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7. Mixture Models and
Expectation-Maximization



Motivation

e Often the introduction of latent (unobserved)
random variables into a model can help to express
complex (marginal) distributions

e A very common example are mixture models, in
particular Gaussian mixture models (GMM)

e Mixture models can be used for clustering
(unsupervised learning) and to express more
complex probability distributions

e As we will see, the parameters of mixture models
can be estimated using maximum-likelihood
estimation such as expectation-maximization
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K-means Clustering

* Given: data set 1X1,---,X~}, number of clusters K
e Goal: find cluster centers {u,,...,ux} so that

N K
T=3"5 rallxn — el

n=1 k=1

iIs minimal, where ., = 1 if x, IS assignhed to p,
e |dea: compute r,; and p, iteratively
e Start with some values for the cluster centers
* Find optimal assignments r,x
e Update cluster centers using these assignments
e Repeat until assignments or centers don’t change
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K-means Clustering

Initialize cluster means:  {g4q,..., ty}

KXRRK—XK XX
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K-means Clustering

Find optimal assignments:

1 if k= argmin; %, — .UjH
I'nk =
0 otherwise
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K-means Clustering

Find new optimal means: 0J

KARRKNK KK X
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K-means Clustering

Find new optimal assignments:

1 if k= argmin; %, — .UjH
Tk — .
0 otherwise

KARRKNK KK X
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K-means Clustering

Iterate these steps until means and
assignments do not change any more
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2D Example

e Real data set e Magenta line is “decision
e Random initialization boundary”
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The Cost Function

1000 |

d

500 f

| > 0 0 o o
1 2 3 4
® After every step the cost function J is minimized
* Blue steps: update assignments

e Red steps: update means

e Convergence after 4 rounds
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K-means for Segmentation

K=3 K'=10 Original image

- y

—
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K-Means: Additional Remarks

« K-means converges always, but the minimum is
not guaranteed to be a global one

* There is an online version of K-means

* After each addition of x,, the nearest center u, is

updated: new old ol

P =y n(Xe — py
* The K-medoid variant:

* Replace the Euclidean distance by a general measure
V. N K
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Mixtures of Gaussians

®* Assume that the data consists of K clusters
e The data within each cluster is Gaussian

®* For any data point x we introduce a K-dimensional
binary random variable z SO that:

Zp 2k = DN (x| gy, Sie)

p— 7Tk
where K

zke{(),l}, sz=1

k=1
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A Simple Example

1| - 1

0.5} 0.5}

e Mixture of three Gaussians with mixing coefficients
o | eft: all three Gaussians as contour plot

* Right: samples from the mixture model, the red
component has the most samples
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Parameter Estimation

* From a given set of training data {xi,...,xy} we
want to find parameters (71, x, 1y g 21, .K)

N K
p(X17°'°7XN|7T1 ..... K?l’l’l ..... K?zl ..... K):HZT‘-RN(X’R|“k7zk)

or, applying the logarithm:

N K
logp(X |, p,2) = > log ¥ melN (X | py, Si)
k=1

n=1

e However: this Is not as easy as maximum-
likelihood for single Gaussians!
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Problems with MLE for Gaussian Mixtures

®* Assume that for one & the mean pis exactly at a
data point x,

e For simplicity: assume that %, = o271
e Then: 1
\/ 2#0,?

* This means that the overall log-likelihood can be
maximized arbitrarily by letting 0. — 0 (overfitting)

e Another problem is the identifiability:
e The order of the Gaussians is not fixed, therefore:

N(Xn | Xnvgl%]) —

®* There are K! equivalent solutions to the MLE problem

PD Dr. Rudolph Triebel
Computer Vision Group



Overfitting with MLE for Gaussian Mixtures

‘ |

p(x)

& @

i

* One Gaussian fits exactly to one data point

e [t has a very small variance, i.e. contributes
strongly to the overall likelihood

e |n standard MLE, there is no way to avoid this!
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Expectation-Maximization

* EM is an elegant and powerful method for MLE
problems with latent variables

e Main idea: model parameters and latent variables
are estimated iteratively, where average over the
latent variables (expectation)

e A typical example application of EM is the
Gaussian Mixture model (GMM)

e However, EM has many other applications
e First, we consider EM for GMMs
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Expectation-Maximization for GMM

e First, we define the responsibilities:

Zznk =1

k
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = P(2nk = 1| x5

- WkN(Xn ‘ Hi > Zk)
o K
D iy TN (Xn | pj, 25)
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = P(2nk = 1| x5

- WkN(Xn ‘ Hi > Zk)
o K
D iy TN (Xn | pj, 25)

* Next, we derive the log-likelihood wrt. to u,, :

Olog p(X | m, u, )

!
=0
Oy,
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = P(2nk = 1| x5

- WkN(Xn ‘ Hi > Zk)
o K
D iy TN (Xn | pj, 25)

* Next, we derive the log-likelihood wrt. to u,, :
Olog p(X | 7, p, X3)
Oy,

and we obtain: B S A (2nk)Xn
Hi = N
y:n—1 ’Y(an)

|
=0
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Expectation-Maximization for GMM

e \We can do the same for the covariances:

Ologp(X | 7, p, X)

!
=0
0>}

and we obtain:
y:fj—l Y(Znk) (Xn — ) (Xn — Uk:)T
;:7]7\,[—1 V(2nk)
e Finally, we derive wrt. the mixing coefficients 7y :
Olog p(X | 7, p, %)
O

i =

K

|

— 0 where: E T = 1
k=1
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Expectation-Maximization for GMM

e \We can do the same for the covariances:

Ologp(X | 7, p, X)

!
=0
0>}

and we obtain:
y:fj—l Y(Znk) (Xn — ) (Xn — Uk:)T
;:7]7\,[—1 V(2nk)
e Finally, we derive wrt. the mixing coefficients 7y :
Olog p(X | 7, p, %)
O

i =

K
=0 where: > m=1
| N k=1
and the resultis:  m, = = v(zu)

n=1
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Algorithm Summary

1.Initialize means p,.covariance matrices X.and
mixing coefficients

2.Compute the initial log-likelihood logp(X | =, pu, %)
3. E-Step. Compute the responsibilities:
N (xn | pg, 2

Zj:l miN (xy, | 7% )

4. M-Step. Update the parameters:

N N new new N
new __ anl ’}/(an)Xn ynew __ anl ’}/(an)(Xn B H’ke )(Xn B I“l’ke )T new __ 1
— ko = T = N Z ¥ (2nk)

2521 ’7(an) ij:l ’V(an) n=1
5.Compute log-likelihood; if not converged go to 3.

PD Dr. Rudolph Triebel

Computer Vision Computer Vision Group



The Same Example Again

2 !

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Observations

* Compared to K-means, points can now belong to
both clusters (soft assignment)

e |n addition to the cluster center, a covariance Is
estimated by EM

e |nitialization is the same as used for K-means
* Number of iterations needed for EM is much higher
* Also: each cycle requires much more computation

e Therefore: start with K-means and run EM on the
result of K-means (covariances can be initialized to
the sample covariances of K-means)

* EM only finds a local maximum of the likelihood!
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A More General View of EM

®* Assume for a moment that we observe X and the
binary latent variables Z. The likelihood is then:

Remember:
K

X Z Z — n n T 72
p( ? ‘ T, 1, ) H p(Z ‘ W)p(X | > K ) Znk € {0,1}, Zznkzl

n=1

where p(z, | 7)) = Hﬁzw and Zn

K
p(Xn ‘ Zn, W, Z) — HN(Xn ‘ l’l’lmzk)znk Xn
k=1

which leads to the log-formulation: \ J

logp(X, Z | m, 1, 2) =Y > zur(logme +log N (x| g, X))
n=1 k=1
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The Complete-Data Log-Likelihood

N K

logp(X, Z | w1, 8) = » > znr(logmp + log N (xy | gy, Si))
n=1 k=1

* This Iis called the complete-data log-likelihood

e Advantage: solving for the parameters (7, py., >x)
IS much simpler, as the log Is inside the sum!

e We could switch the sums and then for every

mixture component £ only look at the points that
are associated with that component.

e This leads to simple closed-form solutions for the
parameters

®* However: the latent variables Z are not observed!
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The Main Ildea of EM

* |nstead of maximizing the joint log-likelihood, we
maximize its expectation under the latent variable
distribution:

e
2

1 (log p(X, Z | 7, 1, 5)] = 82 [2nk) (log 7 + 1og N (% | by, i)
k

il
|
— K

n

where the latent variable distribution per point is:

P(Xn | Zn, 0)p(zn | 6)
p(xn | 6)

— Hllil(ﬂlN(Xn ‘ I,l,ljzl))znl
>N (% |, )7

p(Zn ‘ Xnag) — 0 = (777/1’7 Z)
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The Main Ildea of EM

The expected value of the latent variables is:

L[ 2nk] = ¥(2nk)
plugging in we obtain:

N\

Czllogp(X, Z |7, p, X)) = Y(2znk)(log 7 + log N (x5, | by, X))

We compute this iteratively:

1. Initialize i =0, (7}, u},%})

2. Compute E[z,x] = v(znk)

3. Find parameters(=; ', ui™, 271 that maximize this

4. Increase i; If not converged, goto 2.
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The Theory Behind EM

* \We have seen that EM maximizes the expected
complete-data log-likelihood, but:

e Actually, we need to maximize the log-marginal
logp(X | 0) =log Y p(X,Z|6)
Z

e |t turns out that the log-marginal is maximized
implicitly!
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The Theory Behind EM

* \We have seen that EM maximizes the expected
complete-data log-likelihood, but:

e Actually, we need to maximize the log-marginal
logp(X | 0) =log Y p(X,Z|6)
Z

e |t turns out that the log-marginal is maximized
implicitly!

logp(X | 0) = L(q,0) + KL(q||p)

B o P2 0)
E(q,H)—EZ:q(Z)l 807 ] 7
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Visualization

L(q,0) Inp(X|0)

* The KL-divergence is positive or O
®* Thus, the log-likelihood is at least as large as L or:

®* £ is a lower bound of the log-likelihood:
logp(X | 0) > L(q,0)
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What Happens in the E-Step?

KL(¢g||lp) =0

L(q,8°'%) In p(X|6°'Y)

®* The log-likelihood is independent of ¢
® Thus: L is maximized iff KL is minimal
e Thisisthecaseiff ¢(Z)=p(Z]| X,0)
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What Happens in the M-Step?

L(q,6™™) Inp(X|6™)

®°|n the M -step we keep g fixed and find new @
L(q, Zp (Z | X,0°%)logp(X,Z | 6 Zq )log ¢(Z

e \We maX|m|ze the first term, the second IS mdep.

e This implicitly makes KL non-zero

* The log-likelihood is maximized even more!
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Visualization in Parameter-Space

Inp(X16)

L (q,0)

\

0 old 9 new

* In the E-step we compute the concave lower
bound for given old parameters 6°'¢ (blue curve)

e [n the M-step, we maximize this lower bound and
obtain new parameters 9"V

e This is repeated (green curve) until convergence
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Variants of EM

* |nstead of maximizing the log-likelihood, we can
use EM to maximize a posterior when a prior is

given (MAP instead of MLE) = less overfitting

* |n Generalized EM, the M-step only increases the
lower bound instead of maximization (useful if
standard M-step is intractable)

e Similarly, the E-step can be generalized in that the
optimization wrt. g is not complete

e Furthermore, there are incremental versions of EM,
where data points are given sequentially and the
parameters are updated after each data point.
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Example 1: Learn a Sensor Model

- A Radar range finder on a metallic target will
returns 3 types of measurement:

* The distance to target
e The distance to the wall behind the target
* A completely random value

0 5 10 15 20

12,6293, 4.24577
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Example 1: Learn a Sensor Model

- Which point corresponds to from which model?
- What are the different model parameters?
« Solution: Expectation-Maximization

e
++ +H

+
+ + M N i
" + - R PR
F-H- + + + H + + + + 4+ + + + + + +—.
£ +F + + + + - + % + + +
i # o+ L e+ o+ +F c et R tohy Tt ¥ LA
+ + +
_+_
t,oh
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Example 2: Environment Classification

‘\ Y
" K ¥
¥ .':'(‘_ 1
4

: S - e e s e »
. - . § 2 A0 N el RN P& P T s 2 R ARV - e T
G A ) 2o Btk AN < ’ Mo = G oy . %

* From each image, the robot extracts -
features: => points in ND space

0.3

- K-means only finds the cluster
centers, not their extent and shape

0.15

 The centers and covariances can .

be obtained with EM ‘ — o
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Example 3: Plane Fitting in 3D

* Has been done in this paper
e Given a set of 3D points, fit planes into the data

e |dea: Model parameters 0 are normal vectors and
distance to origin for a set of planes

e Gaussian noise model: p(z | 0) = N(d(z,0) | 0,0)

point-to-plane noise
distance variance

* Introduce latent correspondence
variables C;; and maximize the expected log-lik.:

U[logp(Z,C | 0)

e Maximization can be done in closed form
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http://edlab-www.cs.umass.edu/cs589/2010-lectures/thrun.3D-EM.pdf

Example 3: Plane Fitting in 3D
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Summary

- K-means is an iterative method for clustering

- Mixture models can be formalized using latent
(unobserved) variables

- A very common example are Gaussian mixture
models (GMMSs)

- To estimate the parameters of a GMM we can
use expectation-maximization (EM)

- In general EM can be interpreted as maximizing
a lower bound to the complete-data loglikelihood

- EM Is guaranteed to converge, but it may run
into local maxima
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