Law of nature is The Way.

9.1 Introduction

When comes to learning and classifications, no other tool is more efficient and
powerful than human brains. Therefore, there is sufficient motivation to design a
machine learning tool which simulates human brains. This is further encouraged by
the recent research findings on human brain from both cognitive science and
biology. It is believed that a human brain is consisting of 10s of billions of neurons
interconnected into a sophisticated network. The neurons in a brain are organized
into functional units or regions, such as regions for visual, auditory, motion, rea-
soning, speech, etc. An individual neuron is shown in Fig. 9.1.

It is found that a neuron receives inputs from its dendrites, processes them in the
cell body, and transmits the output signal to other neurons through its axon. The
inputs the neuron received can be either excitatory or inhibitory. When there are
more excitatory inputs than inhibitory inputs, the neuron is activated and a signal is
transmitted out through the axon; otherwise, no signal is generated.

Then, neurons in many regions of a human brain are further organized into
layers to create a layered network. Neurons from one layer usually receive inputs
from neurons in an adjacent layer. Connections between layers are mostly in one
direction, moving from low-level layer sensors like eyes or ears to higher coordi-
nation and reasoning layer [1].

With these understandings of human brains and neurons, it is possible to design
artificial neurons and an artificial neural network or ANN.
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- Dendrites

Terminals

Cellbody ; Aon

Fig. 9.1 A neuron of human brain

9.2 Artificial Neurons

The design of an artificial neural network starts with the modeling of artificial
neurons. From the above understandings, a neuron is basically a unit which receives
inputs and generates an output. Specifically, a biological neuron consists of three
components: the inputs (dendrites), an activation or processing unit (cell body) and
an output (axon). Electronically, these three components can be respectively rep-
resented as a set of inputs x;, a weighted sum of the inputs X, and a threshold of the
weighted sum. The alignment of an electronic neuron and a biological neuron is
shown in Fig. 9.2.

The weighted sum and the thresholding are usually merged into a single acti-
vation unit and the axon is replaced with an output signal. Therefore, the simplified
artificial neuron is shown in Fig. 9.3.

It turns out that an artificial neuron is just a binary linear classifier. Given an
input X = (x1, x, ..., X,), a weighted sum X is calculated and compared with a
threshold 7:

Dendrites
Terminals

Fig. 9.2 The alignment of an artificial neuron with a biologic neuron
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Fig. 9.3 The modeling of an Input
artificial neuron X,

Output y

Activation

=wixi+waxo+ - +wpx, >T (9.1)

If ¥ > T, the neuron is activated and an output signal y is sent out. In other
words, the activation of the neuron or output y is based on the following rule:

1 £>T
y‘{o T<T 5:2)

It is more convenient to combine both £ and T and rewrite (9.1) as follows:

D=X-T=wxi1+wxa+ - +wx,—T

(9.3)
= —T+wixi +waxy + - + Wik

For notation purpose, let wg xo = =T which represents a constant and xo = 1,
then (9.3) becomes
D = woxg +wix; +waxy + - +Fwex, (9.4)

And (9.2) becomes

1 D>0
y‘{o D<0 (5:3)

We can use this artificial neuron to do many simple linear classifications. One of
them is to simulate the logic gates, such as the AND, OR, NAND, NOR, etc.

9.2.1 An AND Neuron

Let us start with the AND gate, the AND function is given in Table 9.1.

Now, if we set the activation or threshold value as T = 1.5 (or any value between
1 and 2), only input (1, 1) will be activated, this is exactly what we want. Therefore,
the classifier for the AND function is given as follows:
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Table 9.1 AND gate

Input Output Sum
X1 X2
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 2
Fig. 9.4 The data of AND 4
can be separated by a single N
line -1.5 +x; +x, =0 :
1 0 1
01 0 0 \‘\\—»—1.5+x|+x2:0
T T >
0 1 i
Fig. 9.5 The neuron which 1
implements the AND function s
X1 1 y
1
X2
y=—154x+x (96)

In space, the classifier of (9.6) is represented by the following hyperplane which
is a line in this case:

—154x+x=0 (9.7)

The AND data and the linear classifier is shown in Fig. 9.4. The neuron which
implements the AND function is shown in Fig. 9.5 [1].

9.2.2 An OR Neuron

Similarly, the classifier of an OR function and the neuron that implements the OR
function are shown in Figs. 9.6 and 9.7, respectively.

An artificial neuron is called a node in an artificial neural network and is usually
represented by a circle.
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Fig. 9.6 The data of OR can A
be separated by a single line
—05+x +x=0 X2
1 1 1
01 0 o1
—> -05+x1+x=0
T T T >
0 1 !
Fig. 9.7 The neuron which 1
implements the OR function 0.5
X1 1 y
1
X2

9.3 Perceptron

The neuron we designed above can do binary and linear classification; however,
both the weights and the threshold are predetermined by a human designer. A bi-
ological neuron of a human brain, on the other hand, can learn from new instances
and memorize. It would be desirable that an artificial neuron can also learn and
memorize. This is done by feeding the neuron with a set of known data or
pre-labeled data and learn the weights by using certain criterion or algorithm such
as minimizing the total error.
From (9.4), the decision function of a neuron is given as follows:

Y =wo+wix; +waxy + -+ +wx, (9.8)

To train the neuron:

e A training set S = {(x4, ¥o), ¢ = 1, 2, ..., N} is collected,
e where y, is the desired output of gth sample feature vector X, = (X1, Xg2, .-, Xgn)-
e The training is then to minimize the squared error or MSE:

N
E=E(wi,wa,..,w,) = (Yq—yq)2 (9.9)

g=1

N —

e where Y, = wo + Wi Xg1 + Wa Xpo + - + Wy, Xgp.
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The minimization follows the steepest descent direction which is given by the
gradient vector of

( OE OF OE 8E> (9.10)

Owy’ Owy’ w7 0w,

If a sample is misclassified and the actual output Y is different from the correct
output y, we would want to change the weights so that E is minimized. Therefore,
the steepest descent algorithm to minimize E is given by the following algorithm:

1. Choose an initial weight set of wy, wy, wy, ..., w, and a positive constant c.
2. Fori=0,1,2, ..., n, compute the partial derivatives of OE/0w; and let w; = w;
— c(OE/Owy).

3. Repeat step 2 until wy, wy, wy, ..., w, stop to change.

By combining (9.9) and (9.10), the partial derivatives OE/Ow; in the above
algorithm is given by

OFE
%:(Yq_yq)th i:O>172>"'7n (911>

Therefore, the MSE learning algorithm of a perceptron is given as follows:

1. Choose an initial weight set of wg, wy, wa, ..., w, and a positive constant c.
2. For each of samples g = 1, 2, ..., N, compute ¥, = Z?:o WiXgi.

3. Let wy=w; —c(Y, —y)x, fori=0,1,2, ..., n

4. Repeat steps 2 and 3 until wg, wy, wo, ..., w, stop to change.

9.4 Nonlinear Neural Network

The perceptron is essentially a two-layer neural network with an input layer and an
output layer, it can be trained to classify any linear data which can be separated by a
hyperplane. However, for nonlinear data such as XOR (Fig. 9.8) and other data
with convex data regions (Fig. 9.9), they cannot be separated by a single hyper-
plane in space, and consequently they cannot be classified by a perceptron.

Although a convex data region in space (a region is convex if any two data
points can be connected by a line segment inside the region) cannot be separated by
a single hyperplane, its boundary can be approximated by the intersection of a finite
number of hyperplanes. For example, the XOR data in Fig. 9.8 can be separated by
the following two half planes in 2D space:

—054+x1+x >0 and —1.5+x +x<0 (912)
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Fig. 9.8 Outputs of an XOR A

cannot be separated by a

single line in 2D space X2
1 o1 0
0 0 1

v

0 1 o
Fig. 9.9 The convex data
region in the center cannot be
separated by a single line in XX X X X X X
2D space
o o o
X o0 0 oo X

X X X X X X X

The two neurons represent the two half planes in (9.12) which are given by
—054+x1+x >0 and 1.5-x—x >0 (9.13)

Now, by AND(ing) (Fig. 9.5) the two neurons of (9.13), a neural network with a
middle layer or hidden layer is created which can separate the XOR outputs. The
neural network with hidden layer is shown in Fig. 9.10 [1].

This idea of three-layer neural network can be easily extended to classify any
generic convex nonlinear data like the one shown in Fig. 9.9. All we need now is
more nodes in the second layer or middle layer (Fig. 9.11). Usually, a small number
of nodes in the middle layer are sufficient to separate a convex region; however,
more middle layer nodes produce a smoother region boundary.

By extending the above idea of classifying convex nonlinear data using neural
network with a hidden layer, it is also possible to classify non-convex data using
neural network. This is because a non-convex region can always be approximated
by the union of a finite number of convex regions.
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X1

X2
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Fig. 9.10 A three-layer neural network to implement XOR. The two linear classifiers at the

hidden layer are ANDed at the third layer

Fig. 9.11 A three-layer neural network with a hidden layer which can classify generic convex

nonlinear data

Fig. 9.12 A non-convex
data region (black dots) is

approximated by three convex
regions

Therefore, it is possible to create a number of convex nodes in the third layer
using the method discussed above and combine those convex nodes in the third

layer using a logic OR in the fourth layer.

For example, the non-convex data region (black dots) in Fig. 9.12 can be
approximated by three convex data regions, which can then be classified using a

four-layer neural network shown in Fig. 9.13.

This indicates that any nonlinear data can be classified by a four-layer neural

network.
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Fig. 9.13 A four-layer neural network which can classify any nonlinear data

9.5 Activation and Inhibition

It should be noted that the activation or threshold function is crucial to a neural
network, because it is shown that any neural network without thresholding is
equivalent to a two-layer network which cannot separate nonlinear data. However,
the binary threshold function is not desirable because it is not continuous. This
non-continuity can cause the network to take a very long time to converge or even
not converge. This is because the gradients from the MSE are differential values and
are small, so the changes in the weights are also small. As the result, the small
changes to the weights are usually not enough to pass the threshold or generate an
output signal.

9.5.1 Sigmoid Activation

It is desirable to have a continuous activation function which changes continuously
from O to 1 instead of jumping from O to 1. Among the many proposed continuous
activation functions, the most widely used is the sigmoid function. The S-shaped
sigmoid function is defined as (9.14) and the shape of the function is shown in
Fig. 9.14.

Fig. 9.14 Sigmoid function R

1+e~s

0.5

0 activation
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The R(s) function guarantees an output signal while preserving the thresholding
functionality of an activation function.

1
R(s) = 9.14
() =17 (9.14)
The R(s) function has the following important properties:
I. limy__R(s) =0
2. limy R(s) =1
3. RO)="
dR
4. —=R(1 —R 9.15
CC=R(-R) (9.15)

This final property has a convenient use in the following backpropagation
algorithm. R(1 — R) is close to O at both ends of region (0, 1).

9.5.2 Shunting Inhibition

It is known that a biological neuron can be either excitatory or inhibitory. An
inhibitory signal prevents impulse from arising in the receiving neuron. This
inhibitory phenomenon can be represented mathematically as reducing the excita-
tory potential by division. This is called shunting inhibitory or SI. The idea is to
learn a dual set of weights D; and divided the original output of a neuron with the
dual output adjusted by a decay factor. An SI neuron is illustrated in Fig. 9.15 [2].

Fig. 9.15 A shunting inhibitory neuron
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Mathematically, the output from an SI neuron is given by (9.16) [2].

8> wixj+b)

- d+f(> ;- Dixj+a) (9.16)

Z

where

e 7 is the output of the shunting neuron,

e x; is the jth input,

e C; and D; are the connection weights of the jth input,
® a = wgxp and b = Dyx, are biases,

e d is the passive decay rate,

e fand g are activation functions,

e 1 is the number of inputs from the previous layer,

o d+f(> 1 Dxj+a) > 0.

An ANN designed with SI neurons is called an SIANN. The key to an SI neural
network is to use different activation functions f and g in a layer so that only the
strongest neurons are activated. Experiments show that when f and g are hyperbolic
tangent function and exponential function, respectively, the network has better
convergence.

9.6 The Backpropagation Neural Network

9.6.1 The BP Network and Error Function

One of humans’ great learning skills is learning from mistakes or errors, this is
because the mistakes/errors provide important feedback to improve the original
learning process. Unfortunately, the conventional ANN described above does not
provide this function. However, this function can be simulated in a neural network
by using the backpropagation algorithm. The idea is to add another process so that
the outputs in the final layer are used as feedback to the previous layer to update the
weights, and repeat this feedback until the input layer.

Therefore, a backpropagation neural network or a BP-ANN consists of two
major processes: (1) a conventional feedforward process which computes outputs at
each layer starting from the input layer; (2) a backpropagation process where the
weights are updated at each layer starting from the output layer, an attempt to
improve the classification accuracy.

In order to formulate the backpropagation algorithm, the following notations are
defined:
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Fig. 9.16 A K-layer backpropagation neural network

e k denotes the kth layer of a network: £k = 0, 1, 2, ..., K. Layer O is the input and
layer K is the output.

e M, denotes the number of nodes at layer k, k =1, 2, ..., K.

® X = (x1, X2, ..., X,,) stands for a training sample data.

. WZ stands for the weight of connection between node i at layer k — 1 and node j at
layer k, k=1,2, ..., K.

o nett = 371" whyk=! stands for the output or the weighted sum of jth node of
layer k,j=0,1,2, ..., My, k=1,2, ..., K.

. y}‘ = R(net}‘) stands for the activated or thresholded output from the jth node of
layer k,j=0,1,2, ... M, k=1,2, ..., K.

The notations are shown in the following backpropagation neural network.

The BP-ANN uses the same MSE and steepest gradient descent optimization as
in the conventional ANN described earlier from (9.9) to (9.11). Assume ¢; is the true
output of node j at the final layer, and then the total squared error of the BP network
in Fig. 9.16 is given by (9.17).

Mg
E= %Z (yf - tj)z (9.17)
=1

The backpropagation algorithm starts from estimating and updating the weights
of the final layer K, and then propagates the same estimating and updating pro-
cedure back to layer K — 1, K — 2, ..., until layer 1.
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9.6.2 Layer K Weight Estimation and Updating

e The weights of layer K are given by wg, i=1,2, ..., Mg_1;j=1,2, ..., Mg.
e We will make use of the fourth property of R(s) in (9.15) for the following
computations.

* Remember every y is a R(s) function: yf = R(net}).

e To estimate wX

ij» we compute the partial derivatives

e Figure 9.17 shows the connection with weight w{; (red line) in a BP network.

Therefore, the computation of a‘% is simple, because among the My terms in
ij

(9.17), only the jth term (y]K — tj)2 is related to wX, while all the other terms are

ij?
irrelevant because they are not connected to node i in layer K — 1. Therefore, we
have the following:

Layer 0 Layer1 ...... Layer K-1 Layer K
l e 1 e

X ®

X ®

Fig. 9.17 Illustration of a connection between node i in layer K — 1 and node j in layer K in a K-
layer BP neural network
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OE OE ByJK
8_w§ ayK owf
- (F 1)
(9.18)
(yJK ’) aiye; 0;5"
= (o =)o (1o )t
=3y
where
oF =y (1-95) (5 - 1) (9.19)

Therefore, the weights of layer K are updated according to (9.19) as given
below:

OE
wgbw{j_ca—,{_w’j—céK k=1 (9.20)

where c is a positive constant. 5;( is equivalent to a network sensor, it measures if

the signal of a connection should be raised or suppressed. This can be explained by
(9.19) and (9.20):

K
lJ

ij is decreased (suppressed) if 5;( > 0 (when yJK > t);

e wi. is increased (raised) if 5JK <0 (when yf <tj);
wg changes little if 5}( is close to O (when yJK is close to #;, 0 or 1), indicating
converging;

. wg changes most significantly if y]K is very different from .

9.6.3 Layer K — 1 Weight Estimation and Updating

e The weights of layer K — 1 are given by wX
Mg—_q.
e To estimate wX~!, we compute the partial derivatives

m=1,2, ... Mgai=12, ..,

mi

OE
ow K k-1
e The computation of partial derivative W at layer K — 1 is more complicated

than layer K.
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Layer0  ...... Layer K-2 Layer K-1 Layer K
1 e 1 e

X €

X; @&

X &

X, ®

Fig. 9.18 Illustration of all connections relevant to wX-!

in a K-layer BP neural network.
Relevant connections are shown in red lines

e This is because wX ! connects to node i (at layer K — 1), which is then connected
to all nodes at layer K.

e The connections which are relevant to WK ! are shown in Fig. 9.18 (red lines).

e Therefore, each of the Mg terms in (9.17) is now related to the computation of
OE

KT+
MW

Therefore by using y; = R(net;) and dR(s)/ds = R(s)[l — R(s)], the compu-
tation of 5 K r is given below by the sum of chaining derivatives:

2
K
o 125 (00 = 1) 9k oner® oK1 gperk

owk-1 Ej:l yE Onetf Jyf~! Onetf 1 owl;!
My
1 —1), K2
= lZ(yf - tj)y}‘(l —yj) K] yi =y (9.21)
=
©. M

lgb]K 1( K 1)§ :51( K]yl
=1
_5[( ly

l
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where

Mk
S =y (=) Y D ofwE (9.22)
j=1

By repeating (9.21), it can be shown that for any hidden layer k, 5;‘ is given by
(9.23).

My 4

k k+1

SRS SE AT 023
J=1

Equation (9.23) indicates that a network sensor at layer k depends on the combined
network sensors at next layer k + 1. In other words, during the back propagation,
the weighted sum of network sensors at layer £ + 1 has been propagated (through
dR(s)/ds) to each network sensor at previous layer k. This kind of propagation is
similar to the feedforward process where the weighted sum of network values (or
signals) at layer k is propagated (through R(s)) to each connection at next layer k + 1.

The difference between the two rounds of propagation is that different propa-
gation functions are used. In the feedforward process, the propagation function is
just the activation function R(s) itself, while in the backpropagation process, the
propagation function is the gradient of the activation function: dR(s)/ds.

9.6.4 The BP Algorithm

Now that we have computed the gradients or partial derivatives of the error function
E, the BP algorithm is designed as following [1]:

1. Initialize all the weights wf?j (for all i, j, k) on the network and the constant ¢ with
some small random values.

2. Input a new training data: X = (x, X, ..., X,,) from a set of N training data.

3. Feedforward step. Compute the outputs at each layer starting from the input
layer:

My
W :R(Z wj;.yjf‘> j=1,2,...Mg; k=1,2,... K.
i=0

4. Backpropagation step. Compute the network sensors at each layer starting from
the output layer:

5j’,< = yJK(l — yjk) (yjK — tj) (forlayer K)
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My 41
and Of =yi(1—yf) Wit (fork =K —1,K—2,...,2,1).
j=1

5. Update weights on the network by wj «— wf — céj’?yf?’l for all i, j, k.
6. Repeat steps 2 and 5 until all the weights wZ stop to change or stop to change
significantly.

Because the BP algorithm is a steepest gradient descent algorithm, choosing the
initial values for wg and the constant c is crucial to the performance of a network. If the
initial values of wg are too far from the global minima, the algorithm may converge to
a local minimum. Consequently, the result of class boundaries is not accurate. If the
initial value of the constant c is either too small or too big, the converging progress can
be very slow. In practice, several rounds of guessing the initial values of both the
weights and ¢ may be required to achieve a desirable performance.

9.7 Convolutional Neural Network

An ordinary ANN does not take raw data as input; instead, it takes features as input
and classifies the data into classes based on their features. The features are com-
puted through a separated feature extraction process (handcrafted) and are given as
an n-dimensional feature vector. The reason behind this separation of feature
extraction and classification is that the data dimension is usually very larger, typ-
ically from tens of thousands to millions. Direct connection of raw data to an ANN
would make the network too complex and too expensive to compute with tradi-
tional computing power. Besides, the various data dimension is also a design issue
for such a combined ANN.

Nowadays, with the rapid increase of computation power, it is possible to
combine both the feature extraction and classification processes into a single neural
network. The idea is to integrate a feature extraction network in front of an ordinary
ANN. Because the feature extraction is typically done through the convolution of
local filters upon an image, an ANN with feature extraction functionality is called a
convolutional neural network or CNN for short.

9.7.1 CNN Architecture

The architecture of a CNN can be best demonstrated using the LeNet [3] in
Fig. 9.19. Basically, a CNN consists of a convolution network in front and a fully
connected MLP (multilayer perceptron, an ordinary ANN) at the backend.
Because each hidden unit in the convolutional network is only connected to a
local neighborhood (e.g., a clock) in the input image instead of every pixel, it is also
called a locally connected network. In contrast, in an ordinary ANN, each element
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Input layer (C1) n, feature maps (S1) n, feature maps  (C2) n feature maps  (S2) n, maps
Convolution | Pooling | Convolution I Pooling | Fully connected MLP

Fig. 9.19 Architecture of a CNN

of an input data is connected to each hidden unit in the network, so it is called fully
connected network.

The convolutional network is a repeat process of convolution and pooling as
shown in Fig. 9.19 [3]. Depending on the dimension of the input data, the repeti-
tions can occur for a number of rounds. In the following, we describe the CNN
architecture in detail.

9.7.2 Input Layer

e The input data are a set of training images Xi, Xp, ..., X,

e Each image x is a C-dimensional volume M x M x C, where M is the height and
width of the image and C is the number of channels.

e For the convenience of formulation, the height and width of the images are
assumed to be the same.

e Typically, the input is a RGB color image x = x [, j, k] and C = 3.

e For a gray-level image, C = 1.

9.7.3 Convolution Layer 1 (C1)
In a CNN, the convolution is a high-dimensional volume convolution.

e Specifically, the convolution is done by shifting a high-dimensional volume filter
W: N x N x S across the image as shown in Fig. 9.20a, where N is the height and
width of the windowed filter and S is the number of channels of the filter.

e § can be either the same as the number of image channels C or different.

e It can be shown that a high-dimensional volume filter consists of § number of 2D
filters w with size of N x N.

e In practice, the convolution is done by convoluting each channel of the
high-dimensional volume filter with each channel of the input image.

e Each of these 2D filters w is meant to capture a particular type of edges, shapes,
or textures from the input image.
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Fig. 9.20 Volume convolution. a Demonstration of volume filter and high-dimensional
convolution; b demonstration of high-dimensional convolution x * w® which can be done using
a series of 2D convolutions. Each of the filter channels a, b, ¢, and d is convoluted with each of the
corresponding image channels A, B, C, and D

e Figure 9.20b demonstrates how a volume convolution is done by a series of
2D convolution.

e In Fig. 9.20b, the input data is an image x with four channels A, B, C, and D.

e There are two high-dimensional volume filters w” and w' on the right-hand side,
each of the volume filters consists of four channels a, b, ¢, and d, which are
shown at the bottom left of Fig. 9.20 [3].

e The convolution between x and w® (x * w°) is done by convoluting each of the
filter channels a, b, ¢, and d across each of the corresponding image channels A,
B, C, and D.

e The convolution of image x with filter w': x * w' is done the same way.
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Fig. 9.21 2D convolution. An image X is convoluted with a filter window w and the result of the
convolution is given by x * w at the right-hand side

e Therefore, understanding 2D convolution is the key to understand
high-dimensional volume convolution.

9.7.3.1 2D Convolution

e A 2D convolution is done by sliding an N x N window w across the image X row
by row and column by column, assuming the window slides one pixel per time
and there is no padding for the moment.

e The 2D convolution of x * w is given by (9.24) and an example of a 2D
convolution is shown in Fig. 9.21 [4].

N—1N—
X = (X5 W)= > Z wli,j] - X[m — i,n — j] (9.24)

j=0 i=

9.7.3.2 Stride and Padding

e The dimensions of the convoluted image depend on two parameters: stride and
padding.

e The stride determines the number of pixels the filter window shifts per time and
the padding determines if and what the input image should be padded when the
filter window 1is at the image boundary, e.g., 0 padding.

o If the stride value is 1 and the padding is yes, the dimensions of the convoluted
image are the same as the input image.

e In Fig. 9.21, the stride is 1 and there is no padding, and therefore the convoluted
image loses two pixels at both ends of each row and column.

9.7.3.3 Bias

e In a CNN, the values in a filter w are regarded as the weights for the connections
between the filter and the network.
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e These weights are to be learned during the training of the network.
e Therefore, a bias b is added to compensate for the estimation error.

2

—1N-
X, =xxw),, +b= b+ wli —i,n—j (9.25)
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9.7.3.4 Volume Convolution in Layer C1

e Each of the S channels of the volume filter is first convoluted with each corre-
sponding channel of the input image x.
e The S filtered channels are then combined to create a 2D feature map or image

Jonn-

s
fom = Z (x*w[:, 5, k]),, +b

i (9.26)
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9.7.3.5 Depth of the Feature Map Volume

e Multiple volume filters are used in a convolution layer to create a volume of
feature maps.

e Each of the volume filters captures a particular type of image features.

e The number of volume filters R is called the depth of the feature map volume.

e The rth feature map is given by (9.27), r=0, 1, ..., R — 1.
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e Figure 9.22 shows how two volume filters w” and w' are used in layer C1 to
create the two feature maps (light red) at the rightmost hand side [5].

o In the figure, the input image x is a color image with R, G, and B channels, each
of the two volume filters also has three channels. The figure demonstrates the
convolution of the three channels (green) of the first filter with a block (yellow) in
image Xx. The convolutional output of the yellow block of image x is shown as the
pink pixel in the first output image on the rightmost hand side of the figure.

e Although the input x is a 7 x 7 image, due to the stride value of the convolution
is 2, the filtered output is just a 3 x 3 image. Therefore, in order to output a
filtered image with the same size as the input image, we not only need to set the
stride value as 1 but also need to pad the image with half the filter size.
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Fig. 9.22 An input image is convoluted with two volume filters w® and w'. The two result feature
maps are at the rightmost hand side (light red). The stride value is 2 and there is no padding

9.7.3.6 RelLU Activation

e The output from a volume filter or the feature map is essentially the weighted sum
of the input layer.

¢ As in an ordinary neural network, it needs to pass an activation function.

e It has been found that in a convolution layer, the max(0, x) function is more
effective than a sigmoid function for the activation.

e max(0, x) is basically a rectified linear function because it simply rectifies or
refracts the negative half of y = x to 0.

o Therefore, it is often called a rectifier and a node activated by the rectifier is also
called a rectified linear unit or ReLLU.
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e So, we have

ReLU(x) = max(0, x) (9.28)
e The output from node r of layer CI is finally given as (9.29)

e The ReLU activation is usually implemented as a separate layer after the con-
volution layer.

9.7.3.7 Batch Normalization

In a CNN, learning rate or convergence speed is a major issue. Due to the con-
volution, the range of output values of the filters in each layer varies widely. In
other words, the convolution has changed the original distribution of the input data,
breaking the independent and identically distributed or i.i.d. assumption on input
data. Worse still, each layer has to adapt to distribution drift from lower layers in
order to revise its own weights. This makes the learning very inefficient and con-
vergence very slow, especially for layers with sigmoid or tanh activation. This
phenomenon is called the internal covariance shift or the change of data distri-
bution from the input data distribution. In order to overcome this undesirable effect,
a batch normalization procedure is introduced before the activation layer in an
attempt to keep the mean and variance of the input data fixed, so that layers learn
themselves more or less independent with each other. The basic idea is to normalize
the input data of all layers in the network to have 0 mean and unit variance. In
practice, the normalization is done to the input data or data to be activated
dimension by dimension and batch by batch. Let us take a particular activation x (a
single dimension of the input data), for example, there are m values from a
mini-batch: B = {xy, x5, ..., X,,,}. The algorithm of the batch normalization of x is
given as following [6]:

Input: Values of x from a mini-batch B = {x1, x», ..., X,,,}
Parameters to be learned: v, f§
Output: Batch normalized values {y; = BN, g(x;)}

m
lig — % X //mini—batch mean
=1
5129 — % (x; — ,uB)z / /mini—batch variance
Xil*:#}g
Vo +e

BN, s(x;) =y; < yx; //batchnormalisation

X — //sample normalisation
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For convolution layers, the normalization is done by jointly normalizing all the
activations in a mini-batch over all locations. Specifically, the pair of parameters 7
and f is learnt per feature map instead of per activation [6].

By batch normalization, the values of input features to each layer are normalized
into the same range, this reduces the oscillations of gradient descent when it
approaches the minimum point and consequently makes it to converge faster.
Another benefit of batch normalization is that it adds minor noise to each layer due
to each training sample is mixed with other samples in a mini-batch, and this
reduces the effect of overfitting. In practice, lower dropout rate is needed for a
network with batch normalization.

9.7.4 Pooling or Subsampling Layer 1 (S1)

The feature maps’ output from layer C1 usually has the same dimension as the input
image. Their dimensions are too high to be connected to an ANN. Besides, the
feature maps represent the finest details of the input image, these features are not as
reliable. Therefore, it is tempting to downsample the feature maps so that features at
a coarser level can be extracted. This is done by passing each feature map through a
2 x 2 subsampling function. Several types of subsampling functions can be used,
such as max(), average(), L, norm, or spectral transform such as DWT and DCT.

For example, if the max function is used, the subsampling is called a max-
pooling. Figure 9.23 demonstrates a max-pooling which reduces a 4 x 4 feature
map to a 2 x 2 feature map.

9.7.5 Convolution Layer 2 (C2)

The outputs from the pooling layer 1 (S1) are subsampled feature maps from layer
C1. New features can be computed from those feature maps by doing another round
of convolution using new volume filters. The convolution procedure is the same as

2 X 2 max-pooling

h 4

Fig. 9.23 Illustration of a max-pooling. The maximum value of each quarter block of the left
image is computed as the output value of the max-pooling image at the right-hand side
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Fig. 9.24 Volume convolution in layer C2. Volume filter w° is convoluted with feature maps A—
D while volume filter w' is convoluted with feature maps C—F

that in layer C1 except each volume filter in layer C2 uses different combinations of
feature maps from layer S1.

For example, in Fig. 9.24, the two volume filters w° and w' are convoluted with
different channels or feature maps output from layer S1. While filter w” is convo-
luted with feature maps A-D, filter w' is convoluted with feature maps C—F.

If the depth of S1 is R, the total number of combinations of R channels is given
as follows:

g(f) =2k (9.30)

where k is the number of channels in a filter in layer C2.

The convolution and pooling can be repeated for a number of rounds depending
on the size of the input data. The feature maps from the final pooling layer are
flattened to create a 1D feature vector, this feature vector is fed into the fully
connected ANN at the backend of a CNN.

9.7.6 Hyperparameters

The performance of a CNN depends on the selection of the following hyperpa-
rameters. These parameters may be data dependent and need to be determined
empirically.

e Filter size. The window size of the volume filter.

e Stride. The number of pixels per shift by the filter window at each layer.

e Padding. Whether padding will be used at the boundary of an input image and a
feature map. What type of padding will be used, e.g., zero padding or wrap
around padding.

e Depths. The number of channels or filters at each convolution layer.
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e Dropout-rates. The percentage of neurons to be dropped out from each of the
hidden layers at each iteration to prevent overfitting and cope with missing data.

e Epochs. The number of times the training algorithm will iterate over the entire
training set before terminating.

e Pooling size and function. The size of a pooling function and the type of pooling
function such as max(), average(), L, norm, etc.

e Activation function. The function used to generate a threshold output at each
layer, such as ReLU(), sigmoid, tanh(), etc.

e The number of neurons in the fully connected layer of the ANN.

9.8 Implementation of CNN

To demonstrate a CNN in action, we show a high-performance CNN implemen-
tation by Oxford’s Visual Geometry Group or VGGNet [7]. It has won the runner
up of the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[Image-Net.org]. ImageNet is the largest hand-annotated visual dataset, and it holds
image recognition competitions every year among researchers around the world.
Compared with other high-performance CNN models, VGGNet is known for its
simplicity because it is a series network.

9.8.1 CNN Architecture

The architecture of VGGNet is shown in the following list which is obtained by
using Matlab code: net = vggl6; net.Layers. The 16 core layers are highlighted
using bold font and are organized into five blocks: convl—conv5. Therefore, it is
often referred to as VGG16. It is a typical stacked convolution + pooling layers
followed by fully connected ANN. The purpose of the softmax layer is to convert
any vector of real numbers into a vector of probabilities, which correspond to the
likelihoods that an input image is a member of a particular class.

01 ‘input’ Image Input 224 x 224 x 3 images with ‘zerocenter’
normalization

02 ‘convl_1’ Convolution 64 3 x 3 x 3 convolutions with stride [1 1]
and padding [1 1 1 1]

03 ‘relul _1I” ReLU ReLLU

04 ‘convl_2’ Convolution 64 3 x 3 x 64 convolutions with stride [1 1]
and padding [1 1 1 1]

05 ‘relul_2’ ReLU RelLU

06 ‘pooll’ Max Pooling 2 x 2 max pooling with stride [2 2] and padding
[0000]

07 ‘conv2_1’ Convolution 128 3 x 3 x 64 convolutions with stride [1 1]

and padding [1 1 1 1]
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Implementation of CNN

‘relu2_1’

‘conv2_2’

‘relu2_2’
‘pool2’

‘conv3_1’

‘relud_1’

‘conv3_2’

‘relu3_2’
‘conv3_3’

‘relu3_3’
‘pool3’

‘conv4_1’

‘relud_1°
‘conv4_2’

‘relud_2’
‘conv4_3’

‘relud_3’°
‘pool4’

‘convs_1’

‘relus_1°

‘convs_2’

‘relu5_2’
‘conv5_3’

‘relus_3’
‘pool5’

‘fc6’
‘relu6’
‘drop6’
‘fe7’

‘relu7’

RelLU
Convolution

ReLU
Max Pooling

Convolution

ReLU
Convolution

RelLU
Convolution

ReLU
Max Pooling

Convolution

ReLU

Convolution

ReLU

Convolution

ReLU
Max Pooling

Convolution

ReLU

Convolution

ReLU

Convolution

ReLU
Max Pooling

Fully Connected
ReLU

Dropout

Fully Connected
ReLU
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RelLU

128 3 x 3 x 128 convolutions with stride [1 1]
and padding [1 1 1 1]

ReLU

2 x 2 max pooling with stride [2 2] and padding
[0000]

256 3 x 3 x 128 convolutions with stride [1 1]
and padding [1 1 1 1]

RelLLU

256 3 x 3 x 256 convolutions with stride [1 1]
and padding [1 1 1 1]

ReLU

256 3 x 3 x 256 convolutions with stride [1 1]
and padding [1 1 1 1]

ReLLU

2 x 2 max pooling with stride [2 2] and padding
[0000]

512 3 x 3 x 256 convolutions with stride [1 1]
and padding [1 1 1 1]

ReLU

512 3 x 3 x 512 convolutions with stride [1 1]
and padding [1 1 1 1]

RelLU

512 3 x 3 x 512 convolutions with stride [1 1]
and padding [1 1 1 1]

RelLU

2 x 2 max pooling with stride [2 2] and padding
[0000]

512 3 x 3 x 512 convolutions with stride [1 1]
and padding [1 1 1 1]

ReLU

512 3 x 3 x 512 convolutions with stride [1 1]
and padding [1 1 1 1]

ReLU

512 3 x 3 x 512 convolutions with stride [1 1]
and padding [1 1 1 1]

ReLU

2 x 2 max pooling with stride [2 2] and padding
[0000]

4096 fully connected layer
ReLU

50% dropout

4096 fully connected layer
ReLU
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38 ‘drop7’ Dropout 50% dropout

39 ‘fc8’ Fully Connected 1000 fully connected layer

40 ‘prob’ Softmax softmax

41 ‘output’ Classification crossentropyex with ‘tench’ and 999 other classes

VGGNet shows that the depth of the network is a critical component for good
performance. The number of filters (depth) increases from 64 to 512 as it goes
deeper into the network. The consecutive use of 3 x 3 convolutions has the effect of
causing more nonlinearity as more than one ReLU functions have been applied at
each stage of convolutions.

Another advantage of using consecutive convolutions is the increasing size of
the receptive field. This is because two consecutive 3 X 3 convolutions have the
effective receptive field of a single 5 x 5 convolution, while three-stacked 3 x 3
convolutions have the receptive field of a single 7 x 7 one [7].

9.8.2 Filters of the Convolution Layers

To validate a CNN, it is valuable to inspect and examine the internal structure of the
network. Figure 9.25 shows the first 64 pretrained filters from 6 layers of VGG16
net. It can be observed that the filters typically capture the blobs, edges, regularity,
directionality, and other features of an image. Filters in early layers (layers 2 and 7)
typically focus on pixels, blobs, and edges, as the network goes deeper, the filters
become coarser, where low-level features are organized into shapes and parts of
objects.

9.8.3 Filters of the Fully Connected Layers

If the convolution layers try to capture the texture and shape features from images,
the fully connected layers attempt to organize the features into objects. Figure 9.26a
and b shows the first 10 channels of layers “fc6” (layer 33) and “fc7” (layer 36),
respectively. This phenomenon of learning objects is more obvious in the final fully
connected layer where the class names are known (using Matlab code: net.Layers
(end).Classes). Figure 9.26c shows 20 channels from “fc8” (layer 39) with class
names as following: goldfish, tiger shark, hammerhead shark, ostrich, great gray
owl, African crocodile, mud turtle, academic gown computer keyboard, cowboy
boot, accordion, cowboy hat, crane (machine), crash helmet, ambulance, analog
clock, balloon, dining table, dumbbell, and acoustic guitar.

It can be observed from Fig. 9.26¢ that the signature patterns and shapes of these
objects are well captured. More interestingly, the filters have learnt multiple copies
of the same object to adapt to changes.



9.8 Implementation of CNN 235

(e) Filters of layer 26 (e) Filters of layer 30

Fig. 9.25 Pretrained filters of 6 of the 13 VGG16 convolution layers
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Fig. 9.26 Filters of the fully
connected layers

| ENS ¥

(a) Layer ‘fc6’
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9.8.4 Feature Maps of Convolution Layers

To further understand the implementation of a CNN, it is more revealing to examine
the convolution process by using a real input image. A CNN is basically a com-
bination of two components: convolution layers and fully connected layers. The
convolution layers are responsible for feature extraction and the fully connected
layers are responsible for the classification. The convolution component is the main
powerhouse of a CNN model. Given an input image, the different filters in the
convolution layers detect features such as edges, blobs, and regions, which repre-
sent eyes, ears, legs, feather, leaves, water, sand, windows, wheels, etc. The CNN
does not know if they are eyes, ears, legs, etc., it learns to detect them as features by
memorizing a lot of them in the input images. The fully connected layers learn how
to use these features to classify the images into different classes.

One important thing to note is that due to the nature of consecutive convolution
and pooling, the features leant from the CNN is evolutional or hierarchical. In other
words, the CNN is a learning process from fine features to coarse features. The
convolution layers learn such fine to coarse features by building on top of each
other. The first layers detect edges, the next layers combine them to detect shapes,
and the following layers merge shape information to infer objects such as eyes, ears,
legs, etc. Figure 9.27 demonstrates this evolutional process by showing the first 64
feature maps from each of the five blocks of the lady image in Fig. 3.2: convl_2,
conv2_2, conv3_3, conv4_3, and conv5_1. It can be observed that the prominent
features (hat, face) in the image are well captured by the filters. It is interesting to
find that each filter captures different aspects of the image such as the surface and
outline of the hat, the face, eyes, cloth, hand, background, etc. It can also be seen
from the figure that the features from the first block of layers (convl_1) are sparse
and show the fine details/edges of the image, and as the network goes deeper, the
features become coarser and coarser due to pooling, until the final block of layers
where only the most prominent features (e.g., eyes, mouth) in the input image
survive.

Figure 9.28 uses heat maps of the channels from each of the blocks to
demonstrate how the prominent features of a face image have been tracked by the
network. It can be seen that the eyes of the face are well tracked by the network and
as the network goes deeper, the face pattern becomes coarser and coarser until it is
completely blurred.

Although conventional feature extraction methods can also extract similar kind
of coarse features for classification, a CNN model can combine many types of such
kind of coarse features to form a set of more powerful features which lead to more
accurate classification.

Overfitting is a common problem on image classification because usually there
are too few training samples, resulting in a model with poor generalization
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(e) conv5 1

Fig. 9.27 Feature maps from different convolution layers of VGG16
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convl 1 conv2 2

conv5 3

Fig. 9.28 Channels from each of the five blocks of VGG16 net

performance. One solution to overfitting is to use data augmentation. Data aug-
mentation is a method to generate more training data from the current training set. It
is an artificial way to boost the size of the training set, reducing overfitting.

Data augmentation is typically done by data transformations and processing,
such as rotation, shifting, resizing, adding noise, contrast change, etc. It should be
noted that data augmentation is only performed on the training data, not on the
validation or test set.

9.8.5 Matlab Implementation

Matlab’s Deep Learning Toolbox™ has a number of built-in networks which are
pretrained on ImageNet, including ResNet-50, AlexNet, GoogleNet, VGG-16, and
VGG-19. The following is a code scheme of using VGG-16 for image classification
[8]. The code provides a step-by-step implementation of a CNN. Training images
need to be first categorized and organized into subfolders, and the name of each
subfolder represents the label of the image category, e.g., bird, people, tiger, etc.
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% Load the Pretrained VGG-16 network
net = vggl6();

net.Layers; %inspect the network architecture

% Extract and Display Feature Maps

% Extract the filters for convolutional layer 1: convl_1
filterl = net.Layers(2).Weights;

filterl = mat2gray(filterl);

filterl = imresize(filterl,5);

figure

montage(filterl)

title('First convolutional layer filters')

% Prepare Training and Testing Image Sets
% Loading images into an imageDataStore Object, e.g., rootFolder=c:\myImages,
subFolder=cnnImages, myFolder='c:\myImages\cnnImages'
myFolder = fullfile('rootFolder', 'subFolder');
categories = {'catl', 'cat2',.., ‘'catn'};
imstore = imageDatastore(fullfile(myFolder, categories), 'LabelSource’,

'foldernames');

% Split the dataset into training set (30%) and testing set (70%)
[trainingSet, testingSet] = splitEachLabel(imstore, 0.3, 'randomize');

% Normalise Dataset images to required size and RGB format
imSize = net.Layers(1l).InputSize;

normTrainingSet = augmentedImageDatastore(imSize, trainingSet,
'ColorPreprocessing', 'gray2rgb');

normTestingSet = augmentedImageDatastore(imSize, testingSet,
'ColorPreprocessing', 'gray2rgb');

% Extract features from the last fully connected layer

fcFeature = 'fc8';

trainingFeatures = activations(net, normTrainingSet, fcFeature,
'‘MiniBatchSize', 32, 'OutputAs', 'columns');

% Train a Multiclass SVM Classifier Using the Extracted Features

% Get training labels from the trainingSet
traininglLabels = trainingSet.Labels;
classifier = fitcecoc(trainingFeatures, traininglLabels,
'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns');

% Test the SVM Classifier on New Images
newImage = imread(fullfile('rootFolder', 'subFolder', 'imageName'));
% Normalise the new images.

normImage = augmentedImageDatastore(imSize, newImage, 'ColorPreprocessing’,
'gray2rgb');

% Extract image features using the CNN
imFeatures = activations(net, normImage, fcFeature, 'OutputAs', ‘columns');

% Make a prediction using the classifier
label = predict(classifier, imFeatures, 'ObservationsIn', 'columns')



