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Motivation

• Often the introduction of latent (unobserved) 
random variables into a model can help to express  
complex (marginal) distributions  

• A very common example are mixture models, in 
particular Gaussian mixture models (GMM) 

• Mixture models can be used for clustering 
(unsupervised learning) and to express more 
complex probability distributions 

• As we will see, the parameters of mixture models 
can be estimated using maximum-likelihood 
estimation such as expectation-maximization
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K-means Clustering

• Given: data set                    , number of clusters K 
• Goal: find cluster centers                      so that  
 
 
 
is minimal, where             if      is assigned to       

• Idea: compute       and      iteratively 

• Start with some values for the cluster centers 

• Find optimal assignments 

• Update cluster centers using these assignments 

• Repeat until assignments or centers don’t change 
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J =
NX

n=1

KX

k=1

rnkkxn � µkk

{x1, . . . ,xN}

{µ1, . . . ,µK}

rnk = 1 xn µk

rnk µk

rnk
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K-means Clustering
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{µ1, . . . ,µK}Initialize cluster means:
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

K-means Clustering
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Find optimal assignments:
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@J

@µk

= 2
NX

n=1

rnk(xn � µk)
!
= 0

) µk =

PN
n=1 rnkxnPN
n=1 rnk

K-means Clustering
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Find new optimal means:



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

K-means Clustering

7

rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

Find new optimal assignments:
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K-means Clustering
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Iterate these steps until means and 
assignments do not change any more



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

2D Example
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• Real data set 
• Random initialization

• Magenta line is “decision 
boundary”
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The Cost Function

• After every step the cost function J is minimized 

• Blue steps: update assignments 

• Red steps: update means 

• Convergence after 4 rounds
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K-means for Segmentation
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• K-means converges always, but the minimum is 
not guaranteed to be a global one 

• There is an online version of K-means  

•After each addition of xn, the nearest center μk is 

updated: 

• The K-medoid variant: 

•Replace the Euclidean distance by a general measure 
V.

K-Means: Additional Remarks
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µnew

k = µold

k + ⌘n(xn � µold

k )

J̃ =
NX

n=1

KX

k=1

rnkV(xn,µk)
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Mixtures of Gaussians

• Assume that the data consists of K clusters 

• The data within each cluster is Gaussian 

• For any data point x we introduce a K-dimensional 

binary random variable z so that:  
 
 
 
where  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zk 2 {0, 1},
KX

k=1

zk = 1

p(x) =
KX

k=1

p(zk = 1)| {z }
=:⇡k

N (x | µk,⌃k)
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A Simple Example

• Mixture of three Gaussians with mixing coefficients 

• Left: all three Gaussians as contour plot 

• Right: samples from the mixture model, the red 
component has the most samples
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Parameter Estimation

• From a given set of training data                    we 
want to find parameters 
so that the likelihood is maximized (MLE):  
 
 
 
or, applying the logarithm:  

• However: this is not as easy as maximum-
likelihood for single Gaussians!
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{x1, . . . ,xN}
(⇡1,...,K ,µ1,...,K ,⌃1,...,K)

p(x1, . . . ,xN | ⇡1,...,K ,µ1,...,K ,⌃1,...,K) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

log p(X | ⇡,µ,⌃) =
NX

n=1

log

KX

k=1

⇡kN (xn | µk,⌃k)
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Problems with MLE for Gaussian Mixtures

• Assume that for one k the mean     is exactly at a 
data point 

•For simplicity: assume that  

•Then:   

•This means that the overall log-likelihood can be 
maximized arbitrarily by letting              (overfitting)            

• Another problem is the identifiability: 

•The order of the Gaussians is not fixed, therefore: 

•There are K! equivalent solutions to the MLE problem
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µk

xn

⌃k = �2
kI

�k ! 0

N (xn | xn,�
2
kI) =

1p
2⇡�D
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Overfitting with MLE for Gaussian Mixtures

• One Gaussian fits exactly to one data point 

• It has a very small variance, i.e. contributes 
strongly to the overall likelihood 

• In standard MLE, there is no way to avoid this!
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Expectation-Maximization

• EM is an elegant and powerful method for MLE 
problems with latent variables 

• Main idea: model parameters and latent variables 
are estimated iteratively, where average over the 
latent variables (expectation) 

• A typical example application of EM is the 
Gaussian Mixture model (GMM) 

• However, EM has many other applications 

• First, we consider EM for GMMs

18
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Expectation-Maximization for GMM

• First, we define the responsibilities:

19

�(znk) = p(znk = 1 | xn) znk 2 {0, 1}
X

k

znk = 1
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Expectation-Maximization for GMM

• First, we define the responsibilities:

20

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     : 
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�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     :  
 
 
 
and we obtain: 

22

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0

µk =

PN
n=1 �(znk)xnPN
n=1 �(znk)
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where: 
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@log p(X | ⇡,µ,⌃)
@⌃k

!
= 0

⌃k =

PN
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T

PN
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where:  
 
and the result is:  
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@log p(X | ⇡,µ,⌃)
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Algorithm Summary

1.Initialize means     covariance matrices     and 
mixing coefficients 

2.Compute the initial log-likelihood 

3. E-Step. Compute the responsibilities:  
 
 

4. M-Step. Update the parameters: 
 

5.Compute log-likelihood; if not converged go to 3.
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=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

�(znk)

log p(X | ⇡,µ,⌃)

µk ⌃k

⇡k

µnew
k =

PN
n=1 �(znk)xnPN
n=1 �(znk)

⌃new
k =

PN
n=1 �(znk)(xn � µnew

k )(xn � µnew
k )T

PN
n=1 �(znk)

⇡new
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N

NX

n=1

�(znk)
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The Same Example Again

26
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Observations

• Compared to K-means, points can now belong to 
both clusters (soft assignment) 

• In addition to the cluster center, a covariance is 
estimated by EM 

• Initialization is the same as used for K-means 

• Number of iterations needed for EM is much higher 

• Also: each cycle requires much more computation 

• Therefore: start with K-means and run EM on the 
result of K-means (covariances can be initialized to 
the sample covariances of K-means) 

• EM only finds a local maximum of the likelihood!
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Remember: 

znk 2 {0, 1},
KX

k=1

znk = 1

A More General View of EM

• Assume for a moment that we observe X and the 

binary latent variables Z. The likelihood is then:  
 
 
 
where                                and 
 
 
 
 
which leads to the log-formulation:
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p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)

p(zn | ⇡) =
KY

k=1

⇡znk
k

p(xn | zn,µ,⌃) =
KY

k=1

N (xn | µk,⌃k)
znk

log p(X,Z | ⇡,µ,⌃) =
NX

n=1

KX

k=1

znk(log ⇡k + logN (xn | µk,⌃k))
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The Complete-Data Log-Likelihood

• This is called the complete-data log-likelihood 

• Advantage: solving for the parameters  
is much simpler, as the log is inside the sum! 

• We could switch the sums and then for every 

mixture component k only look at the points that 
are associated with that component. 

• This leads to simple closed-form solutions for the 
parameters 

• However: the latent variables Z are not observed!
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log p(X,Z | ⇡,µ,⌃) =
NX

n=1

KX

k=1

znk(log ⇡k + logN (xn | µk,⌃k))

(⇡k,µk,⌃k)
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The Main Idea of EM

• Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 
 
 
 
where the latent variable distribution per point is:
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EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

EZ [znk](log ⇡k + logN (xn | µk,⌃k))

p(zn | xn,✓) =
p(xn | zn,✓)p(zn | ✓)

p(xn | ✓) ✓ = (⇡,µ,⌃)

=

QK
l=1(⇡lN (xn | µl,⌃l))znl

PK
j=1 ⇡jN (xn | µj ,⌃j)( )znj
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The Main Idea of EM

The expected value of the latent variables is: 

plugging in we obtain: 

We compute this iteratively: 

1. Initialize 

2. Compute 

3. Find parameters                        that maximize this 

4. Increase i;  if not converged, goto 2. 
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E[znk] = �(znk)

EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

�(znk)(log ⇡k + logN (xn | µk,⌃k))

E[znk] = �(znk)

i = 0, (⇡i
k,µ

i
k,⌃

i
k)

(⇡i+1
k ,µi+1

k ,⌃i+1
k )
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The Theory Behind EM

• We have seen that EM maximizes the expected 
complete-data log-likelihood, but: 

• Actually, we need to maximize the log-marginal 

• It turns out that the log-marginal is maximized 
implicitly!

32

log p(X | ✓) = log

X

Z

p(X,Z | ✓)
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The Theory Behind EM

• We have seen that EM maximizes the expected 
complete-data log-likelihood, but: 

• Actually, we need to maximize the log-marginal 

• It turns out that the log-marginal is maximized 
implicitly!
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log p(X | ✓) = log

X

Z

p(X,Z | ✓)

log p(X | ✓) = L(q,✓) + KL(qkp)

L(q,✓) =
X

Z

q(Z) log

p(X,Z | ✓)
q(Z)

KL(qkp) = �
X

Z

q(Z) log

p(Z | X,✓)

q(Z)
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Visualization

• The KL-divergence is positive or 0 

• Thus, the log-likelihood is at least as large as L or: 

•L is a lower bound of the log-likelihood:

34

log p(X | ✓) � L(q,✓)
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What Happens in the E-Step?

• The log-likelihood is independent of q 
• Thus: L is maximized iff KL is minimal 

• This is the case iff 

35

q(Z) = p(Z | X,✓)
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What Happens in the M-Step?

• In the M-step we keep q fixed and find new  

• We maximize the first term, the second is indep.  

• This implicitly makes KL non-zero 

• The log-likelihood is maximized even more! 

36

L(q,✓) =
X

Z

p(Z | X,✓old

) log p(X,Z | ✓)�
X

Z

q(Z) log q(Z)

✓
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Visualization in Parameter-Space

• In the E-step we compute the concave lower 
bound for given old parameters        (blue curve) 

• In the M-step, we maximize this lower bound and 
obtain new parameters  

• This is repeated (green curve) until convergence

37

✓old

✓new
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Variants of EM

• Instead of maximizing the log-likelihood, we can 
use EM to maximize a posterior when a prior is 

given (MAP instead of MLE) ⇒ less overfitting 

• In Generalized EM, the M-step only increases the 
lower bound instead of maximization (useful if 
standard M-step is intractable) 

• Similarly, the E-step can be generalized in that the 
optimization wrt. q is not complete 

• Furthermore, there are incremental versions of EM, 
where data points are given sequentially and the 
parameters are updated after each data point.
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• A Radar range finder on a metallic target will 
returns 3 types of measurement: 

•The distance to target 

•The distance to the wall behind the target 

•A completely random value

Example 1: Learn a Sensor Model
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• Which point corresponds to from which model? 

• What are the different model parameters? 

• Solution: Expectation-Maximization

Example 1: Learn a Sensor Model

40
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Example 2: Environment Classification

• From each image, the robot extracts  
features: => points in nD space 

• K-means only finds the cluster  
centers, not their extent and shape 

• The centers and covariances can  
be obtained with EM
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Example 3: Plane Fitting in 3D

• Has been done in this paper 

• Given a set of 3D points, fit planes into the data 

• Idea: Model parameters    are normal vectors and 
distance to origin for a set of planes 

•  Gaussian noise model: 

• Introduce latent correspondence  
variables        and maximize the expected log-lik.: 

• Maximization can be done in closed form

42

✓

p(z | ✓) = N (d(z, ✓) | 0,�)

point-to-plane 
distance

noise 
variance

Cij

E[log p(Z,C | ✓)]

http://edlab-www.cs.umass.edu/cs589/2010-lectures/thrun.3D-EM.pdf
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Example 3: Plane Fitting in 3D
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! K-means is an iterative method for clustering 

! Mixture models can be formalized using latent 
(unobserved) variables 

! A very common example are Gaussian mixture 
models (GMMs) 

! To estimate the parameters of a GMM we can 
use expectation-maximization (EM) 

! In general EM can be interpreted as maximizing 
a lower bound to the complete-data loglikelihood 

! EM is guaranteed to converge, but it may run 
into local maxima

Summary
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