Security at the Transport Layer: SSL and

TLS

Sachin Tripathi

1IT(ISM), Dhanbad

e

™~
Introduction

Transport layer security provides end-to-end security services for applications
that use a reliable transport layer protocol such as TCP.

The idea Is to provide security services for transactions on the Internet. For
example, when a customer shops online, the following security services are
desired:

The customer needs to be sure that the server belongs to the actual vendor, not
an impostor. The customer does not want to give an impostor her credit card
number (entity authentication).

The customer and the vendor need to be sure that the contents of the message are
not modified during transmission (message integrity).

The customer and the vendor need to be sure that an impostor does not intercept
sensitive information such as a credit card number (confidentiality).

e

N

™~

Location of SSL and TLS in the Internet

model

Application layer \

SSL or TLS

O One of the goals of these protocols is to provide server and client authenticatio
data confidentiality, and data integrity.

n,

O Application-layer client/server programs, such as Hypertext Transfer Protocol

(HTTP), that use the services of TCP can encapsulate their data in SSL packets.

/

d

If the server and client are capable of running SSL (or TLS) programs
then the client can use the URL https://... instead of http://... to allow
HTTP messages to be encapsulated in SSL (or TLS) packets.

4 ™
Secure Socket Layer (SSL)

L SSL is designed to provide security and compression services to data generated
from the application layer.

O Typically, SSL can receive data from any application layer protocol, but usually
the protocol is HTTP.

O The data received from the application is compressed (optional), signed, and
encrypted. The data is then passed to a reliable transport layer protocol such as
TCP.

e

SSL ARCHITECTURE

Services

SSL provides several services on data received from the application layer.

O Fragmentation
First, SSL divides the data into blocks of 214 bytes or less.

0 Compression
Each fragment of data is compressed using one of the lossless compression
methods negotiated between the client and server. This service is optional.

O Message Integrity
To preserve the integrity of data, SSL uses a keyed-hash function to create a
MAC.

O Confidentiality To provide confidentiality, the original data and the MAC are
encrypted using symmetric key cryptography.

0 Framing A header is added to the encrypted payload. The payload is then

passed to a reliable transport layer protocol.

/

Key Exchange Algorithms

O To exchange an authenticated and confidential message, the client and the server
each need six cryptographic secrets (four keys and two initialization vectors).
However, to create these secrets, one pre-master secret must be established

between the two parties. SSL defines six key-exchange methods to establish this
pre master secret:

Key-exchange methods

Ky
Exchange
Algorithms
| | | | I
Anonymous Ephemeral Fixed
NULL RSA Diffie- Dnffie- Diffie- Fortezza
Hellman Hellman Hellman

Encryption RS5A or DSS E5A or D55

e

NULL

There is no key exchange in this method. No pre-master secret is established
between the client and the server

Note:-Both client and server need to know the value of the pre-master secret.

RSA

In this method, the pre-master secret is a 48-byte random number created
by the client, encrypted with the server’s RSA public key, and sent to the
server. The server needs to send its RSA encryption/decryption certificate

5 lch Encrypted with server’s public key —
Client | Server

| Iqﬂ-

| | Pre-masier secret |‘

RSA key exchange; server public key

4 N

Anonymous Diffie-Hellman

O This is the simplest and most insecure method.

O The pre-master secret is established between the client and server using the
Diffie-Hellman (DH) protocol.

O The Diffie Hellman half-keys are sent in plaintext. It is called anonymous
Diffie-Hellman because neither party is known to the other.

O Disadvantage of this method is the man-in-the-middle attack.

il

b

Server

Client %
1]

- L

npE >

Pre-master: ¢ mod p

C OO0 O

Ephemeral Diffie-Hellman

To thwart the man-in-the-middle attack, the ephemeral Diffie-Hellman key
exchange can be used.

Each party sends a Diffie-Hellman key signed by its private key.

The receiving party needs to verify the signature using the public key of the
sender.

The public keys for verification are exchanged using either RSA or DSS
digital signature certificates.

sig: Signed with server public key
| —
f_’]ium% sig_: Signed with client public key N Qarver
= —

< Sig, (g.p.)

Sig_{g, p, £) »

Pre-master: g

a

C O O 00 O

Fixed Diffie-Hellman

Another solution is the fixed Diffie-Hellman method.

All entities in a group can prepare fixed Diffie-Hellman parameters (g and
p).

Then each entity can create a fixed Diffie-Hellman half-key (g*).

For additional security, each individual half-key is inserted into a certificate
verified by a certification authority (CA).

In other words, the two parties do not directly exchange the half-keys; the
CA sends the half-keys in an RSA or DSS special certificate.

When the client needs to calculate the pre-master, it uses its own fixed half-
key and the server half-key received in a certificate.

The server does the same, but in the reverse order. Note that no key-
exchange messages are passed in this method; only certificates are
exchanged.

Fortezza

Fortezza (derived from the Italian word for fortress) is a registered trademark
of the U.S. National Security Agency (NSA). It is a family of security
protocols developed for the Defense Department

Encryption/Decryption Algorithms

O There are several choices for the encryption/decryption algorithm.

L We can divide the algorithms into 6 groups

O All block protocols use an 8-byte initialization vector (1V) except for
Fortezza, which uses a 20-byte 1V.

Encryption
Algorithms

|

Stream I ‘ Block Block I ‘ Block Block I

‘ NULL I RC4 R(C? DES IDEA Fortezza

I: RC4 40 RC2_CBC_40 DES40 CBC IDEA_CBC FORTEZZA_CBC
RC4 128 DES_CBC
IDES_EDE_CBC

O NULL
The NULL category simply defines the lack of an encryption/decryption

algorithm.

O Stream RC
Two RC algorithms are defined in stream mode: RC4-40 (40-bit

key) and RC4-128 (128-bit key).

d Stream RC
One RC algorithm is defined in block mode: RC2_CBC 40 (40-bit

key).

e

O DES

All DES algorithms are defined in block mode.
DES40 _CBC uses a 40-bit key.

Standard DES is defined as DES CBC.
3DES EDE_CBC uses a 168-bit key.

D IDEA

The one IDEA algorithm defined in block mode is IDEA CBC, with a 128-
bit key.

d Fortezza

The one Fortezza algorithm defined in block mode is FORTEZZA CBC,
with a 96-bit key.

™~
Hash Algorithms

SSL uses hash algorithms to provide message integrity (message authentication).
Three hash functions are defined, as shown below

Hash
Algorithms

‘ NULL | ‘ DS I ‘ SHA-1 I

e

Null:-The two parties may decline to use an algorithm. In this case, there is no
hash function and the message is not authenticated.

MD5:-The two parties may choose MD5 as the hash algorithm. In this case, a
128-key MD5 hash algorithm is used.

SHA-1:-The two parties may choose SHA as the hash algorithm. In this case, a
160-bit SHA-1 hash algorithm is used.

Cipher Suite

The combination of key exchange, hash, and encryption algorithms
defines a cipher suite for each SSL session.

SSL cipher suite list

Cipher suite Key Exchange | Encrypiion Huash
S5L_NULL_WITH_NULL_NULL NULL NMULL MULL
SEL_RSA WITH _MNULL_MDS RSA MULL MDA
SEL_RSA_WITH _MULL_SHA RSA MULL SHA-1
S5L RSA WITH RC4 128 MDS RSA RC4 MD5
S5L RSA CWITH _RC4 128 SHA RSA RC4 SHA-1
S5L RSA WITH _IDEA_CBC_SHA RSA IDEA SHA-1
SS5L_RSA_WITH_DES CBC_SHA RSA DES SHA-1
SS5L_RSA_WITH_3DES_EDE_CBC_SHA RSA IDES SHA-1
SEL_DH_anmon WITH_RC4 _128_MD35 DH_anon RC4 MD35
S5L DH anon WITH_DES CBC_SHA DH_anon DES SHA-1
S5L DH_anon WITH_3DES _EDE CBC_SHA DH_anon IDES SHA-1
S5L DHE _RSA WITH_DES CBC_SHA DHE_RSA DES SHA-1
S5L_DHE_R3A_WITH_3DES_EDE_CBC_SHA DHE_RSA IDES SHA-1
S5L_DHE_DSS WITH_DES_CBC_SHA DHE_DS5 DES SHA-1
SEL_DHE_DSS WITH_ADES EDE CBC_SHA DHE_DSS IDES SHA-1L
S5L DH RSA WITH _DES CBC_SHA DH _RSA DES SHA-1
S5L DH_RSA WITH_3DES _EDE CBC_SHA DH_RSA IDES SHA-1
S5L DH_DS5 WITH _DES CBC_SHA DH_DSS DES SHA-1
SS5L_DH_DS5 WITH_3DES_EDE_CBC_SHA DH_DSS IDES SHA-1
SS5L_FORTEZZA _DMS WITH_NULL_SHA Fortezza MULL SHA-1
SS5L_FORTEZZA _DMS WITH_FORTEZZA _CBC_SHA Fortezza Fortezza SHA-1L
SS5L_FORTEZZA DMS WITH_RC4 128 SHA Fortezza RC4 SHA-1

Each suite starts with the term “SSL” followed by the key exchange
algorithm. The word “WITH” separates the key exchange algorithm from
the encryption and hash algorithms.

Compression Algorithms

O Compression is optional in SSLv3. No specific compression algorithm is
defined for SSLv3. Therefore, the default compression method is NULL.
However, a system can use whatever compression algorithm it desires.

e

Cryptographic Parameter Generation

oo O O

A\

>

To achieve message integrity and confidentiality, SSL needs six
cryptographic secrets, four keys and two I1Vs.

The client needs one key for message authentication (HMAC), one key
for encryption, and one IV for block encryption.

The server needs the same.

SSL requires that the keys for one direction be different from those for
the other direction. If there is an attack in one direction, the other
direction is not affected. The parameters are generated using the
following procedure:

The client and server exchange two random numbers; one is created by
the client and the other by the server.

The client and server exchange one pre-master secret using one of the
key exchange algorithms.

» A 48-byte master secret is created from the pre-master secret by

applying two hash functions (SHA-1 and MD5)

™~

» The master secret is used to create variable-length key material by
applying the same set of hash functions and prepending with different
constants as shown in Figure below. The module is repeated until key
material of adequate size is created.

» Six different keys are extracted from the key material, as shown in
Figure below

Calculation of master secret from pre-master secret

A" || M | |cr||sr| [*BB"|| PM ||cR|[sR| [«ccc|| M | [cR||sr
| [| 1 1 |

ki i

PM

w
PM: Pre-master Secret

| |
Master secrat SR Server Random Number

(48 bytes) CR: Client Random Number

The module is repeated until key material of adequate size is created

e

Calculation of key material from master secret

“a” || M | cr||sr| [*BB"|[M ||CR||SR| .. [0
| | 1 1 |
4
SHA-1 SHA-1
En - B
| | | | 1
MDS MDD

|

SE: Server Random Number
Eey Material CR: Client Random Number

Note that the length of the key material block depends on the cipher suite selected
and the size of keys needed for this suite.

Auth. Key: Authentication Key

Enc. Key: Encryption Key

IV Imitialization Vector

ey Material

| I

Client
Auth. Key

Server
Auth. Key

Client Server Client Server
Enc. Key Enc. Key [V IV

e
Sessions and Connections

d SSL differentiates a connection from a session.
Let us elaborate on these two terms here.

A session is an association between a client and a server. After a session is
established, the two parties have common information such as the session
identifier, the certificate authenticating each of them (if necessary), the
compression method (if needed), the cipher suite, and a master secret that is
used to create keys for message authentication encryption. For two entities
to exchange data, the establishment of a session is necessary, but not
sufficient; they need to create a connection between themselves.

O The two entities exchange two random numbers and create, using the
master secret, the keys and parameters needed for exchanging messages
involving authentication and privacy. By allowing a session to be
suspended and resumed, the process of the master secret calculation can be
eliminated.

A session can consist of many connections.

O A connection between two parties can be terminated and reestablished
within the same session.

When a connection is terminated, the two parties can also terminate the
session, but it is not mandatory.

A session can be suspended and resumed again.

To create a new session, the two parties need to go through a negotiation
process.

To resume an old session and create only a new connection, the two parties
can skip part of the negotiation process and go through a shorter one.

There is no need to create a master secret when a session is resumed. The
separation of a session from a connection prevents the high cost of creating
a master secret

o O OO0 O

In a session, one party has the role of a client and the other the role of a server;
In a connection, both parties have equal roles, they are peers. .

A session and connections

Client Eﬂ

'='| Server
=

Sessi0n
Connection : Conniection
state Coang state
Session '
slate "
Connection , Connection
state Coang state

Session
slate

Session State

A session is defined by a session state, a set of parameters established
between the server and the client.

Session state parameters

Parameter Description
Sesswon [D A server-chosen 8-bit number defining a session.
Peer Certificate A certificate of type X509.v3, This parameter may by empty (null).
Compression Method The compression method.
Cipher Suite The agreed-upon cipher suite.
Master Secret The 458-byte secret.
[s resumable A yes-no Hag that allows new connections in an old session.

Connection State

d

o O 0O O

A\

A connection is defined by a connection state, a set of parameters
established between two peers.

SSL uses two attributes to distinguish cryptographic secrets: write and
read.

The term write specifies the key used for signing or encrypting
outbound messages.

The term read specifies the key used for verifying or decrypting
Inbound messages.

The write key of the client is the same as the read key of the server;
the read key of the client is the same as the write key of the server.

The client and the server have six different cryptography secrets: three
read secrets and three write secrets. The read secrets for the client are
the same as the write secrets for the server and vice versa.

Connection state parameters

Parameter Description

server and chient random A sequence of bytes chosen by the server and chent for

numbers cach connection,

server write MAC secret The outbound server MAC key for message integnity. The
server uses it to sign; the chent uses it to venty.

Chent wnte MAC secret The outbound chent MAC key for message integrity. The
client uses it to sign; the server uses it to verity.

Server write secret The outbound server encryption key tor message integrity.

Chient wrte secret The outbound chent encryption key for message integnity.

Imtialization vectors The block ciphers in CBC mode use immhalization vectors

(I1Vs). One imtalization vector 1s detined for each cipher
key durning the negotiation, which 1s used tor the first block
exchange. The final cipher text from a block 15 used as the
IV tor the next block.

Sequence numbers Each party has a sequence number. The sequence number
starts from 0 and increments. It must not exceed 24— 1.

Four SSL Protocols

: Application layer -
___ i
Handshake ChangeCipherSpec Alert
Protocaol Protocol Protocol
S5L

Handshake Protocol

O The Handshake Protocol uses messages to negotiate the cipher suite, to
authenticate the server to the client and the client to the server if needed, and

to exchange information for building the cryptographic secrets. The
handshaking is done in four phases

E'Iiunlg
o 1%

Phase 1

Phase [11

Establishing Security Capabilities
Server authentication and key exchange
Client authentication and key exchange

Finalizing the Handshake Protocol

Server

Il

Phase 11

Phase IV

e

Phase |: Establishing Security
Capability

O In Phase I, the client and the server announce their security capabilities and
choose those that are convenient for both.

In this phase, a session ID is established and the cipher suite is chosen.

The parties agree upon a particular compression method.

Finally, two random numbers are selected, one by the client and one by the
server, to be used for creating a master secret as we saw before.

Two messages are exchanged in this phase: ClientHello and ServerHello

messages

O OO0

4 ™
1 ClientHello

The client sends the ClientHello message. It contains the following:

= The highest SSL version number the client can support.

= A 32-byte random number (from the client) that will be used for master secret
generation.

= Asession ID that defines the session.

= A cipher suite that defines the list of algorithms that the client can support.

= Alist of compression methods that the client can support

Phase | of Handshake Protocol

_ Phase | Server
Chent =
i —

ClientHello

Version
Chent random number
Session [D >
Cipher suite

Compression methods

ServerHello

Version

Server random number
+ Session [D

Selected cipher set
Selected compression method

4 N

d ServerHello

The server responds to the client with a ServerHello message. It contains the

following:

= An SSL version number. This number is the lower of two version numbers: the
highest supported by the client and the highest supported by the server.

= A 32-byte random number (from the server) that will be used for master secret
generation.

= Asession ID that defines the session.

= The selected cipher set from the client list.

» The selected compression method from the client list

e

After Phase I, the client and server know the following:
The version of SSL

The algorithms for key exchange, message authentication, and encryption
The compression method

The two random numbers for key generation

OO0

;~

Phase Il: Server Key Exchange and
Authentication

O In phase I, the server authenticates itself if needed.

O The sender may send its certificate, its public key, and may also request
certificates from the client.

O At the end, the server announces that the serverHello process is done

e

Phase |l of Handshake Protocol

E §
Client %‘b Phase 1] % EvEr
—_—

Certificate
- A chain of certificates

ServerkKeyExchange
-+ Server public key

CertificateRequest

List of acceptable certificates
List of acceptable authorities

ServerHelloDone

- Mo conbents

Certificate If it is required, the server sends a Certificate message to
authenticate itself. The message includes a list of certificates of type X.509.
The certificate is not needed if the key-exchange algorithm is anonymous
Diffie-Hellman.

ServerKeyExchange After the Certificate message, the server sends a
ServerKey Exchange message that includes its contribution to the pre-
master secret. This message is not required if the key-exchange method is
RSA or fixed Diffie-Hellman.

CertificateRequest The server may require the client to authenticate itself.
In this case, the server sends a CertificateRequest message in Phase Il that
asks for certifica tion in Phase I11 from the client. The server cannot request
a certificate from the client if it is using anonymous Diffie-Hellman.

ServerHelloDone The last message in Phase Il is the ServerHelloDone
message, which is a signal to the client that Phase Il is over and that the
client needs to start Phase I11.

O After Phase Il, the server is authenticated to the client.
O The client knows the public key of the server if required.

.

Four cases in Phase Il

Al

Certificate
RSA Enc-cert —

Mo BerverkKeyExchange

5‘ Certificate E 5‘ Certificate E

R5A or DSS Sig-cert ——

F 3

ServerkKeyvExchange
- S'iﬂl {31 P: .E'.] |

c. Ephemeral I*H

Mo certificate

ServerkeyExchange
gp g

b. Anonvmous IVH

DH cert

Mo ServerkeyvExchange

d. Fixed DH

e

d RSA.

> In this method, the server sends its RSA encryption/decryption public-key
certificate in the first message.

» The second message, however, Is empty because the pre-master secret is
generated and sent by the client in the next phase. Note that the public-key
certificate authenticates the server to the client.

» When the server receives the pre-master secret, it decrypts it with its private
key. The possession of the private key by the server is proof that the server is
the entity that it claims to be in the public-key certificate sent in the first
message.

d Anonymous DH.

» In this method, there is no Certificate message.

» An anonymous entity does not have a certificate.

» In the ServerKeyExchange message, the server sends the Diffie-Hellman
parameters and its half-key.

Note that the server is not authenticated in this method.

4 N
U Ephemeral DH.

» In this method, the server sends either an RSA or a DSS digital signature
certificate.

» The private key associated with the certificate allows the server to sign a
message; the public key allows the recipient to verify the signature.

» In the second message, the server sends the Diffie-Hellman parameters and the
half-key signed by its private key. Other text is also sent.

» The server is authenticated to the client in this method, not because it sends the
certificate, but because it signs the parameters and keys with its private key.

» The possession of the private key iIs proof that the server is the entity that it
claims to be in the certificate.

» If an impostor copies and sends the certificate to the client, pretending that it is
the server claimed in the certificate, it cannot sign the second message because it
does not have the private key.

d Fixed DH

> In this method, the server sends an RSA or DSS digital signature
certificate that includes its registered DH half-key.

» The second message is empty.

» The certificate is signed by the CA’s private key and can be
verified by the client using the CA’s public key. In other words,
the CA is authenticated to the client and the CA claims that the

half-key belongs to the server.

e

Phase lll: Client Key Exchange and
Authentication

Phase Il is designed to authenticate the client. Up to three messages can
be sent from the client to the server

Client % Phase 111 % SEIVET
-]

Certificate

— Chain of certificates i *

ChentKevExchange

e Client Public Key *

CertificateVerify

Hash code to prove certificate *

4 ™
1 Certificate

» To certify itself to the server, the client sends a Certificate message. Note that
the format is the same as the Certificate message sent by the server in Phase
[1, but the contents are different.

> It includes the chain of certificates that certify the client. This message is sent
only if the server has requested a certificate in Phase Il. If there is a request
and the client has no certificate to send, it sends an Alert message (part of the
Alert Protocol to be discussed later) with a warning that there is no
certificate.

» The server may continue with the session or may decide to abort.

4 N
A ClientKeyExchange

» After sending the Certificate message, the client sends a Client KeyExchange
message, which includes its contribution to the pre-master secret.

» The contents of this message are based on the key-exchange algorithm used.
If the method is RSA, the client creates the entire pre-master secret and
encrypts it with the RSA public key of the server. If the method is
anonymous or ephemeral Diffie-Hellman, the client sends its Diffie-Hellman
half-key.

» |If the method is Fortezza, the client sends the Fortezza parameters.

» The contents of this message are empty if the method is fixed Diffie-
Hellman.

4 N
 CertificateVerify

» If the client has sent a certificate declaring that it owns the public key in the
certificate, it needs to prove that it knows the corresponding private key.

» This is needed to thwart an impostor who sends the certificate and claims that
It comes from the client.

» The proof of private-key possession is done by creating a message and signing
It with the private key. The server can verify the message with the public key
already sent to ensure that the certificate actually belongs to the client. Note
that this is possible if the certificate has a signing capability; a pair of keys,
public and private, is involved.

» The certificate for fixed Diffie-Hellman cannot be verified this way.

Note: After Phase Ill, the client is authenticated for the server and both the
client and the server know the pre-master secret.

Four cases in Phase Il

5 'El Encrypted wqh server’s public key
Sig,: Signed with client’s public key

—
2 -
]
Mo certificate
.......................... Y
ChientKeyExchange
> Er Pre-master secret ’
a. R5A
]
1

&‘ Certificate

ClientKevExchange

SIE: (2.0, 2°)
¢. Ephemeral DH

R5A or DSS Certificate fr—

—
a -
=
No certificate
e
ChientKeyExchange
&p.u —
b. Anonymous DH
2 =
Centificate —
DH Certificate R
No ClientKeyExchange
d. Fixed DH

e

d RSA.

> In this case, there is o Certificate message unless the server has explicitly
requested one in Phase II.

» The ClientKeyExchange method includes the pre-master key encrypted with
the RSA public key received in Phase II.

In this method, there is no Certificate message.
The server does not have the right to ask for the certificate (in Phase II)
because both the client and the server are anonymous.

> In the ClientKeyExchange message, the server sends the Diffie-Hellman
parameters and its half-key. Note that the client is not authenticated to the
server in this method.

d Anonymous DH.
>
>

4 N
d Ephemeral DH

» In this method, the client usually has a certificate.

» The server needs to send its RSA or DSS certificate (based on the agreed-upon
cipher set). In the ClientKeyExchange message, the client signs the DH
parameters and its half key and sends them.

» The client is authenticated to the server by signing the second message. If the
client does not have the certificate, and the server asks for it, the client sends an
Alert message to warn the client. If this is acceptable to the server, the client
sends the DH parameters and key in plaintext.

» The client is not authenticated to the server in this situation.

Fixed DH.

In this method, the client usually sends a DH certificate in the first message.
Note that the second message is empty in this method.
» The client is authenticated to the server by sending the DH certificate.

vV

Phase IV: Finalizing and Finishing

In Phase 1V, the client and server send messages to change cipher
specification and to finish the handshaking protocol. Four messages are
exchanged in this phase

5 y
Client Ig Phase [V i I e
. L__

ChangeCipherSpec

ChangeCipherSpec value I L

Fimshed
MDS Hash + SHA Hash I »

ChangeCipherSpec

- ChangeCipherSpec value Ii

Fimshed

+* MD35 Hash + SHA Hash Ii

e

d ChangeCipherSpec

The client sends a ChangeCipherSpec message to show that it has moved all
of the cipher suite set and the parameters from the pending state to the active
state.

J Finished

The next message iIs also sent by the client. It is a Finished message that
announces the end of the handshaking protocol by the client.

d ChangeCipherSpec
The server sends a ChangeCipherSpec message to show that it has also
moved all of the cipher suite set and parameters from the pending state to
the active state.

J Finished

Finally, the server sends a Finished message to show that handshaking is
totally completed.

After Phase 1V, the client and server are ready to exchange data.

™~

4 N
ChangeCipherSpec Protocol

O The cipher suite and the generation of cryptographic secrets are formed
gradually during the Handshake Protocol.

The question now is: When can the two parties use these parameter secrets?
SSL mandates that the parties cannot use these parameters or secrets until they

have sent or received a special message, the ChangeCipherSpec message, which is

exchanged during the Handshake protocol and defined in the ChangeCipherSpec
Protocol.

Note : Reason is that the issue is not just sending or receiving a message.

The sender and the receiver need two states, not one. One state, the pending state,
keeps track of the parameters and secrets. The other state, the active state, holds
parameters and secrets used by the Record Protocol to sign/verify or

encrypt/decrypt messages. In addition, each state holds two sets of values: read
(inbound) and write (outbound).

O The ChangeCipherSpec Protocol defines the process of moving values
between the pending and active states.

.

Movement of parameters from pending state to active state

Server
Client

E ! W Wnite (sending)
E: Reading (receiving) &=

W R Wl R L B Wl R
Cipdar ans | nas aan | mag | Capher
MAC bbb | ks . bbb | bbh | M
Cipher key E=EY 5550 . wpy | x| Cipher key
MALC key x| v ¥y | 2x | BAC key
L) % | ¥ ¥lx |
Active Pendisg Artive Fending
—| ChangeCipherSpec I—l‘
[WIE|[W]E - Wk |[W][E
Cipher | aan = The client Fimished message anz | I Cipher
MAC | bbb [can be signed and encrypted hih | | bbb A
Cipher key | xux ¥ by the client and verified and xxx | [y Cipher key
MACkey | ax V¥ decrypted by the server. || ¥y BAC ooy
IV | x ¥ X ¥ I
Active Pendisg Artive Fending
- ChangeCipherSpec |
WIE|[W[E (R |[W][E]

Cipher | aa | asa The server Finished message pao | ana Cipher
MAL | bbb | bhb can be signed and encrypted ks | hbh AL
Cipher key | xxs | yvyy by the server and verified and Y)Y | xx Cipher key
MAC key | x| wy . : vy | xx MAL ey
o e decrypied by the client. 1 I
Active Pending Artive Pending

™

4 N

O First the client sends a ChangeCipherSpec message.

L After the client sends this message, it moves the write (outbound) parameters from
pending to active.

O The client can now use these parameters to sign or encrypt outbound messages.

L After the receiver receives this message, it moves the read (inbound) parameters
from the pending to the active state.

L Now the server can verify and decrypt messages.

O This means that the Finished message sent by the client can be signed and
encrypted by the client and verified and decrypted by the server.

O The server sends the ChangeCipherSpec message after receiving the Finish
message from the client.

N /

O After sending this message it moves the write (outbound) parameters
from pending to active.

O The server can now use these parameters to sign or encrypt outbound
messages. After the client receives this message, it moves the read
(inbound) parameters from the pending to the active state.

O Now the client can verify and decrypt messages.

L After the exchange completion, both parties can communicate in both
directions using the read/write active parameters.

e
Alert Protocol

one message type, the Alert message, that describes the problem and its level
(warning or fatal).

Faluie Deseription Meaning
1] CloseNaotify Sender will not send any more messages.
100 UnexpectedMessage An inappropriate message received.
20 BadRecord AT An incorrect MAC received.
30 DecompressionfFailure Unable to decompress appropriately.
40 HandshakeFailure Sender unable to finalize the handshake.
4] NoCertificate Client has no certificate to send.
42 BadCertificare Receved certficate corrupted.
43 UnsupportedCertificate Type of recerved certificate 15 not supported.
44 CertificateRevoked Signer has revoked the certificate.
45 CerttficateExpired Certificate expired.
46 Certificate Unknown Certificate unknown.
47 MegalParameter An out-of-range or inconsistent feld.

™~

SSL uses the Alert Protocol for reporting errors and abnormal conditions. It has only

4 I
Record Protocol

The Record Protocol carries messages from the upper layer (Handshake
Protocol, ChangeCipherSpec Protocol, Alert Protocol, or application layer).

The message is fragmented and optionally compressed; a MAC is added to the
compressed message using the negotiated hash algorithm.

The compressed fragment and the MAC are encrypted using the negotiated
encryption algorithm.

Finally, the SSL header is added to the encrypted message.

C O O O

Processing done by the Record Protocol

Pavload from upper layer protocol

Fragment

-
R -

Compression

& L
A L

-
=

(Mther values

|

» Hash

Compressed

L
“ =

Encrypiion

E
- =

I
Compressed ﬁ

-
o

Wite
Cipher secret

"

Encrypted fragment

S5L payload

RFH

a. Process

Write i
MAC secret RPH: Becord Protocol header
i 1] 24 il
Protocol Version Length ...

Compressed fragment

All Encrypted
{except header)

MAC
(0, 16, or 20 bytes)

b. Encapsulation

Note-This process can only be done when the cryptographic parameters are in the active state.
Messages sent before the movement from pending to active are neither signed nor encrypted

/

4 N

U Fragmentation/Combination

» At the sender, a message from the application layer is fragmented into blocks of
214 bytes, with the last block possibly less than this size.

» At the receiver, the fragments are combined together to make a replica of the
original message.

L Compression/Decompression

» At the sender, all application layer fragments are compressed by the compression
method negotiated during the handshaking. The compression method needs to be
loss less (the decompressed fragment must be an exact replica of the original
fragment). The size of the fragment must not exceed 1024 bytes. Some
compression methods work only on a predefined block size and if the size of the
block is less than this, some pad ding is added. Therefore, the size of the
compressed fragment may be greater than the size of the original fragment.

N /

> At the receiver, the compressed fragment is decompressed to create a
replica of the original. If the size of the decompressed fragment
exceeds 2”14 , a fatal decompression Alert message is issued.

Note: Compression/Decompression is optional in SSL.

e

™~

O Signing/Verifying:- At the sender, the authentication method defined during
the handshake (NULL, MD5, or SHA-1) creates a signature (MAC)

Pad-1: Byte Ox36 (00110110) repeated 48 times for MD5 and 40 times for SHA-1
Pad-2: Byte 0x5C (D1011100) repeated 48 times for MD35 and 40 times for SHA-1

MAC
wrile secrel

Pad-1

Sequence
nurmber

Compressed

Ly pe

Compressed

length Compressed fragment

N

F

Megotiated hash algorithm

(MD35 or SHA-1)

MAC
wrile secrel

k. 4

‘ Megotiated hash algorithin |

(MD5 or SHA-1)

O The hash algorithm is applied twice.

O First, a hash is created from the concatenations of the following values:

a.
b.

o

The MAC write secret (authentication key for the outbound message)

Pad-1, which is the byte 0x36 repeated 48 times for MD5 and 40 times for
SHA-1

The sequence number for this message

The compressed type, which defines the upper-layer protocol that provided
the compressed fragment

The compressed length, which is the length of the compressed fragment
The compressed fragment itself

e

O Second, the final hash (MAC) is created from the concatenation of the

following values:
a. The MAC write secret
b. Pad-2, which is the byte 0x5C repeated 48 times for MD5 and 40 times for

SHA-1
c. The hash created from the first step

At the receiver, the verifying is done by calculating a new hash and comparing it
to the received hash.

e

1 Encryption/Decryption:- At the sender, the compressed fragment and
the hash are encrypted using the cipher write secret. At the receiver, the
received message is decrypted using the cipher read secret. For block

encryption, padding is added to make the size of the encryptable message a
multiple of the block size.

1 Framing/Deframing:- After the encryption, the Record Protocol header

IS added at the sender. The header is removed at the receiver before
decryption.

SSL MESSAGE FORMATS

Record Protocol general header

i ot | & 24 3l
Protocaol Version Length ...

... Length

O Protocol. This 1-byte field defines the source or destination of the encapsulated
message. It is used for multiplexing and demultiplexing. The values are 20
(ChangeCipherSpec Protocol), 21 (Alert Protocol), 22 (Handshake Protocol), and
23 (data from the application layer).

O Version. This 2-byte field defines the version of the SSL; one byte is the major
version and the other is the minor. The current version of SSL is 3.0 (major 3 and
minor 0).

O Length. This 2-byte field defines the size of the message (without the header) in
bytes

. /

ChangeCipherSpec Protocol

&

6

24 31

Protocol: 20

Version

Length: 0

... Length: 1

CCs: 1

O The one-byte field in the message is called the CCS and its value is currently 1.

e

Alert Protocol

0 16 24 il
Protocol: 21 Version Length: 0
... Length: 2 Level Deseription
O Level. This one-byte field defines the level of the error. Two levels have

been defined so far: warning and fatal.
O Description. The one-byte description defines the type of error.

e

N

Handshake Protocol

Generic header for Handshake Protocol

0 o 16 24 3l
Protocol: 22 Version | Length: .. |
.. Length: Type: | Len .. |

... Len:

defined as listed in next slide

O Type. This one-byte field defines the type of message. So far ten types have been

O Length (Len). This three-byte field defines the length of the message (excluding

the length of the type and length field).

Note: Why we need two length fields, one in the general Record header and one in
the generic header for the Handshake messages ??

Record message may carry two Handshake messages at the same time if there is no
need for another message in between.

/

Types of Handshake messages

Tvpe Message
() HelloRequest

1 ChientHello

2 ServerHello
11 Certificate
12 ServerkeyExchange
13 CertificateRequest

14 ServerHelloDone
15 Certificate Verify

16 ClientKeyExchange
20 Finmished

TRANSPORT LAYER SECURITY

O The Transport Layer Security (TLS) protocol is the IETF standard version of the
SSL protocol. The two are very similar, with slight differences. Instead of

describing TLS in full, we highlight the differences between TLS and SSL
protocols.

.

Record Protocol message for
application data
0 L& 24 31
Protocol: 23 Version Length ...
Compressed fragment _""H
E
MDS or SHA-1 MAC

e

Version Encrypted The first difference is the version number (major and minor).
The current version of SSL is 3.0; the current version of TLS is 1.0. In other
words, SSLv3.0 is compatible with TLSv1.0.

Cipher Suite Another minor difference between SSL and TLS is the lack of
support for the Fortezza method. TLS does not support Fortezza for key
exchange or for encryption/decryption.

Cipher suire Exchange | Encryption | Hash
TLS_NULL_WITH_NULL_NULL NULL NULL NULL
TLS_RSA_WITH_NULL_MD3 RSA NULL MD3
TLS_RSA_WITH_NULL_SHA RSA NULL SHA-1
TLS_RS5A_WITH_RC4_128_MD3 RSA RC4 MD3
TLS_R5A_WITH_RC4_128_SHA RSA RC4 SHA-1
TLS_RS5A_WITH_IDEA_CBC_SHA RSA IDEA SHA-1
TLS_RSA_WITH_DES_CBC_SHA RSA DES SHA-1
TLS_RSA_WITH_3DES_EDE_CBC_SHA RSA IDES SHA-1
TLS_DH_anon_WITH_RC4_128_MD35 DH_anon RC4 MD3
TLS_DH_anon_WITH_DES_CBC_SHA DH_anon DES SHA-1
TLS_DH_anon WITH_3DES_EDE _CBC_SHA DH_anon 3DES SHA-1
TLS_DHE_RSA_WITH_DES CBC_SHA DHE_RSA DES SHA-1
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE_RSA 3DES SHA-1
TLS_DHE_DSS_WITH_DES_CBC_SHA DHE_DSS DES SHA-1
TLS_DHE_DS5_WITH_3DES_EDE_CBC_SHA DHE_DSS JDES SHA-1
TLS_DH_RSA_WITH_DES CBC_SHA DH_RSA DES SHA-1
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA DH_RSA 3DES SHA-1
TLS_DH_DSS WITH_DES_CBC_SHA DH_DSS DES SHA-1
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA DH_DSS IDES SHA-1

4 ™
Generation of Cryptographic Secrets

O The generation of cryptographic secrets is more complex in TLS than in
SSL. TLS first defines two functions: the data-expansion function and the
pseudorandom function.

1.Data-Expansion Function

L The data-expansion function uses a predefined HMAC (either MD5 or SHA-
1) to expand a secret into a longer one. This function can be considered a
multiple section function, where each section creates one hash value. The
extended secret is the concatenation of the hash values. Each section uses
two HMACs, a secret and a seed. The data-expansion function is the
chaining of as many sections as required. However, to make the next section
dependent on the previous, the second seed Is actually the out put of the first
HMAC of the previous section

Data-expansion function

Secret = =<

Secref - - - Secret - - -

Secret=-=-

Hash

Expanded secret

LA

e

2.Pseudorandom Function (PRF)

O TLS defines a pseudorandom function (PRF) to be the combination of two
data-expansion functions, one using MD5 and the other SHA-1. PRF takes
three inputs, a secret, a label, and a seed. The label and seed are
concatenated and serve as the seed for each data expansion function. The
secret is divided into two halves; each half is used as the secret for each
data-expansion function. The output of two data-expansion functions is
exclusive ored together to create the final expanded secret.

J Note that because the hashes created from MD5 and SHA-1 are of different
sizes, extra sections of MD5-based functions must be created to make the
two outputs the same size.

PRF

Label Seed
PRF ! ['
*
+ s seed \L
Half secret -4--- M5 SHA-I ---t- Half secret
Expanded secret Expanded secret
* NOR |*
W
MNew secret

Pre-master Secret The generation of the pre-master secret in TLS is exactly the
same as in SSL.

e

Master Secret

(TLS uses the PRF function to create the master secret from the pre-master
secret. This is achieved by using the pre-master secret as the secret, the string
“master secret” as the label, and concatenation of the client random number

and server random number as the seed.

L Note that the label is actually the ASCII code of the string “master secret”. In
other words, the label defines the output (to be created), the master secret.

M “Master secret”|| CR | 5R

Suurrll L I:H:ll ﬁL‘-L"-ﬂ.l
PM: Pre-master Secret

Pseudorandom Function CR: Chent Random Numbser
(PRF) SE: Server Random Number

|: Concatenation

Master secret

e
Key Material

TLS uses the PRF function to create the key material from the master secret.
This time the secret is the master secret, the label is the string “key expansion”,

and the seed is the concatenation of the server random number and the client
random number,

Key material generation

Master secret ||“Key expansion”|| SK | CR

Eﬂ:rrll Lahul:ll Fli-rr:ll

Peeudorandom Funct CR: Client Random Number
= n“?p}lr;} unction SE: Server Random Number

|: Concatenation

Key matenial |

e

Alert Protocol

TLS supports all of the alerts defined in SSL except for NoCertificate.
TLS also adds some new ones to the list

Falue Description Meaning
] Clase Notify Sender will not send any more messages.
10 UnexpectedMessage An inappropriate message received.
20 BadRecordMAC An incorrect MAC received.
21 DecrvprionFailed Decrypted message 1s invalid.
22 RecordOverflow Message size is more than 2" + 2048,
30 DecompressionFailure Unable to decompress appropnately.
40 HandshakeFailure Sender unable to finalize the handshake.
42 BadCertificate Received certificate corrupted.
43 UnsupportedCertificare Type of received certificate is not supported.
34 CertificateRevoked Signer has revoked the certificate.
45 Certificate Expived Certificate has expired.
46 Certificate Unknown Certificate unknown.
47 Illegal Parameter A field out of range or inconsistent with others.
48 UnknownCA CA could not be identified.

Alerts defined for TLS (continued)

Falue Description Meaning
44 AccessDenied No desire to continue with negotiation.
S0 DecodeError Received message could not be decoded.
51 DecryvptError Decrypted ciphertext is imvalid.
i ExportRestriction Problem with LS. restriction compliance.
T0 ProtacalVersion The protocol version is not supported.
71 InsufficientSecurity More secure cipher suite needed.
80 InternalError Local error.
el UserCanceled The party wishes to cancel the negotiation.
1K) NoRenegortiation The server cannot renegotiate the handshake.

4 N

Handshake Protocol

O TLS has made some changes in the Handshake Protocol. Specifically, the
details of the CertificateVerify message and the Finished message have been

changed.

CertificateVerify Message
O In SSL, the hash used in the CertificateVerify message is the two-step hash of

the hand shake messages plus a pad and the master secret.
O TLS has simplified the process. The hash in the TLS is only over the handshake

messages,

Hash for CertificateVerify message in TLS

Handshake Messages

|

MDA or SHA-1

e

U Finished Message The calculation of the hash for the Finished message has

also been changed. TLS uses the PRF to calculate two hashes used for the
Finished message.

Hash for Finished message in TLS

| Handshake Messages

Finished label:
“Client fmished™ for client
“Server finished™ for server

. Master secret | Fimished label

H-:-:rcl Lahﬂll

Psendorandom Function |

{PRF)

™~

Record Protocol

O The only change in the Record Protocol is the use of HMAC for signing the
message. TLS uses the MAC, as defined in Chapter 11, to create the HMAC.
TLS also adds the protocol version (called Compressed version) to the text
to be signed.

HMAC for TLS

MAC secret
left-padded to 512 bits

ipad

ipad: Byte 0x36 repeated 64 times
opad: Byte Ox5C repeated 64 times

: Sequence | Compressed| Compressed | Compressed| . SR
AL number type version length Comprssed fapment
| J
MAC secret

left-padded to 512 bats

opad

MDS5 or SHA-1 I

512 bits

£

I MDS or SHA-1 I

Thank You

