found by the joint probability of P(w, I) or P(w, x), where x is
the feature of I.

• In order to compute P(w, I), a latent variable c is introduced

PðwjIÞ ¼ P w; Ið Þ ¼ PðwjcÞ � PðcjIÞ ð7:12Þ

The computation of conditional probabilities P(w|c) and P(c|I) are given in the
following procedure:

• The training images are clustered into v clusters or VWs (the latent variables):

c ¼ c1; c2; . . .; cvð Þ ¼ x1; x2; . . .; xvð Þ

• An image to be annotated is represented as a histogram or distribution of VWs:

PðcijIÞ ¼ X1;X2; . . .;Xvð Þ ð7:13Þ

where Xi is the frequency of VW xi in image I

• Each cluster is represented as a histogram or distribution of vocabulary words:

PðwjjciÞ ¼ W1;W2; . . .;Wmð Þ ð7:14Þ

where Wj represents the frequency of word wj in cluster ci,
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• Finally, the annotation of image I to a word wj is given by

PðwjjIÞ ¼ PðwjjciÞ � PðcijIÞ ð7:15Þ

As discussed in Sect. 7.2, images can be segmented into regions and represented
as a bag of features for annotation.

• If an image I is represented as a bag of features (pre-clustered): I = {x1, x2,…, xk}
• The conditional probability of P(ci|I) in (7.15) can be computed using MAP:

P cijIð Þ ¼ arg maxcj PðcjjIÞ ¼ arg maxcj PðIjcjÞ � PðcjÞ
� � ð7:16Þ

where

PðIjcjÞ ¼ Pðx1; x2; . . .; xkjcjÞ ¼
Yk
l¼1

PðxljcjÞ ð7:17Þ

The key idea of image annotation based on the joint probability model is the
association of semantic words with visual words. This is achieved through the VQ
process. Once image features are clustered, each cluster (VW) and the semantic
words are bound together or associated, because each image feature inherits the
semantic word(s) from its parent image. This idea can be illustrated in Fig. 7.3.

Fig. 7.3 Association of semantic words with block features
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Once image features are clustered and visual words are generated, two types of
distribution can be created from each cluster: P(x|ci) and P(w|ci). P(w|ci) is the word
distribution in cluster ci, it connects the VWs to the semantic vocabulary. P(x|ci) is
the feature distribution in cluster ci, it connects each VW with each of the images in
the database (Fig. 7.4). By combining these two important information, new image
can be annotated as shown in the above sections.

7.5 Cross-Media Relevance Model

Although VQ is typical in building the likelihood models, models can also be built
“on the fly” by a set of training images which are relevant to the new observation.
The cross-media relevance model (CMRM) [4] provides an alternative method to
the VQ and is another joint probability model.

Given an image which is represented by a set of blobs: I = {x1, x2, …, xm}, the
association of I with concept c is given by the joint probability of p(c, x1, x2,…, xm)
as given below:

pðc; x1; � � � xmÞ ¼
X
J2T

pðJÞ � pðc; x1; � � � xmjJÞ

¼ pðJÞ �
X
J2T

pðcjJÞ �
Ym
i¼1

pðxijJÞ
ð7:18Þ

Fig. 7.4 Association of semantic words with region features
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where

pðcjJÞ ¼ ð1� aJÞ �#ðc; JÞ
Jj j þ aJ �#ðc; TÞ

Tj j ð7:19Þ

pðxijJÞ ¼ ð1� bJÞ �
#ðxi; JÞ

Jj j þ bJ �
#ðxi; TÞ

Tj j ð7:20Þ

where

• J is an image in the training set T,
• aJ and bJ are the interpolation parameters,
• #(c, J) is the number of times concept c appears in J,
• #(xi, J) is the number of times blob xi appears in J,
• #(c, T) is the number of times concept c appears in T, and
• #(xi, T) is the number of times blob xi appears in T.

It can be seen from (7.18), given a new observation I = {x1, x2, …, xm}, CMRM
attempts to find all the relevant images in the training set that have both concept c(p
(c|J) 6¼ 0) and feature xi(p(xi|J) 6¼ 0). A joint probability model is built by aggre-
gating all the models from the relevant images. This is equivalent to build a class
model for concept c “on the fly”. From (7.19) and (7.20), it can be seen that the
performance of this model depends on the choice of the weights aJ and bJ. In
practice, this can be a difficult decision to make.

7.6 Image Annotation with Parametric Model

One of the classic ways of model building is the parametric method using the
expectation-maximization (EM) algorithm. The idea of image annotation with
parametric model is similar to the CMRM method, that is, to build a model for each
of the individual images and aggregate the similar individual models into a class
model. However, instead of combining training and annotation into a single process
as in the CMRM method, parametric model separates training and annotation into
two different processes.

During the training, images in the training set are pre-labeled and pre-classified
into different classes. A class model is then built by aggregating individual image
models in each class. During the annotation, the model of the new image is built
and matched with the class models, and the closest classes are selected as the
annotations. The procedure of parametric method is shown in Fig. 7.5. The algo-
rithm of this method is as follows:
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• Given a set of N training images: I1, I2,…, IN and a set of n classes C1, C2,…, Cn

• Features (e.g., block features) from each training image I are clustered within the
image.

• A Gaussian Mixture Model (GMM) is learned from the clustering using the EM
algorithm:

PðxjIÞ ¼
Xl
i¼1

piIG x; liI ;R
i
I

� � ð7:21Þ

where

• l is the number of components in the mixture model of image I,
• piI is the weight for the ith component of the mixture model,
• liI is the mean of the ith component of the mixture model, and
• Ri

I is the standard deviation of the ith component of the mixture model.
• A Gaussian mixture model for each class Ci is learnt by aggregating (e.g.,
weighted averaging) all the image models within the class:
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Fig. 7.5 Image annotation with parametric model
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PðxjCiÞ ¼
XK
k¼1

pkCi
G x; lkCi

;Rk
Ci

� �
ð7:22Þ

where

• K is the number of components in the mixture model of class Ci,
• pkCi

is the weight for the kth component of the mixture model,
• lkCi

is the mean of the kth component of the mixture model, and

• Rk
Ci

is the standard deviation of the kth component of the mixture model.

• Given a new observation image Iu = xu, the annotation of image Iu is given by the
MAP:

PðCjjxuÞ ¼ bc ¼ arg maxCi
PðCijxuÞ

¼ arg maxCi
PðxujCiÞ � PðCiÞf g ð7:23Þ

The algorithm of the parametric annotation method is illustrated in Fig. 7.5
[2, 5].

7.7 Image Classification with Gaussian Process

In Gaussian mixture, each multidimensional feature vector x = (x1, x2, …, xn) is
regarded as a data point in a Rn space, and the mixture model is built based on the
statistics of the data points in a cluster.

But a multidimensional data x = (x1, x2, …, xn) can also be regarded as a
discretized function f: X ! R and y = f(x) = {xi = f(di) | i = 1, 2, …, n}. A typical
example of such a data is a histogram feature vector. Figure 7.6 shows three nor-
malized histograms (vertical bars) from the same class in red, green, and blue,
respectively. The corresponding functions approximating the three histograms are
shown as colored curves at the top of the histograms.

If we plot all the histogram features f(xi) from a class in a single coordinate
system, we would see all the data fall within a band and form a cluster. Like in the
linear regression which attempts to fit a line to a cluster of data points, we can also
fit a curve to this cluster of data points and use this curve as the model to predict
new instances. This approach is the idea behind the Gaussian Process or GP, which
is demonstrated in Fig. 7.7 [6].
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Now, given a set of data x1, x2, …, xN from a certain class C, and each feature
vector xi is a D-dimensional data point in space xi = (xi1, xi2, …, xiD). A matrix
X = D � N = (d1, d2, …, dD)

T can be created as shown in the following:

X ¼
x11; x21; . . .; xN1
x12; x22; . . .; xN2

. . .
x1D; x2D; . . .; xND

2
664

3
775 ¼

d1
d2
. . .
dD

2
664

3
775 ð7:24Þ

y
1 

0.5

x

Fig. 7.6 Feature vectors shown as functions. Three histograms shown as vertical color bars and
their respective functions shown as colored curves on the top

x

y

Fig. 7.7 A cluster of
multidimensional data (green)
and the approximation
function of the data shown in
pink
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where dj is a jth dimensional vector. Since the elements of each dj are samples from
(or follow) a normal distribution N li; rj

� �
, X is a Gaussian process and

X�Nðlx;KxxÞ, where lX and KXX are the mean and variance which are deter-
mined by (7.25) and (7.26), respectively.

lX ¼
lðd1Þ
lðd2Þ
. . .

l dDð Þ

2
664

3
775 ð7:25Þ

KXX ¼
k d1; d1ð Þ; k d1; d2ð Þ. . .; k d1; dDð Þ
k d2; d1ð Þ; k d2; d2ð Þ. . .; k d2; dDð Þ

. . .
k dD; d1ð Þ; k dD; d2ð Þ. . .; k dD; dDð Þ

2
664

3
775 ð7:26Þ

where k(di, dj) is a kernel function which is typically the covariance function.
To predict a new data or a new set of data X�, X and X� are concatenated and the

concatenated data is a new GP which follows the following normal distribution:

f
X�
X

� 	
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Then, the probability of the new data X� given the observed data X is given by
(7.28)

pðX�jXÞ ¼ N lX� þKX�XK
�1
XX X� lXð Þ;KX�X� �KX�XK

�1
XXKXX�

� � ð7:28Þ

The proof of (7.28) is given in Appendix [7–9].

7.8 Summary

This chapter introduces the first image classification method: Bayesian classifica-
tion. Several important and interesting applications of Bayesian classifier are
described and demonstrated in details, including NB, word co-occurrence model,
CMRM, parametric model, and Gaussian process method. The key features of
Bayesian classifiers can be summarized as follows:

1. Generative. A Bayesian classifier is a typical generative model, it assumes the
distribution or model of likelihood probability is known. This likelihood
probability model is typically obtained through learning from known samples.

2. Intuitive. Compared with many other black-box-based classifiers such as SVM
and ANN, Bayesian classifiers are intuitive, results are easily interpreted by a
human being. The basic idea of the Bayesian method is to use our prior
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