
8Support Vector Machine

To see better, go higher.

One of the key development in recent artificial intelligence (AI) research is the
SVM, which has attracted a large amount of research and has produced good results
in many applications. Because of the so-called “kernel trick”, it has made SVM one
of the most effective and efficient machine learning tools in the literature. In this
chapter, we attempt to do an anatomy of SVM so that readers have a good
understanding of its mechanism.

SVM is basically the combination of both a linear classifier and a k nearest
neighbors classifier (K-NN). Therefore, to understand SVM, we will first introduce
the linear classifier and the K-NN classifier.

We will only focus on two-class classification problem in this chapter. Because,
any classification problem can be converted into a one-vs-all classification, which is
a two-class classification problem.

8.1 Linear Classifier

The Bayesian methods in Chap. 7 are model based, and they can give good decision
if the models are accurate. However, since data distributions are usually unknown,
the models can only be estimated accurately if a large number of training samples
are available. This is especially true when the number of features is large, which is
common for multimedia data.

An alternative approach is to assume that there exists a functional form decision
boundary between each pair of classes, and the parameters of the decision boundary
or discriminant function can be estimated using available training samples. A linear
classifier is one of those approaches.

© Springer Nature Switzerland AG 2019
D. Zhang, Fundamentals of Image Data Mining, Texts in Computer
Science, https://doi.org/10.1007/978-3-030-17989-2_8

179

Suppose the data is represented as a n dimensional feature vector x = (x1, x2, …,
xn), then a linear discriminant function is formulated as

f xð Þ ¼ w0 þw1x1 þw2x2 þ � � � þwnxn ð8:1Þ

where xi are the variables and wi are the coefficients or weights. Assume x0 = 1, f
(x) can be written as

f xð Þ ¼
Xn
j¼0

wjxj ð8:2Þ

Geometrically, f(x) = 0 is a hyperplane in n-dimensional space and f(x) = 0 is
the decision boundary between two classes. A sample data with feature vector x is
classified into one of the classes using the following criterion:

x 2 class 1 if f xð Þ[0
class 2 if f xð Þ\0

�

8.1.1 A Theoretical Solution

The next is to find out the parameters or the set of weights of f(x): w0, w1, w2, …,
wn, which will minimize the number of misclassified samples in a given training set.

A classical way to find the weights is to solve a set of linear equations given a set
of training samples. For an n-dimensional data, n + 1 linear equations or samples to
solve the n + 1 weights are needed. Suppose di = 1 (or di > 0) represents class 1
and di = −1 (or di < 0) represents class 2, and the n + 1 training samples are given
as (xi, di), where

xi ¼ xi1; xi2; . . .; xinð Þ; i ¼ 1; 2; . . .; nþ 1

Then, by substituting (8.2) with each of the training data xi, the set of weights wi

(i = 0, 1, …, n) can be solved using the following n + 1 linear equations:

Xn
j¼0

wjxij ¼ di; i ¼ 1; 2; . . .; nþ 1 ð8:3Þ

180 8 Support Vector Machine

Equation (8.3) can be written in matrix form

1; x11; x12; . . .; x1n
1; x21; x22; . . .; x2n

.
1; xn1; xn2; . . .; xnn
1; xnþ 1;1; xnþ 1;2; . . .; xnþ 1;n

2
66664

3
77775

w0

w1

w2

. . .
wn

2
66664

3
77775 ¼

d1
d2
. . .
dn

dnþ 1

2
66664

3
77775 ð8:4Þ

which in turn can be written as

Xwt ¼ dT

where wT and dT are the transposes of w and d, the solution of w is then given as
(8.5)

wT ¼ X�1dT ð8:5Þ

8.1.2 An Optimal Solution

The above theoretical solution is just based on n + 1 or part of the training samples,
therefore, it is not optimal. An optimal solution is usually given by minimizing the
squared errors of f(x) on the entire training data set of N data (xi, di) and

xi ¼ xi1; xi2; . . .; xinð Þ; i ¼ 1; 2; . . .;N

That is, to minimize the following total squared error:

E ¼
XN�1

i¼0

f xið Þ � dið Þ2

¼
XN�1

i¼0

Xn
j¼0

wjxij � di

 !2 ð8:6Þ

By taking the partial derivative of E on wk (k = 0, 1, 2, …, n) and letting the
partial derivative to be 0: @E

@wk
¼ 0, the following n + 1 linear equations are obtained:

XN�1

i¼0

xik
Xn
j¼0

wjxij � di

 !
¼ 0; k ¼ 0; 1; 2; . . .; n ð8:7Þ

8.1 Linear Classifier 181

which is equivalent to the following:

Xn
j¼0

wj

XN�1

i¼0

xikxij

 !
¼
XN�1

i¼0

xikdi; k ¼ 0; 1; 2; . . .; n ð8:8Þ

By solving the above n + 1 linear equations using the same method as solving
(8.3), a set of weights (w0, w1, w2 …. wn) is obtained which results is an optimal
hyperplane. It can be observed that compared with (8.3), in an optimal solution
algorithm, xij is replaced with

PN�1
i¼0 xikxij, while di is replaced with

PN�1
i¼0 xikdi.

8.1.3 A Suboptimal Solution

Although the solution from (8.8) results in a more optimal decision boundary than
that from (8.5), the solution of (8.8) would involve processing very large matrices
which is computationally expensive and undesirable. This is because multimedia
data usually has very high-dimensional features. An alternative approach is to use
an iterative optimization algorithm to find a suboptimal solution to (8.2). Common
practice is to use an error-driven weight-adaption technique which is basically a
trial-and-error technique. The iterative optimization procedure is given in the
following:

1. Initialize the weights w0, w1, w2 … wn with some small random values
2. Take the next training sample {x, d}= {(x1, x2, …, xn), d}, d = 1 or −1
3. Compute f(x) = w0 + w1x1+ w2x2 + ��� + wnxn
4. If f(x) 6¼ d (a misclassification), update w0 ← w0 + cdk and wj ← wj + cdxj,

j = 1, 2, …, m; where k and c are both positive constants
5. Repeat Steps 2–4 on each of the remaining training samples, until all the

samples are correctly classified or the weights stop to change.

To demonstrate that the weights wi or the hyperplane f(x) are moving in the right
directions, let fnew and fold be the updated value and old value of f(x) respectively.
Because k, c and the feature value xj are all positive, after the update in step 4, all
the weights wj become larger if d = 1 and all the weights wj become smaller if
d = −1. That means, if there is a misclassification, the decision function is updated
according to the following rules:

fnew [fold if d ¼ 1
fnew\fold if d ¼ �1

�

Therefore, in either case, the new hyperplane f(x) is moving in the right direction
with the updated weights, until the misclassified sample is located at the correct side
of the hyperplane.

182 8 Support Vector Machine

A linear classifier can only classify data which are linearly separable. However,
this idea can be extended to build a nonlinear classifier. For example, we can
convert a two-dimensional feature vector (x, y) in xy space to a five-dimensional
feature vector (u1, u2, u3, u4, u5) in a higher dimensional space, where u1;¼

ffiffiffi
2

p
x,

u2 ¼
ffiffiffi
2

p
y, u3 = x2, u4 ¼

ffiffiffi
2

p
xy, u5 = y2. This would be the polynomial kernel

(1 + x + y)2. This is the key idea behind the kernel method which will be discussed
in Sect. 8.3.

8.2 K-Nearest Neighbors Classification

K-nearest neighbors or K-NN is a simple algorithm that stores all available cases
and classifies new cases based on a decision function (e.g., a distance measure).

Given a training dataset D and a distance measure dist:

• (xi, yi), i = 1, 2, …, N
• xi is a training data in Rn

• yi is the corresponding class of the data xi, and yi 2 fcj; j ¼ 1; 2; . . .;Mg
• dist x� xið Þ ¼ x� xik k.

A new observation data x is classified into one of the classes yj using the
following algorithm:

1. Input the new data x
2. Compute the distance of x to all the training samples xi in the dataset: dist(x −

xi)
3. Sort dist(x − xi) (i = 1, 2, …, N) in ascending order and rank all the xi

accordingly: xr1, xr2, …, xrk, …, xrN
4. For the nearest neighbor (NN) classification, classify x to yr1

a. For a K-NN classification, classify x to the majority class yrp among the top
k ranked data: {xr1, xr2, …, xrk}.

Although Euclidean (L2) and city block distance (L1) are a typical choice for the
distance measure, any other distance can be used depending on the applications.
The nearest neighbor (NN or 1-NN) results in too many classes, while K-NN gives
more reliable classification results. This is because the values of k have a smoothing
effect that makes the classifier more resistant to outliers. However, the performance
of a K-NN classifier depends on the choice of k which is usually determined
empirically.

Figure 8.1 demonstrates the comparison between an NN classifier and a K-NN
classifier [1]. It can be seen from the two classification results, in the case of a NN
classifier (after merging), outlier data points create small islands within a class (e.g.,
red point within the green class) and sharp corners on the class boundaries, those
islands, and sharp corners likely lead to incorrect predictions; while the 5-NN

8.1 Linear Classifier 183

classifier smooths over these outliers, which lead to better classification on the data.
However, the 5-NN classifier also causes misclassifications which are characterized
by the blue dots in red region and red dots in green region. There can also be
confusions by the tied votes among the five nearest neighbors (e.g., two neighbors
are red, the next two neighbors are blue, and the last neighbor is green).

This kind of misclassification can be overcome to a certain extent by using the
weighted K-NN. The idea is to give more weight to the neighbors with shorter
distance to the test data than to the faraway neighbors. The commonly used
weighted K-NN is the Gaussian weighted K-NN.

Unlike any other classifiers which are independent of the original training data
once trained, a K-NN classifier is memoryless. If we analog a classifier to a con-
noisseur traveling around the world to judge (classify) different kinds of antiques
for people. While other types of connoisseurs just need to take a toolkit summa-
rizing the key characteristics of the antiques, a K-NN connoisseur will have to carry
every kind of real antiques in his/her collection in order to make a new judgement.
This may sound too cumbersome, however, one of the key advantages of a K-NN
classifier is that it can classify data which are nonlinearly separable. This is the key
idea behind the kernel-based support vector machine (SVM).

8.3 Support Vector Machine

In the previous two sections, we have introduced the linear classifier and K-NN
classifier, both are key to understand SVM.

A linear classifier is simple and once trained, it is like a tool or a machine which
can be used to tell if a data belongs to one of the classes. However, the disad-
vantages of a linear classifier include

• The solution is either not optimal or computationally expensive
• It cannot classify data which are nonlinearly separable

Fig. 8.1 Comparison between NN and K-NN. a The data to be classified; b classification result
from a 1-NN classifier; c classification result from a 5-NN classifier

184 8 Support Vector Machine

A K-NN classifier is also simple and can separate data nonlinearly. However, the
disadvantages of a K-NN classifier include

• It is difficult to choose a k
• Dependence on training data.

Now that we have understood how the linear classifier and the K-NN classifier
behave, we would like to build a classifier which takes advantage of both and
overcomes their disadvantages. This is SVM.

An SVM is basically a binary linear classifier, however, with two prominent
goals to achieve:

• To maximize the margin which separates the two classes (optimal)
• To use only a few training data (or support vectors) to determine the hyperplane
which separates the two classes (efficient)

A kernel-based SVM adds another goal to

• Be able to classify data which are nonlinearly separable

As can be seen, once the three goals are achieve, we would truly build a machine
which combines the advantages of both the linear classifier and the K-NN classifier,
while overcomes their disadvantages.

To formulate SVM, we will start with the simple perceptron and the primal form
of SVM. In the next, the dual form of SVM is introduced, and finally, the kernel-
based SVM is described in details.

8.3.1 The Perceptron

A perceptron is a binary linear classifier which is one of the simplest classifiers.
Given an unknown data, the perceptron simply generates a linear prediction. The
training process is the same as the linear classifier introduced in Sect. 8.1. The only
difference is that a perceptron can do online learning, which means it can process
the training data one at a time instead of having to taking the entire training dataset.
Although it is simple, the perceptron is the key to understand both SVM and
Artificial Neural Network (ANN) later on.

Given a training dataset D:

• D = {(xi, yi), i = 1, 2, …, N}
• xi is a feature vector in n dimensional space: xi = (xi1, xi2, …, xin)
• yi is the corresponding class of the data xi, and yi 2 f�1; 1g
• xi; xj
� � ¼ xi � xj is the dot product between two vectors

8.3 Support Vector Machine 185

A perceptron is a binary linear classifier which is formulated as follows:

1. f(x) = hw; xi + b
2. Let w0 = b and x0 = 1, then the above can be simply written as f(x) = hw; xi
3. h(x) = sign (f(x)) = yi (f(x))
4. Take the next training data xi; yið Þ 2 D
5. if h(xi) � 0, wk+1 ← wk

6. if h(xi) < 0
then wk+1 ← wk+η yi xi, η > 0

7. Repeat from 4

8.3.2 SVM—The Primal Form

8.3.2.1 The Margin Between Two Classes
Continue from the perceptron discussion and its training data assumption.

The perceptron gives us a hyperplane to separate the two classes of data,
however, there are an infinite number of hyperplanes between two classes of data as
shown in Fig. 8.2. The one resulted from the perceptron is just one of them, and it is
nothing optimal. Although an optimal hyperplane was given in Sect. 8.1, it is
optimal only in terms of minimizing the total error, and it is still far from the
optimal hyperplane we perceive.

The optimal or the best hyperplane we perceive is the one separating the two
classes with the maximal margin as shown in Fig. 8.3. That is the hyperplane we
are going to find out.

Assume the two subspaces corresponding to the two classes of data are,
respectively,

w, xh iþ b� 1 for yi ¼ þ 1

w, xh iþ b��1 for yi ¼ �1

H1 H2 H3

Fig. 8.2 Hyperplanes
between two classes of data

186 8 Support Vector Machine

The above two inequalities can be combined into one

yiðhw; xiþ bÞ � 1� 0 ð8:9Þ

The boundaries between the two subspaces are hyperplanes H1 and H2,
respectively,

H1 : hw; xiþ b� 1 ¼ 0 ð8:10Þ

H2 : hw; xiþ bþ 1 ¼ 0 ð8:11Þ

and the hyperplane between H1 and H2 is given as H0:

H0 : hw; xiþ b ¼ 0 ð8:12Þ

The two classes of data and the three hyperplanes separating them are shown in
Fig. 8.4.

Our purpose is not only to find H0 but also to maximize the distance between H1

and H2, which is the margin between the two classes of data. How to work out the
distance between H1 and H2? Here is how it works out.

• Remember in a 2D space, a hyperplane is just a line which is expressed as:
ax + by + c = 0. The constant c is called the intercept, and |c| is associated with
the distance from the origin to the line.

• This is also true in higher dimensional space. For example, in a 3D space, a plane
is given as Ax + By + Cz + D = 0, and |D| is associated with the distance from
the origin to the plane. So on so forth.

• Therefore, the distance between H1 and H2 is equal to the difference between the
distance of each of them to the origin.

HFig. 8.3 The optimal
hyperplane H between two
classes of data

8.3 Support Vector Machine 187

Specifically, based on the theory of geometry, the distance of a point (x0, y0, z0)
to a plane in 3D space: Ax + By + Cz + D = 0 is given as follows:

Ax0 þBy0 þCz0 þDj jffi
A2 þB2 þC2

p ð8:13Þ

Because this is also true for higher dimensional space, accordingly, the distance
from H0 to the origin (0, 0, …, 0) in n-dimensional space is given as

bj j
wj jj j ð8:14Þ

where ||w|| is the magnitude or length of vector w, and the distance from H1 and H2

to the origin (0, 0, …, 0) in n-dimensional space is given by the following two
respectively:

bþ 1j j
wj jj j and

b� 1j j
wj jj j ð8:15Þ

Therefore, by calculating the difference between the two terms of (8.15), the
margin between the two hyperplanes H1 and H2 is obtained as

2
wj jj j ð8:16Þ

The data points which lie on H1 and H2 are called support vectors (marked by
circles in Fig. 8.3), which are both necessary and sufficient to define the boundary
hyperplanes.

Origin

| |

Fig. 8.4 Two classes of data
and the hyperplanes
separating them

188 8 Support Vector Machine

8.3.2.2 Margin Maximization
Therefore, based on (8.16), to maximize the distance between the two subspaces is
equivalent to the following optimization problem:

Minimize : f ðwÞ ¼ 1
2

wk k2¼ 1
2
hw;wi ð8:17Þ

Subject to : giðw; bÞ ¼ yi hw; xiiþ bð Þ � 1� 0; i ¼ 1; 2; . . .;N ð8:18Þ

The above is a constrained optimization problem, and there are a few important
facts to be pointed out [2]:

• b is one of the weights to be found because if we let x0 = 1, then w0 = b
• Equation (8.17) is a paraboloid in n-dimensional space
• A paraboloid has a single global minimum at the bottom
• Equation (8.18) is a hyperplane in n-dimensional space
• The solution to this constrained optimization problem is at the tangent point of
the paraboloid and the hyperplane

• At the tangent point, the normal vectors or gradient vectors of both the paraboloid
and the hyperplane are parallel

• That is, rf ¼ airgi, (i = 1, 2, …, N), where r is the gradient and ai is a
constant.

Based on the above analysis, the optimization problem of (8.17) and (8.18) is
equivalent to combining them into the following Lagrange function and solve
rL = 0 or ∂w, b L = 0:

L w; b; aið Þ ¼ f ðwÞ �
X
i

aigi w; bð Þ ð8:19Þ

L w; b; aið Þ ¼ 1
2
jwj2 �

X
i

ai yi hw; xiiþ bð Þ � 1½ �

¼ 1
2
w � w�

X
i

aiyi w � xi þ bð Þþ
X

i
ai

ð8:20Þ

8.3.2.3 The Primal Form of SVM
From (8.20), we can obtain the primal form of the SVM:

Minimize : L w; b; aið Þ ¼ 1
2w � w�P

i
aiyi w � xi þ bð Þþ P

i
ai

Subject to : ai � 0; i ¼ 1; 2; . . .;N
ð8:21Þ

8.3 Support Vector Machine 189

8.3.3 The Dual Form of SVM

Although the primal form (8.21) let us to find the weights w and a hyperplane
which separates the two classes of data with the maximum margin, the optimization
is too expensive. Because we have to optimize two sets of parameters at the same
time: w and ai, this is very undesirable. Next, we want to make it more efficient.

Since (8.21) is a quadratic function, based on mathematics, at the global minima
of the quadratic function, the gradient or the partial derivatives of L(w, b, ai) are 0.
Therefore, we have

rLðw; b; aiÞ ¼ rf ðwÞ � r
X
i

aigiðw; bÞ
" #

¼ 0 ð8:22Þ

Now let

@L

@w
¼ 0 and

@L

b
¼ 0

This leads to

w ¼
X
i

aiyixi and
X

i
aiyi ¼ 0 ð8:23Þ

Substituting the primal form (8.21) with (8.23) leads to the following dual form
of the SVM:

Maximize : LD ¼P
i
ai� 1

2

P
ij
aiajyiyjhxi; xji

Subject to : ai � 0 and
P
i
aiyi ¼ 0

ð8:24Þ

To see why it has changed from minimization in the primal form to maxi-
mization in the dual form, let us have a good look at (8.24). The value of LD is
determined by the following three cases [2]:

• If the two features xi, xj are completely dissimilar (xi, xj are from different classes
and are very different), their dot product hxi; xji = 0, that means, features from
different classes are far away from the boundaries between two classes don’t
contribute to LD

• If the two features xi, xj are completely alike and from the same class, hxi; xji � 1
and yi yj = 1. Therefore, ai aj yi yj hxi; xji would be positive and this would
decrease the LD. That means, LD downgrades similar features in the same class
but far away from the boundaries between two classes

• If the two features xi, xj are completely alike but from the different class,
hxi; xji � 1 but yi yj = –1. Therefore, ai aj yi yj hxi; xji would be negative, this
would increase LD or maximize it. That means, LD is maximized with similar

190 8 Support Vector Machine

features from different classes or LD is maximized with features on the opposite
boundaries of two classes

To summarize the above analysis, by maximizing LD, the dual form SVM

1. Emphasizes the feature vectors on the opposite boundaries between two classes
2. Ignores or suppresses those feature vectors far away from the boundaries

between two classes.

This is exactly what we want because in terms of finding the hyperplanes sep-
arating the two classes with maximum margin, only those vectors on or close to the
boundaries between the two classes matter most. Those feature vectors are called
support vectors and the classifier defined by support vectors is called a support
vector machine.

8.3.3.1 The Dual Form Perceptron
Because LD is determined by the small number of support vectors on the boundaries
between the two classes, not surprisingly, most of the ai would be zero. Once ai,
i = 1, 2, …, N are solved, the weights for the hyperplane separating the two classes
of data with the maximum margin are given as follows:

w ¼
X
i

ai yi xi ð8:25Þ

Therefore, the weight of the SVM hyperplane is just a linear combination of the
training data, and this is consistent with the weight updating methods used in the
linear and perceptron classifiers introduced earlier.

A set of ai can be estimated using the dual form perceptron:

1. f ðxÞ ¼ hw; xiþ b

¼
X

i
aiyihxi; xiþ b

2. Take the next training data (xj, yj)2 D
3. if yj (Ri ai yihxi; xji + b) � 0

then ai+1 ← ai
4. if yj (Ri ai yihxi; xji + b) < 0

then ai+1 ← ai + η, η > 0
5. Repeat from step 2

8.3 Support Vector Machine 191

8.3.4 Kernel-Based SVM

8.3.4.1 The Dual Form SVM Versus NN Classifier
With the dual form SVM (8.24), we have successfully reduced the primal form
optimization problem to optimizing just one set of parameters: ai, i = 1, 2, …,
N. This is much more efficient than (8.21). However, this is just a small part of the
story about SVM, the more important part of the story is the transform of SVM
optimization from testing hw; xii to testing hxi; xji. This is explained in the
following:

• An n-dimensional data x is a feature vector in space, and geometrically, the dot
product is defined as follows:

hxi; xji ¼ xik k xj
�� �� cos h ð8:26Þ

where h is the angle between the two feature vectors xi and xj
• In practice, the magnitudes of all feature vectors are normalized to unit or 1 so
that they can be fairly matched

• Therefore, the dot production of two feature vector is just cosh
• Because all feature values are positive, h is between 0° and 90°

• For two feature vectors at the same direction or h = 0° (identical), the dot product
is 1: cosh = 1

• For two feature vectors at vertical angle or h = 90° (completely different), the dot
product is 0: cosh = 0

• For two feature vectors at an angle 0° < h < 90° (between similar to different), the
dot product is between (0, 1): 0 < cosh < 1

• Therefore, the dot product cosh actually measures the similarity between the two
feature vectors, or, the dot product is just the cosine distance between the two
feature vectors

Equipped with this key finding, now let us go back to (8.24):

Maximize LD ¼
X
i

ai � 1
2

X
ij

ai aj yi yjhxi; xji

It is equivalent to

Minimize
X
ij

ai aj yi yjhxi; xji ð8:27Þ

Because hxi; xji is just the distance between xi,and xj, by recalling what has been
discussed in the K-NN section, we can see that (8.27) is just the weighted nearest
neighbors classification.

192 8 Support Vector Machine

Now, if we look at the dual form perceptron at the end of Sect. 8.3.3, the
connection between SVM and K-NN is even clearer. The dual form classifier is
given as (8.28)

f ðxÞ ¼
X
i

aiyi hxi; xiþ b ð8:28Þ

The classification of each training data xj is done by testing

yi
X
i

aiyihxi; xjiþ b

 !
� 0; j ¼ 1; 2; . . .;N ð8:29Þ

Again, this is just a weighted nearest neighbors classifier.
This is a significant development, because, by using the dual form, we not only

make the SVM more efficient but also make it a nonlinear classifier.

8.3.4.2 Kernel Definition
These are some of the key points obtained from the above:

• The dot product is a kind of distance
• The dual form SVM is a kind of weighted nearest neighbors classifier
• The weighted nearest neighbors classifier is a nonlinear classifier

Now that we understand how an important role the dot product plays in the dual
form SVM, we can extend this idea to any function behaves like a dot product.

It turns out the dot product of data points can be generalized as kernelling. Any
function K(x) which has the following property can be regarded as a kernel

K x1; x2ð Þ ¼ hU x1ð Þ;U x2ð Þi ð8:30Þ

where U(x) is a function transforming feature vector x in one space Rm to another
higher dimensional space Rn (n > m). From the definition, a kernel behaves like a
dot product, it takes two feature vectors as input and maps the two vectors to a
scalar or a real value. The difference of a kernel from a dot product is that a kernel
do the dot product at a higher dimensional space, called the Hilbert space. We will
explain the benefit of doing this.

Not surprisingly, with this definition, the dot product itself is a kernel because

Kðx; yÞ ¼ hx; yi ¼ hUðxÞ;UðyÞi ð8:31Þ

where U(x) = x.

8.3 Support Vector Machine 193

Given a kernel, the kernel-based SVM can now be written as

f ðxÞ ¼
X
i

aiyiKhxi; xiþ b ð8:32Þ

The questions now are:

1. Are there any other kernel functions than the dot product?
2. How useful is a kernel?

The answer to the first question is yes, there are many such kinds of kernel
functions. Common kernel functions used in multimedia data classification include
the following:

1. Quadratic Kernel

Kðx; yÞ ¼ hx; yi2 and ½1þhx; yi�2 ð8:33Þ

2. Polynomial Kernel

Kðx; zÞ ¼ \x; y[d and ½1þ\x; y[�d; d[2 ð8:34Þ

3. Radial Basis Function (RBF) Kernel

Kðx; yÞ ¼ e�c x�yj jj j2 ; c[0 ð8:35Þ

To demonstrate these functions having the kernel property of (8.30), let us
assume x and y are in R2 and x = (x1, x2), y = (y1, y2).

For hx; yi2:

hx; yi2 ¼ x1; x2ð Þ � v1; y2ð Þ½ �2¼ x1y1 þ x2v2ð Þ2
¼ x21y

2
1 þ x22y

2
2 þ 2x1x2y1y2

¼ hðx21;
ffiffiffi
2

p
x1x2; x

2
2Þ; ðy21;

ffiffiffi
2

p
y1y2; y

2
2Þi

ð8:36Þ

or ¼ hðx21; x1x2; x2x1; x22Þ; ðy21; y1y2; y2y1; y22Þi
¼ hUðxÞ;UðyÞi ð8:37Þ

where U xð Þ ¼ x21;
ffiffiffi
2

p
x1x2; x22

� �
or ðx21; x1x2; x2x1; x22Þ is a function which maps a 2D

feature vector to a 3D or 4D feature vector. Therefore, hx; yi2 is a kernel, and so
is hx; yid when d > 2.

194 8 Support Vector Machine

For (1þ x � y)2, we have:

1þ x � yð Þ2 ¼ 1þ x1; x2ð Þ � y1; y2ð Þ½ �2

¼ 1þ x1y1 þ x2y2ð Þ2
¼ 1þ 2x1y1 þ 2x2y2 þ 2x1x2y1y2 þ x21y

2
1 þ x22y

2
2

¼ hð1;
ffiffiffi
2

p
x1;

ffiffiffi
2

p
x2; x

2
1;

ffiffiffi
2

p
x1x2; x

2
2Þ; ð1;

ffiffiffi
2

p
y1;

ffiffiffi
2

p
y2; y

2
1;

ffiffiffi
2

p
y1y2; y

2
2Þi

¼ hUðxÞ;UðyÞi
ð8:38Þ

where UðxÞ ¼ 1;
ffiffiffi
2

p
x1;

ffiffiffi
2

p
x2; x21;

ffiffiffi
2

p
x1x2; x22

� �
is a function mapping a 2D feature

vector to a 6 dimensional feature vector. Therefore, (1þ x � y)2 is also a kernel, so is
(1þ x � y)d for d > 2.

In general, a quadratic kernel hx; yi2 transforms an n dimensional vector x = (x1,
x2, …, xn) to vector in n(n + 1)/2-dimensional space:

U : x ! ðx21; x22; . . .; x2n; x1x2; x1x3; . . .; x1xn; x2x3; . . .; x2xn; . . .; xn�1xnÞ ð8:39Þ

For RBF e�c x�zj jj j2 , again assume x and z are in 2D, since

x� zk k2 ¼ x1 � z1ð Þ2 þ x2 � z2
� �2

¼ x21 þ z21 � 2x1z1 þ x22 þ z22 � 2x2z2

Without loss of generality, let c = ½, then we have

e�c x�zj jj j2 ¼ e�
1
2 x21 þ z21�2x1z1 þ x22 þ z22�2x2z2ð Þ

¼ e�
1
2 x21 þ x22ð Þe�1

2 z21 þ z22ð Þe x1z1 þ x2z2ð Þ

¼ e�
1
2 xj jj j2e�

1
2 zj jj j2ehx;zi

¼ Cehx;zi

¼ C
X1
n¼0

hx; zin
n!

Taylor expansion of exð Þ

¼ C
X1
n¼0

Kpoly nð Þ x; zð Þ
n!

ð8:40Þ

where C ¼ e�
1
2 xj jj j2e�

1
2 zj jj j2 is a constant because feature vector are normalized to unit

length, and Kpoly nð Þ x; zð Þ is a polynomial kernel [3]. Therefore, the RBF is a kernel

8.3 Support Vector Machine 195

because the sum of kernels is also kernel (see the following). Equation (8.40) shows
that the RBF maps a vector into a space with infinite dimensions.

8.3.4.3 Building New Kernels
It can be shown that the following rules are true:

1. The sum of two kernels is also a kernel

Kðx; yÞ ¼ K1ðx; yÞþK2ðx; yÞ ð8:41Þ
2. A scalar times a kernel is also a kernel

Kðx; yÞ ¼ aK1ðx; yÞ ð8:42Þ
3. The product of two kernels is also a kernel

Kðx; yÞ ¼ K1ðx; yÞ � K2ðx; yÞ ð8:43Þ

Therefore, by using these rules and existing kernels, we may build more kernels
for different applications.

8.3.4.4 The Kernel Trick
Now that we have defined the kernels and understood their behaviors, the next is to
answer the second question we mentioned earlier. That is, why kernels or why we
transform a feature vector to a higher dimensional space? It appears the dual form
SVM is good enough because it not only gives us a SVM but also let us do
nonlinear classification. So what is the benefit of using kernels?

There are two reasons to use a kernel instead of just the dot product.

• One is to transform nonlinear data in lower dimensional space to linear data in
higher dimensional space so that they can be separated linearly using the SVM.

• The other is to have more and better choices of distance measurement than the dot
product, so as to improve the performance of an SVM.

To demonstrate how a kernel can transform nonlinear data into linear data, we
will use the quadratic kernels as examples.

Consider the following 1D binary data (red and green dots) which is a nonlinear
data because it cannot be separated by a point or a line.

x

196 8 Support Vector Machine

Now map each of the samples using the following function:

U : x ! x; x2
	
 ð8:44Þ

U is a quadratic mapping, it transforms a 1D line into a 2D parabola:

x

x

By transforming the 1D data into a 2D space, now the data in 2D space can be
separated using a line (blue) or linearly separable. This is exactly the first reason for
using kernel. This phenomenon can also be demonstrated using a 2D nonlinear data
(Fig. 8.5) [4]. By using the following mapping function to map the 2D data on the
left of Fig. 8.5 to a paraboloid in 3D space, the data can now be separated using a
2D plane and is linearly separable:

U : x1; x2ð Þ ! ðx21;
ffiffiffi
2

p
x1x2; x

2
2Þ ð8:45Þ

Because the dot product is kind of distance measure, therefore, all kernels
behave like a distance measure. Just like a good distance measure is crucial to a
classifier, the choice of a good kernel can affect a classifier significantly. This is the
reason why a kernel-based SVM is always better than an SVM just using the simple
dot product.

(a) (b)

Fig. 8.5 Mapping of nonlinear data to linear data in higher dimensional space. a An original
nonlinear data in 2D space; b transformed data in 3D space using a quadratic mapping function u

8.3 Support Vector Machine 197

Although the use of kernel gives us the advantage to do nonlinear classification,
the explicit mapping from a lower dimensional space to a higher dimensional space
is undesirable and can be expensive in terms of computation, given the fact that a
feature vector usually has high dimension. Furthermore, data representation using
very high dimension in Hilbert space is inefficient too.

Fortunately, the mapping does not need to be done explicitly. So long it is a
kernel, it implicitly maps a data to one in another space which is linearly separable.
Put the other way, a kernel is just a dot product (implicit) regardless the space where
the dot product is done, and according to (8.32), a kernel SVM is just a weighted
nearest neighbors classifier by which a data can always be separated nonlinearly.
Therefore, all we need to do for a kernel SVM is just to replace the dot product with
a kernel. This is called the kernel trick.

To further improve the efficiency, in practice, an N � N kernel (or Gram) matrix
is precomputed for a dataset of N elements before the actual learning, so that there is
no need to recompute the dot products at every iteration of the optimization.
A kernel matrix K has the following properties:

• K is a positive definite matrix
• Kði; jÞ ¼ K xi; xj

� � ¼ hU xið Þ;U xj
� �i (implicit dot product in higher dimension

space)
• K is symmetric, or K(i, j) = K(j, i)
• K(i, j) measures the similarity between ith and jth training samples in feature
space

K =

K(x1, x1) K(x1, x2) K(x1, x3) ……. K(x1, xN)

K(x2, x1) K(x2, x2) K(x2, x3) ……. K(x2, xN)

K(x3, x1) K(x3, x2) K(x3, x3) ……. K(x3, xN)

……. ……. ……. ……. …….

K(xN, x1) K(xN, x2) K(xN, x3) ……. K(xN, xN)

8.3.5 The Pyramid Match Kernel

A well-designed kernel is crucial to an SVM classifier. Conventional kernel design
is independent of the feature itself. However, the selection of a kernel for a

198 8 Support Vector Machine

particular type of features is difficult because there is no natural connection between
a feature and a kernel. Consequently, the selection of kernel for an SVM classifier is
often arbitrary or empirical at best. The Pyramid Match Kernel or PMK [5] is a
method to design a kernel which matches the specific type of image features.

The idea is to extract a pyramid histogram feature at different level of resolutions
and build a kernel using a weighted sum of histogram intersections. The idea of the
PMK is described in details in the following:

• Start with image X itself as level 0 and the total number of levels is L.
• Divide image into grids at different levels of resolutions. The grid at level l has a
total of 2l x 2l = 4l cells, with 2l cells along each dimension.

• A histogram is computed for each block at each level of resolutions.
• Histograms at each level l are given a different weight.
• The weighted histograms from all levels are concatenated as the pyramid his-
togram of the image.

• A kernel of weighted histogram intersection is built for the SVM.

K X; Yð Þ ¼
XL
l¼1

alk
l Xm; Ymð Þ ð8:46Þ

where Xm and Ym are two weighted pyramid histograms and k is the histogram
intersection.

• The idea is illustrated in Fig. 8.6 [5].

Let Xl and Yl stand for the histograms of X and Y at level l, then the number of
matches at this level is given by the histogram intersection

kl ¼
X4l
i¼1

min½Xl ið Þ; Yl ið Þ� ð8:47Þ

where l = 0, 1, 2,…, L. kl at lower levels represent global features while kl at higher
levels represent local features. Since global features can cause more confusion than
local features, global features should be given less weights than local features.
Therefore, the weight given to level l is set to 1/2L−l, which is inversely proportional
to the block width at that level. Since the total weights must sum to 1, the combined
matching result between two images is given in (8.48).

K X; Yð Þ ¼ 1
2L

k0 þ
XL
l¼1

1
2L�lþ 1

kl ð8:48Þ

8.3 Support Vector Machine 199

The next is to prove (8.48) is a kernel. Because a linear combination of kernels is
also a kernel, we just need to prove each histogram intersection kl is a kernel.

Let Xm and Ym be the histograms of two images or image blocks X and Y. Each
image has N pixels. We can then represent Xm and Ym as two N x m dimensional
binary vectors [6].

x1 x2 xm

Xm = (1, 1, …, 1, 0, 0,…, 0; 1, 1, …, 1, 0, 0, …, 0; …; 1, 1, …, 1, 0, 0, …, 0)

N – x1 N – x2 N – xm

ð8:49Þ

y1 y2 ym

Ym = (1, 1, …, 1, 0, 0,…, 0; 1, 1, …, 1, 0, 0, …, 0; …; 1, 1, …, 1, 0, 0, …, 0)

N – y1 N – y2 N – ym

ð8:50Þ

With the above representation, the histogram intersection of Xm and Ym is given
as the dot product of the two histograms:

k Xm; Ymð Þ ¼ Xm � Ym ð8:51Þ

Therefore, kl is a kernel and as a result, K(X, Y) in (8.48) is also a kernel.

Fig. 8.6 Computation of pyramid match kernel. An image is divided into three levels of grids. At
each level of the grid, a histogram is computed for each block of the grid. Histograms at each level
are given a weight and the weighted histograms are then concatenated as a feature vector

200 8 Support Vector Machine

A histogram is a statistical feature, it captures the feature distribution in an image
or an image block. Histogram intersection tells how much area two distributions
share, the more area they share, the more similar the two distributions are. Fig-
ure 8.7 shows an example of histogram intersection. The shared region is about
33% of the two histograms, therefore, the similarity between the two histograms is
about 33%.

8.3.6 Discussions

Kernel-based support vector machine is essentially a training-based nearest
neighbor classifier. The use of dot product transforms the support vector machine
into a nonlinear nearest neighbor classifier. Traditional nearest neighbor has two
limitations, the determining of k and it does not support training. However, if the
training set is sufficiently large, both limitations can be overcome. First, the k can be
determined empirically. The second limitation can be overcome by determining the
class boundary with a piecewise linear approximation. For example, the class
boundary of the following data can be approximated by 5 hyperplanes, which can
then be used to classify new data (Fig. 8.8).

Although the piecewise linear boundary given by the K-NN is not optimal as the
boundary provided by the kernel-based SVM, in terms of classification, the
effectiveness of the two classifiers can be comparable. However, it would not be as
efficient as SVM.

Fig. 8.7 Histogram
intersection of two normal
distributions

8.3 Support Vector Machine 201

8.4 Fusion of SVMs

8.4.1 Fusion of Binary SVMs

An SVM is essentially a binary classifier. However, automatic image classification
and annotation needs a multi-class classifier. The most common approach is to train
a separate SVM for each concept c and each SVM generates a decision value dc(x).
During the testing phase, the decisions from all classifiers are fused to obtain the
final class label of a test image. Figure 8.9 demonstrates this two level fusion
process [7, 8]. The first level consists of multiple binary classifiers and the second
level fuses the decisions from the first level classifiers.

Fig. 8.8 Approximation of
class boundary using
piecewise hyperplanes

SVM for
class, c1

SVM for
class, c2

SVM for
class, cn

for Image x

Classification by
individual SVM

Fusion decisions from
multiple SVMs

class ĉ

Input Images

x

Fig. 8.9 A fusion of binary SVM classifiers

202 8 Support Vector Machine

8.4.2 Multilevel Fusion of SVMs

The above approach can be regarded as a base level fusion, it works well for a small
number of concepts. The quality of classification degrades with the increase of the
number of concepts due to the increase of the noise and class imbalance in the
training data. To be more robust, multiple sets of base level fusion of SVMs can be
merged to make a more powerful fusion as shown in Fig. 8.10 [7, 8]. Each set of
SVMs in level 1 and level 2 is similar to the base level fusion shown in 8.9 and
independently classifies an input image, the final decision is fused from the deci-
sions of all the individual sets at level 3.

The key advantage of using multiple sets of SVMs is to learn a more accurate
and robust classifier using different types of SVMs, such as classification SVMs,
regression SVMs, SVMs with/without soft margins, etc.

8.4.3 Fusion of SVMs with Different Features

Fusion of classifiers can also be done with combination of different types of fea-
tures. For example, both global and local features can be used to train two different
sets of SVMs at level 1 as shown in Fig. 8.11 [7, 8]. The results from the two sets of
SVMs are then fused in two steps. First, decisions of each concept made by each set

Classifier set 1

Classifier set m

Level 1 Level 2

Decision
fusion from
all m sets

Class
label

Level 3

Decision
fusion

SVM for
class, c1

SVM for
class, c2

SVM for
class, cn

Decision
fusion

SVM for
class, c1

SVM for
class, c2

SVM for
class, cn

(decision1)

(decisionm)

Input Images

x

Fig. 8.10 A 3 levels fusion of SVMs

8.4 Fusion of SVMs 203

of SVM are fused at level 2. Next, the final decision is made using a maximization
at level 3.

Although the fusion methods discussed in this section are shown as fusion of
SVMs, they can also be applied to fusion of different types of classifiers such as
Bayesian, ANN, DT, etc.

8.5 Summary

SVM is basically a supervised linear classifier which divides a dataset into two
classes with a hyperplane in data space. However, different from an ordinary linear
classifier, it offers an optimal hyperplane which separates two classes of data with
maximum margin between them. The data points make the hyperplane are called
the support vectors. SVM works by repeat guessing with candidate hyperplanes
until the optimal hyperplane is found.

The biggest progress of SVM is the kernel-based SVM which achieves non-
linearity without the use of networking like ANN. Nonlinearity of SVM is achieved
through transforming data into higher space so that they can be separated linearly.
Due to the kernel trick, this transformation is even unnecessary so long as the
distance is a kernel. This makes SVM is very efficient compared with ANN.

However, SVM is essentially a binary classifier or non-probabilistic classifier.
This makes it less robust than other probabilistic classifiers such as Bayesian
classifiers and DT. In addition, a multi-class SVM needs to be achieved through
fusion or assembly.

Decision fusion
for class, c1

Class
label

Global
representation

Local
representation

SVM for
class, c1

SVM for
class, c2

SVM for
class, cn

SVM for
class, c1

SVM for
class, c2

SVM for
class, cn

Decision fusion
for class, c2

Decision fusion
for class, cn

Level 1 Level 2 Level 3

Final decision
fusion

Input Images

x

Fig. 8.11 A 3 levels class-by-class fusion of SVMs with both global and local features

204 8 Support Vector Machine

