
9Artificial Neural Network

Law of nature is The Way.

9.1 Introduction

When comes to learning and classifications, no other tool is more efficient and
powerful than human brains. Therefore, there is sufficient motivation to design a
machine learning tool which simulates human brains. This is further encouraged by
the recent research findings on human brain from both cognitive science and
biology. It is believed that a human brain is consisting of 10s of billions of neurons
interconnected into a sophisticated network. The neurons in a brain are organized
into functional units or regions, such as regions for visual, auditory, motion, rea-
soning, speech, etc. An individual neuron is shown in Fig. 9.1.

It is found that a neuron receives inputs from its dendrites, processes them in the
cell body, and transmits the output signal to other neurons through its axon. The
inputs the neuron received can be either excitatory or inhibitory. When there are
more excitatory inputs than inhibitory inputs, the neuron is activated and a signal is
transmitted out through the axon; otherwise, no signal is generated.

Then, neurons in many regions of a human brain are further organized into
layers to create a layered network. Neurons from one layer usually receive inputs
from neurons in an adjacent layer. Connections between layers are mostly in one
direction, moving from low-level layer sensors like eyes or ears to higher coordi-
nation and reasoning layer [1].

With these understandings of human brains and neurons, it is possible to design
artificial neurons and an artificial neural network or ANN.

© Springer Nature Switzerland AG 2019
D. Zhang, Fundamentals of Image Data Mining, Texts in Computer
Science, https://doi.org/10.1007/978-3-030-17989-2_9

207

9.2 Artificial Neurons

The design of an artificial neural network starts with the modeling of artificial
neurons. From the above understandings, a neuron is basically a unit which receives
inputs and generates an output. Specifically, a biological neuron consists of three
components: the inputs (dendrites), an activation or processing unit (cell body) and
an output (axon). Electronically, these three components can be respectively rep-
resented as a set of inputs xi, a weighted sum of the inputs R, and a threshold of the
weighted sum. The alignment of an electronic neuron and a biological neuron is
shown in Fig. 9.2.

The weighted sum and the thresholding are usually merged into a single acti-
vation unit and the axon is replaced with an output signal. Therefore, the simplified
artificial neuron is shown in Fig. 9.3.

It turns out that an artificial neuron is just a binary linear classifier. Given an
input x = (x1, x2, …, xn), a weighted sum R is calculated and compared with a
threshold T:

Fig. 9.1 A neuron of human brain

Fig. 9.2 The alignment of an artificial neuron with a biologic neuron

208 9 Artificial Neural Network

R ¼ w1x1þw2x2þ � � � þwnxn [T ð9:1Þ

If R > T, the neuron is activated and an output signal y is sent out. In other
words, the activation of the neuron or output y is based on the following rule:

y ¼ 1 R[T
0 R\T

�
ð9:2Þ

It is more convenient to combine both R and T and rewrite (9.1) as follows:

D ¼ R�T ¼ w1x1þw2x2þ � � � þwnxn�T
¼ �T þw1x1þw2x2þ � � � þwnxn

ð9:3Þ

For notation purpose, let w0 x0 = –T which represents a constant and x0 = 1,
then (9.3) becomes

D ¼ w0x0þw1x1þw2x2þ � � � þwnxn ð9:4Þ

And (9.2) becomes

y ¼ 1 D[0
0 D\0

�
ð9:5Þ

We can use this artificial neuron to do many simple linear classifications. One of
them is to simulate the logic gates, such as the AND, OR, NAND, NOR, etc.

9.2.1 An AND Neuron

Let us start with the AND gate, the AND function is given in Table 9.1.
Now, if we set the activation or threshold value as T = 1.5 (or any value between

1 and 2), only input (1, 1) will be activated, this is exactly what we want. Therefore,
the classifier for the AND function is given as follows:

w1

wn

w2

Σ > T ?

x1

x2

x3
w3

Activation

Input

Output y

xn

Fig. 9.3 The modeling of an
artificial neuron

9.2 Artificial Neurons 209

y ¼ �1:5þ x1þ x2 ð9:6Þ

In space, the classifier of (9.6) is represented by the following hyperplane which
is a line in this case:

�1:5þ x1þ x2 ¼ 0 ð9:7Þ

The AND data and the linear classifier is shown in Fig. 9.4. The neuron which
implements the AND function is shown in Fig. 9.5 [1].

9.2.2 An OR Neuron

Similarly, the classifier of an OR function and the neuron that implements the OR
function are shown in Figs. 9.6 and 9.7, respectively.

An artificial neuron is called a node in an artificial neural network and is usually
represented by a circle.

Table 9.1 AND gate Input Output Sum

x1 x2
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 2

2x

0 0 –1.5 + x1 + x2 = 0

x10 1

0

1 0 1

Fig. 9.4 The data of AND
can be separated by a single
line –1.5 + x1 + x2 = 0

1 ●

x1● y

x2●

Fig. 9.5 The neuron which
implements the AND function

210 9 Artificial Neural Network

9.3 Perceptron

The neuron we designed above can do binary and linear classification; however,
both the weights and the threshold are predetermined by a human designer. A bi-
ological neuron of a human brain, on the other hand, can learn from new instances
and memorize. It would be desirable that an artificial neuron can also learn and
memorize. This is done by feeding the neuron with a set of known data or
pre-labeled data and learn the weights by using certain criterion or algorithm such
as minimizing the total error.

From (9.4), the decision function of a neuron is given as follows:

Y ¼ w0þw1x1þw2x2þ � � � þwnxn ð9:8Þ

To train the neuron:

• A training set S = {(xq, yq), q = 1, 2, …, N} is collected,
• where yq is the desired output of qth sample feature vector xq = (xq1, xq2,…, xqn).
• The training is then to minimize the squared error or MSE:

E ¼ E w1;w2; . . .;wnð Þ ¼ 1
2

XN
q¼1

Yq � yq
� �2 ð9:9Þ

• where Yq = w0 + w1 xq1 + w2 xq2 + ��� + wn xqn.

x2

 0 1

x10 1

0

1 1 1

– 0.5 + x1 + x2 = 0

Fig. 9.6 The data of OR can
be separated by a single line
−0.5 + x1 + x2 = 0

1 ●

x1● y

x2●

1

1

-0.5

Fig. 9.7 The neuron which
implements the OR function

9.3 Perceptron 211

The minimization follows the steepest descent direction which is given by the
gradient vector of

� @E

@w0
;� @E

@w1
;� @E

@w2
; . . .;� @E

@wn

� �
ð9:10Þ

If a sample is misclassified and the actual output Y is different from the correct
output y, we would want to change the weights so that E is minimized. Therefore,
the steepest descent algorithm to minimize E is given by the following algorithm:

1. Choose an initial weight set of w0, w1, w2, …, wn and a positive constant c.
2. For i = 0, 1, 2, …, n, compute the partial derivatives of @E=@wi and let wi = wi

– c(@E=@wi).
3. Repeat step 2 until w0, w1, w2, …, wn stop to change.

By combining (9.9) and (9.10), the partial derivatives @E=@wi in the above
algorithm is given by

@E

@wi
¼ Yq � yq
� �

xqi; i ¼ 0; 1; 2; . . .; n ð9:11Þ

Therefore, the MSE learning algorithm of a perceptron is given as follows:

1. Choose an initial weight set of w0, w1, w2, …, wn and a positive constant c.
2. For each of samples q = 1, 2, …, N, compute Yq ¼

Pn
i¼0 wixqi.

3. Let wi = wi – c(Yq – yq)xqi for i = 0, 1, 2, …, n.
4. Repeat steps 2 and 3 until w0, w1, w2, …, wn stop to change.

9.4 Nonlinear Neural Network

The perceptron is essentially a two-layer neural network with an input layer and an
output layer, it can be trained to classify any linear data which can be separated by a
hyperplane. However, for nonlinear data such as XOR (Fig. 9.8) and other data
with convex data regions (Fig. 9.9), they cannot be separated by a single hyper-
plane in space, and consequently they cannot be classified by a perceptron.

Although a convex data region in space (a region is convex if any two data
points can be connected by a line segment inside the region) cannot be separated by
a single hyperplane, its boundary can be approximated by the intersection of a finite
number of hyperplanes. For example, the XOR data in Fig. 9.8 can be separated by
the following two half planes in 2D space:

�0:5þ x1þ x2 [0 and �1:5þ x1þ x2\0 ð9:12Þ

212 9 Artificial Neural Network

The two neurons represent the two half planes in (9.12) which are given by

�0:5þ x1þ x2 [0 and 1:5�x1�x2 [0 ð9:13Þ

Now, by AND(ing) (Fig. 9.5) the two neurons of (9.13), a neural network with a
middle layer or hidden layer is created which can separate the XOR outputs. The
neural network with hidden layer is shown in Fig. 9.10 [1].

This idea of three-layer neural network can be easily extended to classify any
generic convex nonlinear data like the one shown in Fig. 9.9. All we need now is
more nodes in the second layer or middle layer (Fig. 9.11). Usually, a small number
of nodes in the middle layer are sufficient to separate a convex region; however,
more middle layer nodes produce a smoother region boundary.

By extending the above idea of classifying convex nonlinear data using neural
network with a hidden layer, it is also possible to classify non-convex data using
neural network. This is because a non-convex region can always be approximated
by the union of a finite number of convex regions.

x2

 0 1

x10 1

0

1 1 0

Fig. 9.8 Outputs of an XOR
cannot be separated by a
single line in 2D space

x x x x x x x

x ◦ ◦ ◦ x
x ◦ ◦ ◦ ◦ x

x x x x x x x

Fig. 9.9 The convex data
region in the center cannot be
separated by a single line in
2D space

9.4 Nonlinear Neural Network 213

Therefore, it is possible to create a number of convex nodes in the third layer
using the method discussed above and combine those convex nodes in the third
layer using a logic OR in the fourth layer.

For example, the non-convex data region (black dots) in Fig. 9.12 can be
approximated by three convex data regions, which can then be classified using a
four-layer neural network shown in Fig. 9.13.

This indicates that any nonlinear data can be classified by a four-layer neural
network.

1 ● 1●

x1 ●

x2 ●

1

1

-1.51.5 -0.5

-1

-1

1

1

Fig. 9.10 A three-layer neural network to implement XOR. The two linear classifiers at the
hidden layer are ANDed at the third layer

AND

1 ● 1 ●

x1 ● y1

x2 ● y2 y

xn ● yM

w2M

wnM

wn1

w01

Fig. 9.11 A three-layer neural network with a hidden layer which can classify generic convex
nonlinear data

Fig. 9.12 A non-convex
data region (black dots) is
approximated by three convex
regions

214 9 Artificial Neural Network

9.5 Activation and Inhibition

It should be noted that the activation or threshold function is crucial to a neural
network, because it is shown that any neural network without thresholding is
equivalent to a two-layer network which cannot separate nonlinear data. However,
the binary threshold function is not desirable because it is not continuous. This
non-continuity can cause the network to take a very long time to converge or even
not converge. This is because the gradients from the MSE are differential values and
are small, so the changes in the weights are also small. As the result, the small
changes to the weights are usually not enough to pass the threshold or generate an
output signal.

9.5.1 Sigmoid Activation

It is desirable to have a continuous activation function which changes continuously
from 0 to 1 instead of jumping from 0 to 1. Among the many proposed continuous
activation functions, the most widely used is the sigmoid function. The S-shaped
sigmoid function is defined as (9.14) and the shape of the function is shown in
Fig. 9.14.

OR

1 ● 1 ●

x1 ● y11 y21

x2 ● y12 y22 y

xn ● y1M y2N

w M

wnM

wn1

w

Fig. 9.13 A four-layer neural network which can classify any nonlinear data

Fig. 9.14 Sigmoid function

9.5 Activation and Inhibition 215

The R(s) function guarantees an output signal while preserving the thresholding
functionality of an activation function.

RðsÞ ¼ 1
1þ e�s

ð9:14Þ

The R(s) function has the following important properties:

1. lims!�1 RðsÞ ¼ 0
2. lims!1 RðsÞ ¼ 1
3. R(0) = ½

4.
dR

ds
¼ Rð1� RÞ ð9:15Þ

This final property has a convenient use in the following backpropagation
algorithm. R(1 − R) is close to 0 at both ends of region (0, 1).

9.5.2 Shunting Inhibition

It is known that a biological neuron can be either excitatory or inhibitory. An
inhibitory signal prevents impulse from arising in the receiving neuron. This
inhibitory phenomenon can be represented mathematically as reducing the excita-
tory potential by division. This is called shunting inhibitory or SI. The idea is to
learn a dual set of weights Dj and divided the original output of a neuron with the
dual output adjusted by a decay factor. An SI neuron is illustrated in Fig. 9.15 [2].

w1

w2
Σ

x0
x1

x2

wnxn

w0 g

D1

D2
Σ

x0
x1

x2

Dnxn

D0 f

+
d

z

Fig. 9.15 A shunting inhibitory neuron

216 9 Artificial Neural Network

Mathematically, the output from an SI neuron is given by (9.16) [2].

z ¼ gðPn
j¼1 wjxjþ bÞ

dþ f ðPn
j¼1 Djxjþ aÞ ð9:16Þ

where

• z is the output of the shunting neuron,
• xj is the jth input,
• Cj and Dj are the connection weights of the jth input,
• a = w0x0 and b = D0x0 are biases,
• d is the passive decay rate,
• f and g are activation functions,
• n is the number of inputs from the previous layer,
• dþ f ðPn

j¼1 Djxjþ aÞ[0:

An ANN designed with SI neurons is called an SIANN. The key to an SI neural
network is to use different activation functions f and g in a layer so that only the
strongest neurons are activated. Experiments show that when f and g are hyperbolic
tangent function and exponential function, respectively, the network has better
convergence.

9.6 The Backpropagation Neural Network

9.6.1 The BP Network and Error Function

One of humans’ great learning skills is learning from mistakes or errors, this is
because the mistakes/errors provide important feedback to improve the original
learning process. Unfortunately, the conventional ANN described above does not
provide this function. However, this function can be simulated in a neural network
by using the backpropagation algorithm. The idea is to add another process so that
the outputs in the final layer are used as feedback to the previous layer to update the
weights, and repeat this feedback until the input layer.

Therefore, a backpropagation neural network or a BP-ANN consists of two
major processes: (1) a conventional feedforward process which computes outputs at
each layer starting from the input layer; (2) a backpropagation process where the
weights are updated at each layer starting from the output layer, an attempt to
improve the classification accuracy.

In order to formulate the backpropagation algorithm, the following notations are
defined:

9.5 Activation and Inhibition 217

• k denotes the kth layer of a network: k = 0, 1, 2, …, K. Layer 0 is the input and
layer K is the output.

• Mk denotes the number of nodes at layer k, k = 1, 2, …, K.
• x = (x1, x2, …, xn) stands for a training sample data.
• wk

ij stands for the weight of connection between node i at layer k − 1 and node j at
layer k, k = 1, 2, …, K.

• netkj ¼
PMk�1

i¼0 wk
ijy

k�1
i stands for the output or the weighted sum of jth node of

layer k, j = 0, 1, 2, …, Mk, k = 1, 2, …, K.
• ykj ¼ Rðnetkj Þ stands for the activated or thresholded output from the jth node of
layer k, j = 0, 1, 2, …, Mk, k = 1, 2, …, K.

The notations are shown in the following backpropagation neural network.
The BP-ANN uses the same MSE and steepest gradient descent optimization as

in the conventional ANN described earlier from (9.9) to (9.11). Assume tj is the true
output of node j at the final layer, and then the total squared error of the BP network
in Fig. 9.16 is given by (9.17).

E ¼ 1
2

XMK

j¼1
yKj � tj
� �2

ð9:17Þ

The backpropagation algorithm starts from estimating and updating the weights
of the final layer K, and then propagates the same estimating and updating pro-
cedure back to layer K − 1, K − 2, …, until layer 1.

Layer 0 Layer 1 Layer 2 Layer K
1 ● 1 ●

x1 ●

x2 ●

xn ●

Fig. 9.16 A K-layer backpropagation neural network

218 9 Artificial Neural Network

9.6.2 Layer K Weight Estimation and Updating

• The weights of layer K are given by wK
ij , i = 1, 2, …, MK−1; j = 1, 2, …, MK.

• To estimate wK
ij , we compute the partial derivatives @E

@wK
ij
.

• We will make use of the fourth property of R(s) in (9.15) for the following
computations.

• Remember every ykj is a R(s) function: ykj ¼ Rðnetkj Þ.
• Figure 9.17 shows the connection with weight wK

ij (red line) in a BP network.

Therefore, the computation of @E
@wK

ij
is simple, because among the MK terms in

(9.17), only the jth term ðyKj � tjÞ2 is related to wK
ij , while all the other terms are

irrelevant because they are not connected to node i in layer K − 1. Therefore, we
have the following:

Layer 0 Layer 1 Layer K-1 Layer K
1 ● 1 ●

x1

xi ●

xj●

xn ●

…
…

..

Fig. 9.17 Illustration of a connection between node i in layer K − 1 and node j in layer K in a K-
layer BP neural network

9.6 The Backpropagation Neural Network 219

@E

@wK
ij

¼ @E

@yKj

@yKj
@wK

ij

¼ yKj � tj
� � @yKj

@wK
ij

¼ yKj � tj
� � @yKj

@netKj

@netKj
@wK

ij

¼ yKj � tj
� �

yKj 1� yKj

� �
yK�1i

¼ dKj y
K�1
i

ð9:18Þ

where

dKj ¼ yKj 1� yKj

� �
yKj � tj
� �

ð9:19Þ

Therefore, the weights of layer K are updated according to (9.19) as given
below:

wK
ij wK

ij � c
@E

@wK
ij

¼ wK
ij � cdKj y

K�1
i ð9:20Þ

where c is a positive constant. dKj is equivalent to a network sensor, it measures if
the signal of a connection should be raised or suppressed. This can be explained by
(9.19) and (9.20):

• wK
ij is increased (raised) if dKj \0 (when yKj \tj);

• wK
ij is decreased (suppressed) if dKj [0 (when yKj [tj);

• wK
ij changes little if dKj is close to 0 (when yKj is close to tj, 0 or 1), indicating

converging;
• wK

ij changes most significantly if yKj is very different from tj.

9.6.3 Layer K − 1 Weight Estimation and Updating

• The weights of layer K − 1 are given by wK�1
mi , m = 1, 2, …, MK-2; i = 1, 2, …,

MK−1.
• To estimate wK�1

mi , we compute the partial derivatives @E
@wK�1

mi
.

• The computation of partial derivative @E
@wK�1

mi
at layer K − 1 is more complicated

than layer K.

220 9 Artificial Neural Network

• This is because wK�1
mi connects to node i (at layer K − 1), which is then connected

to all nodes at layer K.
• The connections which are relevant to wK�1

mi are shown in Fig. 9.18 (red lines).
• Therefore, each of the MK terms in (9.17) is now related to the computation of

@E
@wK�1

mi
.

Therefore, by using ykj ¼ Rðnetkj Þ and dR sð Þ=ds ¼ R sð Þ 1� R sð Þ½ �, the compu-

tation of @E
@wK�1

mi
is given below by the sum of chaining derivatives:

@E

@wK�1
mi

¼ 1
2

XMK

j¼1

@ yKj � tj
� �2

yKj

@yKj
@netKj

@netKj
@yK�1i

@yK�1i

@netK�1i

@netK�1i

@wK�1
mi

0
B@

1
CA

¼
XMK

j¼1
yKj � tj
� �

yKj 1� yKj

� �
wK
ij

" #
yK�1i 1� yK�1i

� �
yK�2i

)ð9:19Þ½yK�1i 1� yK�1i

� �XMK

j¼1
dKj w

K
ij �yK�2i

¼ dK�1i yK�2i

ð9:21Þ

Layer 0 Layer K-2 Layer K-1 Layer K
1 ● 1 ●

x1

xi ●

xj●

xn ●

Fig. 9.18 Illustration of all connections relevant to wK�1
mi in a K-layer BP neural network.

Relevant connections are shown in red lines

9.6 The Backpropagation Neural Network 221

where

dK�1i ¼ yK�1i 1� yK�1i

� �XMK

j¼1
dKj w

K
ij ð9:22Þ

By repeating (9.21), it can be shown that for any hidden layer k, dki is given by
(9.23).

dki ¼ yki 1� yki
� � XMkþ 1

j¼1
dkþ 1
j wkþ 1

ij ð9:23Þ

Equation (9.23) indicates that a network sensor at layer k depends on the combined
network sensors at next layer k + 1. In other words, during the back propagation,
the weighted sum of network sensors at layer k + 1 has been propagated (through
dR(s)/ds) to each network sensor at previous layer k. This kind of propagation is
similar to the feedforward process where the weighted sum of network values (or
signals) at layer k is propagated (through R(s)) to each connection at next layer k + 1.

The difference between the two rounds of propagation is that different propa-
gation functions are used. In the feedforward process, the propagation function is
just the activation function R(s) itself, while in the backpropagation process, the
propagation function is the gradient of the activation function: dR(s)/ds.

9.6.4 The BP Algorithm

Now that we have computed the gradients or partial derivatives of the error function
E, the BP algorithm is designed as following [1]:

1. Initialize all the weights wk
ij (for all i, j, k) on the network and the constant c with

some small random values.
2. Input a new training data: x = (x1, x2, …, xn) from a set of N training data.
3. Feedforward step. Compute the outputs at each layer starting from the input

layer:

ykj ¼ R
XMk�1

i¼0
wk
ijy

k�1
i

 !
j ¼ 1; 2; . . .;Mk; k ¼ 1; 2; . . .;K:

4. Backpropagation step. Compute the network sensors at each layer starting from
the output layer:

dKj ¼ yKj 1� yKj

� �
yKj � tj
� �

for layerKð Þ

222 9 Artificial Neural Network

and dki ¼ yki 1� yki
� � XMkþ 1

j¼1
dkþ 1
j wkþ 1

ij for k ¼ K � 1;K � 2; . . .; 2; 1ð Þ:

5. Update weights on the network by wk
ij wk

ij � cdkj y
k�1
i for all i, j, k.

6. Repeat steps 2 and 5 until all the weights wk
ij stop to change or stop to change

significantly.

Because the BP algorithm is a steepest gradient descent algorithm, choosing the
initial values forwk

ij and the constant c is crucial to the performance of a network. If the

initial values ofwk
ij are too far from the global minima, the algorithmmay converge to

a local minimum. Consequently, the result of class boundaries is not accurate. If the
initial value of the constant c is either too small or too big, the converging progress can
be very slow. In practice, several rounds of guessing the initial values of both the
weights and c may be required to achieve a desirable performance.

9.7 Convolutional Neural Network

An ordinary ANN does not take raw data as input; instead, it takes features as input
and classifies the data into classes based on their features. The features are com-
puted through a separated feature extraction process (handcrafted) and are given as
an n-dimensional feature vector. The reason behind this separation of feature
extraction and classification is that the data dimension is usually very larger, typ-
ically from tens of thousands to millions. Direct connection of raw data to an ANN
would make the network too complex and too expensive to compute with tradi-
tional computing power. Besides, the various data dimension is also a design issue
for such a combined ANN.

Nowadays, with the rapid increase of computation power, it is possible to
combine both the feature extraction and classification processes into a single neural
network. The idea is to integrate a feature extraction network in front of an ordinary
ANN. Because the feature extraction is typically done through the convolution of
local filters upon an image, an ANN with feature extraction functionality is called a
convolutional neural network or CNN for short.

9.7.1 CNN Architecture

The architecture of a CNN can be best demonstrated using the LeNet [3] in
Fig. 9.19. Basically, a CNN consists of a convolution network in front and a fully
connected MLP (multilayer perceptron, an ordinary ANN) at the backend.

Because each hidden unit in the convolutional network is only connected to a
local neighborhood (e.g., a clock) in the input image instead of every pixel, it is also
called a locally connected network. In contrast, in an ordinary ANN, each element

9.6 The Backpropagation Neural Network 223

of an input data is connected to each hidden unit in the network, so it is called fully
connected network.

The convolutional network is a repeat process of convolution and pooling as
shown in Fig. 9.19 [3]. Depending on the dimension of the input data, the repeti-
tions can occur for a number of rounds. In the following, we describe the CNN
architecture in detail.

9.7.2 Input Layer

• The input data are a set of training images x1, x2, …, xn.
• Each image x is a C-dimensional volume M � M � C, where M is the height and
width of the image and C is the number of channels.

• For the convenience of formulation, the height and width of the images are
assumed to be the same.

• Typically, the input is a RGB color image x = x [i, j, k] and C = 3.
• For a gray-level image, C = 1.

9.7.3 Convolution Layer 1 (C1)

In a CNN, the convolution is a high-dimensional volume convolution.

• Specifically, the convolution is done by shifting a high-dimensional volume filter
W: N � N � S across the image as shown in Fig. 9.20a, where N is the height and
width of the windowed filter and S is the number of channels of the filter.

• S can be either the same as the number of image channels C or different.
• It can be shown that a high-dimensional volume filter consists of S number of 2D
filters w with size of N � N.

• In practice, the convolution is done by convoluting each channel of the
high-dimensional volume filter with each channel of the input image.

• Each of these 2D filters w is meant to capture a particular type of edges, shapes,
or textures from the input image.

Input layer (C1) n1 feature maps (S1) n1 feature maps (C2) n2 feature maps (S2) n2

Convolution Pooling Convolution Pooling Fully connected MLP

maps

Fig. 9.19 Architecture of a CNN

224 9 Artificial Neural Network

• Figure 9.20b demonstrates how a volume convolution is done by a series of
2D convolution.

• In Fig. 9.20b, the input data is an image x with four channels A, B, C, and D.
• There are two high-dimensional volume filters w0 and w1 on the right-hand side,
each of the volume filters consists of four channels a, b, c, and d, which are
shown at the bottom left of Fig. 9.20 [3].

• The convolution between x and w0 (x * w0) is done by convoluting each of the
filter channels a, b, c, and d across each of the corresponding image channels A,
B, C, and D.

• The convolution of image x with filter w1: x * w1 is done the same way.

Input image volume

filter 1

Feature
map 1

Feature
map 2

Feature
map n

filter 2

w0

w0w1

w1

A
B

C
D

b
c

d

a

a

b

c

d

Input image x and its channels Filters wi & filtered images

(a)

(b)

Fig. 9.20 Volume convolution. a Demonstration of volume filter and high-dimensional
convolution; b demonstration of high-dimensional convolution x * w0 which can be done using
a series of 2D convolutions. Each of the filter channels a, b, c, and d is convoluted with each of the
corresponding image channels A, B, C, and D

9.7 Convolutional Neural Network 225

• Therefore, understanding 2D convolution is the key to understand
high-dimensional volume convolution.

9.7.3.1 2D Convolution

• A 2D convolution is done by sliding an N � N window w across the image x row
by row and column by column, assuming the window slides one pixel per time
and there is no padding for the moment.

• The 2D convolution of x * w is given by (9.24) and an example of a 2D
convolution is shown in Fig. 9.21 [4].

Xmn ¼ x � wð Þmn¼
XN�1
j¼0

XN�1
i¼0

w i; j½ � � x m� i; n� j½ � ð9:24Þ

9.7.3.2 Stride and Padding

• The dimensions of the convoluted image depend on two parameters: stride and
padding.

• The stride determines the number of pixels the filter window shifts per time and
the padding determines if and what the input image should be padded when the
filter window is at the image boundary, e.g., 0 padding.

• If the stride value is 1 and the padding is yes, the dimensions of the convoluted
image are the same as the input image.

• In Fig. 9.21, the stride is 1 and there is no padding, and therefore the convoluted
image loses two pixels at both ends of each row and column.

9.7.3.3 Bias

• In a CNN, the values in a filter w are regarded as the weights for the connections
between the filter and the network.

x w x

1 2 2 2 1 1 1
1 1 2 2 2 1 1
1 1 1 2 2 2 1
1 1 1 2 2 1 1
1 1 2 2 1 1 1
1 2 2 1 1 1 1
2 2 1 1 1 1 1

*
1 0 1
0 1 0
1 0 1

=

6 9 8 9 6
6 7 9 8 8
6 7 8 9 6
6 8 8 6 6
8 8 6 6 5

Fig. 9.21 2D convolution. An image x is convoluted with a filter window w and the result of the
convolution is given by x * w at the right-hand side

226 9 Artificial Neural Network

• These weights are to be learned during the training of the network.
• Therefore, a bias b is added to compensate for the estimation error.

X0mn ¼ x � wð Þmnþ b ¼ bþ
XN�1
j¼0

XN�1
i¼0

w i; j½ � � x m� i; n� j½ � ð9:25Þ

9.7.3.4 Volume Convolution in Layer C1

• Each of the S channels of the volume filter is first convoluted with each corre-
sponding channel of the input image x.

• The S filtered channels are then combined to create a 2D feature map or image
fmn.

fmn ¼
XS
k¼1

x � w :; :; k½ �ð Þmnþ b

¼ bþ
XS
k¼1

XN�1
j¼0

XN�1
i¼0

w i; j; k½ � � x m� i; n� j; k½ �
ð9:26Þ

9.7.3.5 Depth of the Feature Map Volume

• Multiple volume filters are used in a convolution layer to create a volume of
feature maps.

• Each of the volume filters captures a particular type of image features.
• The number of volume filters R is called the depth of the feature map volume.
• The rth feature map is given by (9.27), r = 0, 1, …, R − 1.

f rmn ¼ bþ
XS
k¼1

XN�1
j¼0

XN�1
i¼0

wr i; j; k½ � � x m� i; n� j; k½ � ð9:27Þ

• Figure 9.22 shows how two volume filters w0 and w1 are used in layer C1 to
create the two feature maps (light red) at the rightmost hand side [5].

• In the figure, the input image x is a color image with R, G, and B channels, each
of the two volume filters also has three channels. The figure demonstrates the
convolution of the three channels (green) of the first filter with a block (yellow) in
image x. The convolutional output of the yellow block of image x is shown as the
pink pixel in the first output image on the rightmost hand side of the figure.

• Although the input x is a 7 � 7 image, due to the stride value of the convolution
is 2, the filtered output is just a 3 � 3 image. Therefore, in order to output a
filtered image with the same size as the input image, we not only need to set the
stride value as 1 but also need to pad the image with half the filter size.

9.7 Convolutional Neural Network 227

9.7.3.6 ReLU Activation

• The output from a volume filter or the feature map is essentially the weighted sum
of the input layer.

• As in an ordinary neural network, it needs to pass an activation function.
• It has been found that in a convolution layer, the max(0, x) function is more
effective than a sigmoid function for the activation.

• max(0, x) is basically a rectified linear function because it simply rectifies or
refracts the negative half of y = x to 0.

• Therefore, it is often called a rectifier and a node activated by the rectifier is also
called a rectified linear unit or ReLU.

Input volume (7x7x3)

x[:, :, 1]

x[:, :, 2]

x[:, :, 3]

2 1 3 1 2 0 1
1 0 3 1 3 0 2
1 2 0 3 1 3 1
1 0 2 1 3 0 2
0 2 1 3 0 2 1
1 3 1 2 0 2 0
3 1 2 0 2 0 1

0 1 1 1 0 1 0
1 0 1 1 1 0 1
0 1 0 0 1 1 0
1 0 1 1 0 1 1
0 1 0 1 1 0 0
1 1 1 0 1 1 0
1 0 1 1 0 1 1

1 2 2 2 1 1 1
1 1 2 2 2 1 1
1 1 1 2 2 2 1
1 1 1 2 2 1 1
1 1 2 2 1 1 1
1 2 2 1 1 1 1
2 2 1 1 1 1 1

Filter w0 (3x3x3)

w0 [:, :, 1]
1 -1 0
0 -1 -1
1 0 0

w0 [:, :, 2]
0 0 0
1 0 0
1 1 0

w0 [:, :, 3]
1 0 -1
0 -1 0
-1 0 1

Bias

b0 = 3

Filter w1 (3x3x3)

w1[:, :, 1]
1 1 1
0 0 0
-1 -1 -1

w1[:, :, 2]
1 0 -1
1 0 -1
1 0 -1

 w1[:, :, 3]
1 0 1
0 1 0
1 0 1

Bias

b1 = -2

Output volume (3x3x2)

o[:, :, 1]
2 2 5
3 -6 0
4 3 -3

o[:, :, 2]
6 8 3
3 7 7
3 4 4

Fig. 9.22 An input image is convoluted with two volume filters w0 and w1. The two result feature
maps are at the rightmost hand side (light red). The stride value is 2 and there is no padding

228 9 Artificial Neural Network

• So, we have

ReLUðxÞ ¼ max 0; xð Þ ð9:28Þ

• The output from node r of layer C1 is finally given as (9.29)

yrmn ¼ ReLU f rmn
� � ð9:29Þ

• The ReLU activation is usually implemented as a separate layer after the con-
volution layer.

9.7.3.7 Batch Normalization
In a CNN, learning rate or convergence speed is a major issue. Due to the con-
volution, the range of output values of the filters in each layer varies widely. In
other words, the convolution has changed the original distribution of the input data,
breaking the independent and identically distributed or i.i.d. assumption on input
data. Worse still, each layer has to adapt to distribution drift from lower layers in
order to revise its own weights. This makes the learning very inefficient and con-
vergence very slow, especially for layers with sigmoid or tanh activation. This
phenomenon is called the internal covariance shift or the change of data distri-
bution from the input data distribution. In order to overcome this undesirable effect,
a batch normalization procedure is introduced before the activation layer in an
attempt to keep the mean and variance of the input data fixed, so that layers learn
themselves more or less independent with each other. The basic idea is to normalize
the input data of all layers in the network to have 0 mean and unit variance. In
practice, the normalization is done to the input data or data to be activated
dimension by dimension and batch by batch. Let us take a particular activation x (a
single dimension of the input data), for example, there are m values from a
mini-batch: B = {x1, x2, …, xm}. The algorithm of the batch normalization of x is
given as following [6]:

Input: Values of x from a mini-batch B = {x1, x2, …, xm}
Parameters to be learned: c, b

Output: Batch normalized values {yi = BNc,b(xi)}

lB 1
m

Pm
i¼1

xi ==mini�batchmean

r2B 1
m

Pm
i¼1
ðxi � lBÞ2 ==mini�batch variance

x̂i xi�lBffiffiffiffiffiffiffiffiffi
r2B þ e
p ==sample normalisation

BNc;b xið Þ ¼ yi cx̂i ==batch normalisation

9.7 Convolutional Neural Network 229

For convolution layers, the normalization is done by jointly normalizing all the
activations in a mini-batch over all locations. Specifically, the pair of parameters c
and b is learnt per feature map instead of per activation [6].

By batch normalization, the values of input features to each layer are normalized
into the same range, this reduces the oscillations of gradient descent when it
approaches the minimum point and consequently makes it to converge faster.
Another benefit of batch normalization is that it adds minor noise to each layer due
to each training sample is mixed with other samples in a mini-batch, and this
reduces the effect of overfitting. In practice, lower dropout rate is needed for a
network with batch normalization.

9.7.4 Pooling or Subsampling Layer 1 (S1)

The feature maps’ output from layer C1 usually has the same dimension as the input
image. Their dimensions are too high to be connected to an ANN. Besides, the
feature maps represent the finest details of the input image, these features are not as
reliable. Therefore, it is tempting to downsample the feature maps so that features at
a coarser level can be extracted. This is done by passing each feature map through a
2 � 2 subsampling function. Several types of subsampling functions can be used,
such as max(), average(), L2 norm, or spectral transform such as DWT and DCT.

For example, if the max function is used, the subsampling is called a max-
pooling. Figure 9.23 demonstrates a max-pooling which reduces a 4 � 4 feature
map to a 2 � 2 feature map.

9.7.5 Convolution Layer 2 (C2)

The outputs from the pooling layer 1 (S1) are subsampled feature maps from layer
C1. New features can be computed from those feature maps by doing another round
of convolution using new volume filters. The convolution procedure is the same as

2 3 9 5

5 1 6 7

 2 1 4 3

0 1 0 1

2 x 2 max-pooling
 5 9

 2 4

Fig. 9.23 Illustration of a max-pooling. The maximum value of each quarter block of the left
image is computed as the output value of the max-pooling image at the right-hand side

230 9 Artificial Neural Network

that in layer C1 except each volume filter in layer C2 uses different combinations of
feature maps from layer S1.

For example, in Fig. 9.24, the two volume filters w0 and w1 are convoluted with
different channels or feature maps output from layer S1. While filter w0 is convo-
luted with feature maps A–D, filter w1 is convoluted with feature maps C–F.

If the depth of S1 is R, the total number of combinations of R channels is given
as follows:

XR
k¼1

R
k

� �
¼ 2R � 1 ð9:30Þ

where k is the number of channels in a filter in layer C2.
The convolution and pooling can be repeated for a number of rounds depending

on the size of the input data. The feature maps from the final pooling layer are
flattened to create a 1D feature vector, this feature vector is fed into the fully
connected ANN at the backend of a CNN.

9.7.6 Hyperparameters

The performance of a CNN depends on the selection of the following hyperpa-
rameters. These parameters may be data dependent and need to be determined
empirically.

• Filter size. The window size of the volume filter.
• Stride. The number of pixels per shift by the filter window at each layer.
• Padding. Whether padding will be used at the boundary of an input image and a
feature map. What type of padding will be used, e.g., zero padding or wrap
around padding.

• Depths. The number of channels or filters at each convolution layer.

Feature maps from S1 Convolution and feature maps of C2

A
B

C

E
F

b
c

d

w0

w0
w1

w1D

a

Fig. 9.24 Volume convolution in layer C2. Volume filter w0 is convoluted with feature maps A–
D while volume filter w1 is convoluted with feature maps C–F

9.7 Convolutional Neural Network 231

• Dropout-rates. The percentage of neurons to be dropped out from each of the
hidden layers at each iteration to prevent overfitting and cope with missing data.

• Epochs. The number of times the training algorithm will iterate over the entire
training set before terminating.

• Pooling size and function. The size of a pooling function and the type of pooling
function such as max(), average(), L2 norm, etc.

• Activation function. The function used to generate a threshold output at each
layer, such as ReLU(), sigmoid, tanh(), etc.

• The number of neurons in the fully connected layer of the ANN.

9.8 Implementation of CNN

To demonstrate a CNN in action, we show a high-performance CNN implemen-
tation by Oxford’s Visual Geometry Group or VGGNet [7]. It has won the runner
up of the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[Image-Net.org]. ImageNet is the largest hand-annotated visual dataset, and it holds
image recognition competitions every year among researchers around the world.
Compared with other high-performance CNN models, VGGNet is known for its
simplicity because it is a series network.

9.8.1 CNN Architecture

The architecture of VGGNet is shown in the following list which is obtained by
using Matlab code: net = vgg16; net.Layers. The 16 core layers are highlighted
using bold font and are organized into five blocks: conv1—conv5. Therefore, it is
often referred to as VGG16. It is a typical stacked convolution + pooling layers
followed by fully connected ANN. The purpose of the softmax layer is to convert
any vector of real numbers into a vector of probabilities, which correspond to the
likelihoods that an input image is a member of a particular class.

01 ‘input’ Image Input 224 � 224 � 3 images with ‘zerocenter’
normalization

02 ‘conv1_1’ Convolution 64 3 � 3 � 3 convolutions with stride [1 1]
and padding [1 1 1 1]

03 ‘relu1_1’ ReLU ReLU

04 ‘conv1_2’ Convolution 64 3 � 3 � 64 convolutions with stride [1 1]
and padding [1 1 1 1]

05 ‘relu1_2’ ReLU ReLU

06 ‘pool1’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

07 ‘conv2_1’ Convolution 128 3 � 3 � 64 convolutions with stride [1 1]
and padding [1 1 1 1]

232 9 Artificial Neural Network

08 ‘relu2_1’ ReLU ReLU

09 ‘conv2_2’ Convolution 128 3 � 3 � 128 convolutions with stride [1 1]
and padding [1 1 1 1]

10 ‘relu2_2’ ReLU ReLU

11 ‘pool2’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

12 ‘conv3_1’ Convolution 256 3 � 3 � 128 convolutions with stride [1 1]
and padding [1 1 1 1]

13 ‘relu3_1’ ReLU ReLU

14 ‘conv3_2’ Convolution 256 3 � 3 � 256 convolutions with stride [1 1]
and padding [1 1 1 1]

15 ‘relu3_2’ ReLU ReLU

16 ‘conv3_3’ Convolution 256 3 � 3 � 256 convolutions with stride [1 1]
and padding [1 1 1 1]

17 ‘relu3_3’ ReLU ReLU

18 ‘pool3’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

19 ‘conv4_1’ Convolution 512 3 � 3 � 256 convolutions with stride [1 1]
and padding [1 1 1 1]

20 ‘relu4_1’ ReLU ReLU

21 ‘conv4_2’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

22 ‘relu4_2’ ReLU ReLU

23 ‘conv4_3’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

24 ‘relu4_3’ ReLU ReLU

25 ‘pool4’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

26 ‘conv5_1’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

27 ‘relu5_1’ ReLU ReLU

28 ‘conv5_2’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

29 ‘relu5_2’ ReLU ReLU

30 ‘conv5_3’ Convolution 512 3 � 3 � 512 convolutions with stride [1 1]
and padding [1 1 1 1]

31 ‘relu5_3’ ReLU ReLU

32 ‘pool5’ Max Pooling 2 � 2 max pooling with stride [2 2] and padding
[0 0 0 0]

33 ‘fc6’ Fully Connected 4096 fully connected layer

34 ‘relu6’ ReLU ReLU

35 ‘drop6’ Dropout 50% dropout

36 ‘fc7’ Fully Connected 4096 fully connected layer

37 ‘relu7’ ReLU ReLU

9.8 Implementation of CNN 233

VGGNet shows that the depth of the network is a critical component for good
performance. The number of filters (depth) increases from 64 to 512 as it goes
deeper into the network. The consecutive use of 3 � 3 convolutions has the effect of
causing more nonlinearity as more than one ReLU functions have been applied at
each stage of convolutions.

Another advantage of using consecutive convolutions is the increasing size of
the receptive field. This is because two consecutive 3 � 3 convolutions have the
effective receptive field of a single 5 � 5 convolution, while three-stacked 3 � 3
convolutions have the receptive field of a single 7 � 7 one [7].

9.8.2 Filters of the Convolution Layers

To validate a CNN, it is valuable to inspect and examine the internal structure of the
network. Figure 9.25 shows the first 64 pretrained filters from 6 layers of VGG16
net. It can be observed that the filters typically capture the blobs, edges, regularity,
directionality, and other features of an image. Filters in early layers (layers 2 and 7)
typically focus on pixels, blobs, and edges, as the network goes deeper, the filters
become coarser, where low-level features are organized into shapes and parts of
objects.

9.8.3 Filters of the Fully Connected Layers

If the convolution layers try to capture the texture and shape features from images,
the fully connected layers attempt to organize the features into objects. Figure 9.26a
and b shows the first 10 channels of layers “fc6” (layer 33) and “fc7” (layer 36),
respectively. This phenomenon of learning objects is more obvious in the final fully
connected layer where the class names are known (using Matlab code: net.Layers
(end).Classes). Figure 9.26c shows 20 channels from “fc8” (layer 39) with class
names as following: goldfish, tiger shark, hammerhead shark, ostrich, great gray
owl, African crocodile, mud turtle, academic gown computer keyboard, cowboy
boot, accordion, cowboy hat, crane (machine), crash helmet, ambulance, analog
clock, balloon, dining table, dumbbell, and acoustic guitar.

It can be observed from Fig. 9.26c that the signature patterns and shapes of these
objects are well captured. More interestingly, the filters have learnt multiple copies
of the same object to adapt to changes.

38 ‘drop7’ Dropout 50% dropout

39 ‘fc8’ Fully Connected 1000 fully connected layer

40 ‘prob’ Softmax softmax

41 ‘output’ Classification crossentropyex with ‘tench’ and 999 other classes

234 9 Artificial Neural Network

(c) Filters of layer 12 (d) Filters of layer 19

(e) Filters of layer 26 (e) Filters of layer 30

(a) Filters of layer 2 (b) Filters of layer 7

Fig. 9.25 Pretrained filters of 6 of the 13 VGG16 convolution layers

9.8 Implementation of CNN 235

(c) Layer ‘fc8’

(a) Layer ‘fc6’

(b) Layer ‘fc7’

Fig. 9.26 Filters of the fully
connected layers

236 9 Artificial Neural Network

9.8.4 Feature Maps of Convolution Layers

To further understand the implementation of a CNN, it is more revealing to examine
the convolution process by using a real input image. A CNN is basically a com-
bination of two components: convolution layers and fully connected layers. The
convolution layers are responsible for feature extraction and the fully connected
layers are responsible for the classification. The convolution component is the main
powerhouse of a CNN model. Given an input image, the different filters in the
convolution layers detect features such as edges, blobs, and regions, which repre-
sent eyes, ears, legs, feather, leaves, water, sand, windows, wheels, etc. The CNN
does not know if they are eyes, ears, legs, etc., it learns to detect them as features by
memorizing a lot of them in the input images. The fully connected layers learn how
to use these features to classify the images into different classes.

One important thing to note is that due to the nature of consecutive convolution
and pooling, the features leant from the CNN is evolutional or hierarchical. In other
words, the CNN is a learning process from fine features to coarse features. The
convolution layers learn such fine to coarse features by building on top of each
other. The first layers detect edges, the next layers combine them to detect shapes,
and the following layers merge shape information to infer objects such as eyes, ears,
legs, etc. Figure 9.27 demonstrates this evolutional process by showing the first 64
feature maps from each of the five blocks of the lady image in Fig. 3.2: conv1_2,
conv2_2, conv3_3, conv4_3, and conv5_1. It can be observed that the prominent
features (hat, face) in the image are well captured by the filters. It is interesting to
find that each filter captures different aspects of the image such as the surface and
outline of the hat, the face, eyes, cloth, hand, background, etc. It can also be seen
from the figure that the features from the first block of layers (conv1_1) are sparse
and show the fine details/edges of the image, and as the network goes deeper, the
features become coarser and coarser due to pooling, until the final block of layers
where only the most prominent features (e.g., eyes, mouth) in the input image
survive.

Figure 9.28 uses heat maps of the channels from each of the blocks to
demonstrate how the prominent features of a face image have been tracked by the
network. It can be seen that the eyes of the face are well tracked by the network and
as the network goes deeper, the face pattern becomes coarser and coarser until it is
completely blurred.

Although conventional feature extraction methods can also extract similar kind
of coarse features for classification, a CNN model can combine many types of such
kind of coarse features to form a set of more powerful features which lead to more
accurate classification.

Overfitting is a common problem on image classification because usually there
are too few training samples, resulting in a model with poor generalization

9.8 Implementation of CNN 237

(a) conv1_2 (b) conv2_2

(c) conv3_3 (d) conv4_3

(e) conv5_1

Fig. 9.27 Feature maps from different convolution layers of VGG16

238 9 Artificial Neural Network

performance. One solution to overfitting is to use data augmentation. Data aug-
mentation is a method to generate more training data from the current training set. It
is an artificial way to boost the size of the training set, reducing overfitting.

Data augmentation is typically done by data transformations and processing,
such as rotation, shifting, resizing, adding noise, contrast change, etc. It should be
noted that data augmentation is only performed on the training data, not on the
validation or test set.

9.8.5 Matlab Implementation

Matlab’s Deep Learning Toolbox™ has a number of built-in networks which are
pretrained on ImageNet, including ResNet-50, AlexNet, GoogleNet, VGG-16, and
VGG-19. The following is a code scheme of using VGG-16 for image classification
[8]. The code provides a step-by-step implementation of a CNN. Training images
need to be first categorized and organized into subfolders, and the name of each
subfolder represents the label of the image category, e.g., bird, people, tiger, etc.

conv1_1 conv2_2

conv3_3 conv4_3

conv5_1 conv5_3

Fig. 9.28 Channels from each of the five blocks of VGG16 net

9.8 Implementation of CNN 239

% Load the Pretrained VGG-16 network

net = vgg16();

net.Layers; %inspect the network architecture

% Extract and Display Feature Maps
% Extract the filters for convolutional layer 1: conv1_1
filter1 = net.Layers(2).Weights;
filter1 = mat2gray(filter1);
filter1 = imresize(filter1,5);
figure
montage(filter1)
title('First convolutional layer filters')

% Prepare Training and Testing Image Sets
% Loading images into an imageDataStore Object, e.g., rootFolder=c:\myImages,

subFolder=cnnImages, myFolder='c:\myImages\cnnImages'

myFolder = fullfile('rootFolder', 'subFolder');

categories = {'cat1', 'cat2',…, 'catn'};

imstore = imageDatastore(fullfile(myFolder, categories), 'LabelSource',

'foldernames');

% Split the dataset into training set (30%) and testing set (70%)
[trainingSet, testingSet] = splitEachLabel(imstore, 0.3, 'randomize');

% Normalise Dataset images to required size and RGB format
imSize = net.Layers(1).InputSize;
normTrainingSet = augmentedImageDatastore(imSize, trainingSet,
'ColorPreprocessing', 'gray2rgb');
normTestingSet = augmentedImageDatastore(imSize, testingSet,
'ColorPreprocessing', 'gray2rgb');

% Extract features from the last fully connected layer
fcFeature = 'fc8';
trainingFeatures = activations(net, normTrainingSet, fcFeature, ...

'MiniBatchSize', 32, 'OutputAs', 'columns');

% Train a Multiclass SVM Classifier Using the Extracted Features
% Get training labels from the trainingSet
trainingLabels = trainingSet.Labels;
classifier = fitcecoc(trainingFeatures, trainingLabels, ...
'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns');

% Test the SVM Classifier on New Images
newImage = imread(fullfile('rootFolder', 'subFolder', 'imageName'));

% Normalise the new images.
normImage = augmentedImageDatastore(imSize, newImage, 'ColorPreprocessing',
'gray2rgb');

% Extract image features using the CNN
imFeatures = activations(net, normImage, fcFeature, 'OutputAs', 'columns');

% Make a prediction using the classifier
label = predict(classifier, imFeatures, 'ObservationsIn', 'columns')

240 9 Artificial Neural Network

