
Security at the Transport Layer: SSL and

TLS

Sachin Tripathi

IIT(ISM), Dhanbad

 Transport layer security provides end-to-end security services for applications

that use a reliable transport layer protocol such as TCP.

 The idea is to provide security services for transactions on the Internet. For

example, when a customer shops online, the following security services are

desired:

 The customer needs to be sure that the server belongs to the actual vendor, not

an impostor. The customer does not want to give an impostor her credit card

number (entity authentication).

 The customer and the vendor need to be sure that the contents of the message are

not modified during transmission (message integrity).

 The customer and the vendor need to be sure that an impostor does not intercept

sensitive information such as a credit card number (confidentiality).

Introduction

Introductio
n to
Cryptograp
hy

Department of CSE, ISM Dhanbad

Location of SSL and TLS in the Internet

model

 One of the goals of these protocols is to provide server and client authentication,

data confidentiality, and data integrity.

 Application-layer client/server programs, such as Hypertext Transfer Protocol

(HTTP), that use the services of TCP can encapsulate their data in SSL packets.

 If the server and client are capable of running SSL (or TLS) programs

then the client can use the URL https://… instead of http://… to allow

HTTP messages to be encapsulated in SSL (or TLS) packets.

 SSL is designed to provide security and compression services to data generated

from the application layer.

 Typically, SSL can receive data from any application layer protocol, but usually

the protocol is HTTP.

 The data received from the application is compressed (optional), signed, and

encrypted. The data is then passed to a reliable transport layer protocol such as

TCP.

Secure Socket Layer (SSL)

SSL ARCHITECTURE

Services
SSL provides several services on data received from the application layer.

 Fragmentation

First, SSL divides the data into blocks of 2^14 bytes or less.

 Compression

Each fragment of data is compressed using one of the lossless compression

methods negotiated between the client and server. This service is optional.

 Message Integrity

To preserve the integrity of data, SSL uses a keyed-hash function to create a

MAC.

 Confidentiality To provide confidentiality, the original data and the MAC are

encrypted using symmetric key cryptography.

 Framing A header is added to the encrypted payload. The payload is then

passed to a reliable transport layer protocol.

Key Exchange Algorithms
 To exchange an authenticated and confidential message, the client and the server

each need six cryptographic secrets (four keys and two initialization vectors).

However, to create these secrets, one pre-master secret must be established

between the two parties. SSL defines six key-exchange methods to establish this

pre master secret:

Key-exchange methods

NULL
There is no key exchange in this method. No pre-master secret is established

between the client and the server

Note:-Both client and server need to know the value of the pre-master secret.

RSA
In this method, the pre-master secret is a 48-byte random number created

by the client, encrypted with the server’s RSA public key, and sent to the

server. The server needs to send its RSA encryption/decryption certificate

RSA key exchange; server public key

Anonymous Diffie-Hellman
 This is the simplest and most insecure method.

 The pre-master secret is established between the client and server using the

Diffie-Hellman (DH) protocol.

 The Diffie Hellman half-keys are sent in plaintext. It is called anonymous

Diffie-Hellman because neither party is known to the other.

 Disadvantage of this method is the man-in-the-middle attack.

Ephemeral Diffie-Hellman
 To thwart the man-in-the-middle attack, the ephemeral Diffie-Hellman key

exchange can be used.

 Each party sends a Diffie-Hellman key signed by its private key.

 The receiving party needs to verify the signature using the public key of the

sender.

 The public keys for verification are exchanged using either RSA or DSS

digital signature certificates.

Fixed Diffie-Hellman
 Another solution is the fixed Diffie-Hellman method.

 All entities in a group can prepare fixed Diffie-Hellman parameters (g and

p).

 Then each entity can create a fixed Diffie-Hellman half-key (gx).

 For additional security, each individual half-key is inserted into a certificate

verified by a certification authority (CA).

 In other words, the two parties do not directly exchange the half-keys; the

CA sends the half-keys in an RSA or DSS special certificate.

 When the client needs to calculate the pre-master, it uses its own fixed half-

key and the server half-key received in a certificate.

 The server does the same, but in the reverse order. Note that no key-

exchange messages are passed in this method; only certificates are

exchanged.

Fortezza

Fortezza (derived from the Italian word for fortress) is a registered trademark

of the U.S. National Security Agency (NSA). It is a family of security

protocols developed for the Defense Department

Encryption/Decryption Algorithms

 There are several choices for the encryption/decryption algorithm.

 We can divide the algorithms into 6 groups

 All block protocols use an 8-byte initialization vector (IV) except for

Fortezza, which uses a 20-byte IV.

NULL

The NULL category simply defines the lack of an encryption/decryption

algorithm.

 Stream RC

Two RC algorithms are defined in stream mode: RC4-40 (40-bit

key) and RC4-128 (128-bit key).

 Stream RC

One RC algorithm is defined in block mode: RC2_CBC_40 (40-bit

key).

 DES

All DES algorithms are defined in block mode.

DES40_CBC uses a 40-bit key.

Standard DES is defined as DES_CBC.

3DES_EDE_CBC uses a 168-bit key.

 IDEA

The one IDEA algorithm defined in block mode is IDEA_CBC, with a 128-

bit key.

 Fortezza

The one Fortezza algorithm defined in block mode is FORTEZZA_CBC,

with a 96-bit key.

Hash Algorithms
SSL uses hash algorithms to provide message integrity (message authentication).

Three hash functions are defined, as shown below

Null:-The two parties may decline to use an algorithm. In this case, there is no

hash function and the message is not authenticated.

MD5:-The two parties may choose MD5 as the hash algorithm. In this case, a

128-key MD5 hash algorithm is used.

SHA-1:-The two parties may choose SHA as the hash algorithm. In this case, a

160-bit SHA-1 hash algorithm is used.

Cipher Suite
The combination of key exchange, hash, and encryption algorithms

defines a cipher suite for each SSL session.

SSL cipher suite list

Each suite starts with the term “SSL” followed by the key exchange

algorithm. The word “WITH” separates the key exchange algorithm from

the encryption and hash algorithms.

Compression Algorithms

 Compression is optional in SSLv3. No specific compression algorithm is

defined for SSLv3. Therefore, the default compression method is NULL.

However, a system can use whatever compression algorithm it desires.

Cryptographic Parameter Generation

 To achieve message integrity and confidentiality, SSL needs six

cryptographic secrets, four keys and two IVs.

 The client needs one key for message authentication (HMAC), one key

for encryption, and one IV for block encryption.

 The server needs the same.

 SSL requires that the keys for one direction be different from those for

the other direction. If there is an attack in one direction, the other

direction is not affected. The parameters are generated using the

following procedure:

 The client and server exchange two random numbers; one is created by

the client and the other by the server.

 The client and server exchange one pre-master secret using one of the

key exchange algorithms.

 A 48-byte master secret is created from the pre-master secret by

applying two hash functions (SHA-1 and MD5)

 The master secret is used to create variable-length key material by

applying the same set of hash functions and prepending with different

constants as shown in Figure below. The module is repeated until key

material of adequate size is created.

 Six different keys are extracted from the key material, as shown in

Figure below

Calculation of master secret from pre-master secret

The module is repeated until key material of adequate size is created

Calculation of key material from master secret

Note that the length of the key material block depends on the cipher suite selected

and the size of keys needed for this suite.

Sessions and Connections

 SSL differentiates a connection from a session.

Let us elaborate on these two terms here.

 A session is an association between a client and a server. After a session is

established, the two parties have common information such as the session

identifier, the certificate authenticating each of them (if necessary), the

compression method (if needed), the cipher suite, and a master secret that is

used to create keys for message authentication encryption. For two entities

to exchange data, the establishment of a session is necessary, but not

sufficient; they need to create a connection between themselves.

 The two entities exchange two random numbers and create, using the

master secret, the keys and parameters needed for exchanging messages

involving authentication and privacy. By allowing a session to be

suspended and resumed, the process of the master secret calculation can be

eliminated.

 A session can consist of many connections.

 A connection between two parties can be terminated and reestablished

within the same session.

 When a connection is terminated, the two parties can also terminate the

session, but it is not mandatory.

 A session can be suspended and resumed again.

 To create a new session, the two parties need to go through a negotiation

process.

 To resume an old session and create only a new connection, the two parties

can skip part of the negotiation process and go through a shorter one.

 There is no need to create a master secret when a session is resumed. The

separation of a session from a connection prevents the high cost of creating

a master secret

In a session, one party has the role of a client and the other the role of a server;

in a connection, both parties have equal roles, they are peers. .

A session and connections

Session State
A session is defined by a session state, a set of parameters established

between the server and the client.

Session state parameters

Connection State
 A connection is defined by a connection state, a set of parameters

established between two peers.

 SSL uses two attributes to distinguish cryptographic secrets: write and

read.

 The term write specifies the key used for signing or encrypting

outbound messages.

 The term read specifies the key used for verifying or decrypting

inbound messages.

 The write key of the client is the same as the read key of the server;

the read key of the client is the same as the write key of the server.

 The client and the server have six different cryptography secrets: three

read secrets and three write secrets. The read secrets for the client are

the same as the write secrets for the server and vice versa.

Connection state parameters

Four SSL Protocols

Handshake Protocol
 The Handshake Protocol uses messages to negotiate the cipher suite, to

authenticate the server to the client and the client to the server if needed, and

to exchange information for building the cryptographic secrets. The

handshaking is done in four phases

Phase I: Establishing Security

Capability

 In Phase I, the client and the server announce their security capabilities and

choose those that are convenient for both.

 In this phase, a session ID is established and the cipher suite is chosen.

 The parties agree upon a particular compression method.

 Finally, two random numbers are selected, one by the client and one by the

server, to be used for creating a master secret as we saw before.

 Two messages are exchanged in this phase: ClientHello and ServerHello

messages

 ClientHello

The client sends the ClientHello message. It contains the following:

 The highest SSL version number the client can support.

 A 32-byte random number (from the client) that will be used for master secret

generation.

 A session ID that defines the session.

 A cipher suite that defines the list of algorithms that the client can support.

 A list of compression methods that the client can support

Phase I of Handshake Protocol

 ServerHello

The server responds to the client with a ServerHello message. It contains the

following:

 An SSL version number. This number is the lower of two version numbers: the

highest supported by the client and the highest supported by the server.

 A 32-byte random number (from the server) that will be used for master secret

generation.

 A session ID that defines the session.

 The selected cipher set from the client list.

 The selected compression method from the client list

After Phase I, the client and server know the following:

 The version of SSL

 The algorithms for key exchange, message authentication, and encryption

 The compression method

 The two random numbers for key generation

Phase II: Server Key Exchange and

Authentication

 In phase II, the server authenticates itself if needed.

 The sender may send its certificate, its public key, and may also request

certificates from the client.

 At the end, the server announces that the serverHello process is done

Phase II of Handshake Protocol

 Certificate If it is required, the server sends a Certificate message to

authenticate itself. The message includes a list of certificates of type X.509.

The certificate is not needed if the key-exchange algorithm is anonymous

Diffie-Hellman.

 ServerKeyExchange After the Certificate message, the server sends a

ServerKey Exchange message that includes its contribution to the pre-

master secret. This message is not required if the key-exchange method is

RSA or fixed Diffie-Hellman.

 CertificateRequest The server may require the client to authenticate itself.

In this case, the server sends a CertificateRequest message in Phase II that

asks for certifica tion in Phase III from the client. The server cannot request

a certificate from the client if it is using anonymous Diffie-Hellman.

 ServerHelloDone The last message in Phase II is the ServerHelloDone

message, which is a signal to the client that Phase II is over and that the

client needs to start Phase III.

 After Phase II, the server is authenticated to the client.

 The client knows the public key of the server if required.

Four cases in Phase II

 RSA.
 In this method, the server sends its RSA encryption/decryption public-key

certificate in the first message.

 The second message, however, is empty because the pre-master secret is

generated and sent by the client in the next phase. Note that the public-key

certificate authenticates the server to the client.

 When the server receives the pre-master secret, it decrypts it with its private

key. The possession of the private key by the server is proof that the server is

the entity that it claims to be in the public-key certificate sent in the first

message.

 Anonymous DH.
 In this method, there is no Certificate message.

 An anonymous entity does not have a certificate.

 In the ServerKeyExchange message, the server sends the Diffie-Hellman

parameters and its half-key.

Note that the server is not authenticated in this method.

 Ephemeral DH.

 In this method, the server sends either an RSA or a DSS digital signature

certificate.

 The private key associated with the certificate allows the server to sign a

message; the public key allows the recipient to verify the signature.

 In the second message, the server sends the Diffie-Hellman parameters and the

half-key signed by its private key. Other text is also sent.

 The server is authenticated to the client in this method, not because it sends the

certificate, but because it signs the parameters and keys with its private key.

 The possession of the private key is proof that the server is the entity that it

claims to be in the certificate.

 If an impostor copies and sends the certificate to the client, pretending that it is

the server claimed in the certificate, it cannot sign the second message because it

does not have the private key.

 Fixed DH

 In this method, the server sends an RSA or DSS digital signature

certificate that includes its registered DH half-key.

 The second message is empty.

 The certificate is signed by the CA’s private key and can be

verified by the client using the CA’s public key. In other words,

the CA is authenticated to the client and the CA claims that the

half-key belongs to the server.

Phase III: Client Key Exchange and

Authentication
Phase III is designed to authenticate the client. Up to three messages can

be sent from the client to the server

 Certificate

 To certify itself to the server, the client sends a Certificate message. Note that

the format is the same as the Certificate message sent by the server in Phase

II, but the contents are different.

 It includes the chain of certificates that certify the client. This message is sent

only if the server has requested a certificate in Phase II. If there is a request

and the client has no certificate to send, it sends an Alert message (part of the

Alert Protocol to be discussed later) with a warning that there is no

certificate.

 The server may continue with the session or may decide to abort.

 ClientKeyExchange

 After sending the Certificate message, the client sends a Client KeyExchange

message, which includes its contribution to the pre-master secret.

 The contents of this message are based on the key-exchange algorithm used.

If the method is RSA, the client creates the entire pre-master secret and

encrypts it with the RSA public key of the server. If the method is

anonymous or ephemeral Diffie-Hellman, the client sends its Diffie-Hellman

half-key.

 If the method is Fortezza, the client sends the Fortezza parameters.

 The contents of this message are empty if the method is fixed Diffie-

Hellman.

 CertificateVerify

 If the client has sent a certificate declaring that it owns the public key in the

certificate, it needs to prove that it knows the corresponding private key.

 This is needed to thwart an impostor who sends the certificate and claims that

it comes from the client.

 The proof of private-key possession is done by creating a message and signing

it with the private key. The server can verify the message with the public key

already sent to ensure that the certificate actually belongs to the client. Note

that this is possible if the certificate has a signing capability; a pair of keys,

public and private, is involved.

 The certificate for fixed Diffie-Hellman cannot be verified this way.

Note: After Phase III, the client is authenticated for the server and both the

client and the server know the pre-master secret.

Four cases in Phase III

 RSA.
 In this case, there is o Certificate message unless the server has explicitly

requested one in Phase II.

 The ClientKeyExchange method includes the pre-master key encrypted with

the RSA public key received in Phase II.

 Anonymous DH.
 In this method, there is no Certificate message.

 The server does not have the right to ask for the certificate (in Phase II)

because both the client and the server are anonymous.

 In the ClientKeyExchange message, the server sends the Diffie-Hellman

parameters and its half-key. Note that the client is not authenticated to the

server in this method.

 Ephemeral DH

 In this method, the client usually has a certificate.

 The server needs to send its RSA or DSS certificate (based on the agreed-upon

cipher set). In the ClientKeyExchange message, the client signs the DH

parameters and its half key and sends them.

 The client is authenticated to the server by signing the second message. If the

client does not have the certificate, and the server asks for it, the client sends an

Alert message to warn the client. If this is acceptable to the server, the client

sends the DH parameters and key in plaintext.

 The client is not authenticated to the server in this situation.

 Fixed DH.
 In this method, the client usually sends a DH certificate in the first message.

Note that the second message is empty in this method.

 The client is authenticated to the server by sending the DH certificate.

Phase IV: Finalizing and Finishing

In Phase IV, the client and server send messages to change cipher

specification and to finish the handshaking protocol. Four messages are

exchanged in this phase

 ChangeCipherSpec

The client sends a ChangeCipherSpec message to show that it has moved all

of the cipher suite set and the parameters from the pending state to the active

state.

 Finished
The next message is also sent by the client. It is a Finished message that

announces the end of the handshaking protocol by the client.

 ChangeCipherSpec
The server sends a ChangeCipherSpec message to show that it has also

moved all of the cipher suite set and parameters from the pending state to

the active state.

 Finished
Finally, the server sends a Finished message to show that handshaking is

totally completed.

After Phase IV, the client and server are ready to exchange data.

ChangeCipherSpec Protocol

Introductio
n to
Cryptograp
hy

 The cipher suite and the generation of cryptographic secrets are formed

gradually during the Handshake Protocol.

The question now is: When can the two parties use these parameter secrets?

SSL mandates that the parties cannot use these parameters or secrets until they

have sent or received a special message, the ChangeCipherSpec message, which is

exchanged during the Handshake protocol and defined in the ChangeCipherSpec

Protocol.

Note : Reason is that the issue is not just sending or receiving a message.

The sender and the receiver need two states, not one. One state, the pending state,

keeps track of the parameters and secrets. The other state, the active state, holds

parameters and secrets used by the Record Protocol to sign/verify or

encrypt/decrypt messages. In addition, each state holds two sets of values: read

(inbound) and write (outbound).

 The ChangeCipherSpec Protocol defines the process of moving values

between the pending and active states.

Movement of parameters from pending state to active state

 First the client sends a ChangeCipherSpec message.

 After the client sends this message, it moves the write (outbound) parameters from

pending to active.

 The client can now use these parameters to sign or encrypt outbound messages.

 After the receiver receives this message, it moves the read (inbound) parameters

from the pending to the active state.

 Now the server can verify and decrypt messages.

 This means that the Finished message sent by the client can be signed and

encrypted by the client and verified and decrypted by the server.

 The server sends the ChangeCipherSpec message after receiving the Finish

message from the client.

 After sending this message it moves the write (outbound) parameters

from pending to active.

 The server can now use these parameters to sign or encrypt outbound

messages. After the client receives this message, it moves the read

(inbound) parameters from the pending to the active state.

 Now the client can verify and decrypt messages.

 After the exchange completion, both parties can communicate in both

directions using the read/write active parameters.

SSL uses the Alert Protocol for reporting errors and abnormal conditions. It has only

one message type, the Alert message, that describes the problem and its level

(warning or fatal).

Alert Protocol

Record Protocol

 The Record Protocol carries messages from the upper layer (Handshake

Protocol, ChangeCipherSpec Protocol, Alert Protocol, or application layer).

 The message is fragmented and optionally compressed; a MAC is added to the

compressed message using the negotiated hash algorithm.

 The compressed fragment and the MAC are encrypted using the negotiated

encryption algorithm.

 Finally, the SSL header is added to the encrypted message.

Processing done by the Record Protocol

Note-This process can only be done when the cryptographic parameters are in the active state.

Messages sent before the movement from pending to active are neither signed nor encrypted

 Fragmentation/Combination

 At the sender, a message from the application layer is fragmented into blocks of

2^14 bytes, with the last block possibly less than this size.

 At the receiver, the fragments are combined together to make a replica of the

original message.

 Compression/Decompression

 At the sender, all application layer fragments are compressed by the compression

method negotiated during the handshaking. The compression method needs to be

loss less (the decompressed fragment must be an exact replica of the original

fragment). The size of the fragment must not exceed 1024 bytes. Some

compression methods work only on a predefined block size and if the size of the

block is less than this, some pad ding is added. Therefore, the size of the

compressed fragment may be greater than the size of the original fragment.

 At the receiver, the compressed fragment is decompressed to create a

replica of the original. If the size of the decompressed fragment

exceeds 2^14 , a fatal decompression Alert message is issued.

Note: Compression/Decompression is optional in SSL.

 Signing/Verifying:- At the sender, the authentication method defined during

the handshake (NULL, MD5, or SHA-1) creates a signature (MAC)

 The hash algorithm is applied twice.

 First, a hash is created from the concatenations of the following values:

a. The MAC write secret (authentication key for the outbound message)

b. Pad-1, which is the byte 0x36 repeated 48 times for MD5 and 40 times for

SHA-1

c. The sequence number for this message

d. The compressed type, which defines the upper-layer protocol that provided

the compressed fragment

e. The compressed length, which is the length of the compressed fragment

f. The compressed fragment itself

 Second, the final hash (MAC) is created from the concatenation of the

following values:

a. The MAC write secret

b. Pad-2, which is the byte 0x5C repeated 48 times for MD5 and 40 times for

SHA-1

c. The hash created from the first step

At the receiver, the verifying is done by calculating a new hash and comparing it

to the received hash.

 Encryption/Decryption:- At the sender, the compressed fragment and

the hash are encrypted using the cipher write secret. At the receiver, the

received message is decrypted using the cipher read secret. For block

encryption, padding is added to make the size of the encryptable message a

multiple of the block size.

 Framing/Deframing:- After the encryption, the Record Protocol header

is added at the sender. The header is removed at the receiver before

decryption.

SSL MESSAGE FORMATS
Record Protocol general header

 Protocol. This 1-byte field defines the source or destination of the encapsulated

message. It is used for multiplexing and demultiplexing. The values are 20

(ChangeCipherSpec Protocol), 21 (Alert Protocol), 22 (Handshake Protocol), and

23 (data from the application layer).

 Version. This 2-byte field defines the version of the SSL; one byte is the major

version and the other is the minor. The current version of SSL is 3.0 (major 3 and

minor 0).

 Length. This 2-byte field defines the size of the message (without the header) in

bytes

ChangeCipherSpec Protocol

 The one-byte field in the message is called the CCS and its value is currently 1.

Alert Protocol

 Level. This one-byte field defines the level of the error. Two levels have

been defined so far: warning and fatal.

 Description. The one-byte description defines the type of error.

Handshake Protocol

 Type. This one-byte field defines the type of message. So far ten types have been

defined as listed in next slide

 Length (Len). This three-byte field defines the length of the message (excluding

the length of the type and length field).

Note: Why we need two length fields, one in the general Record header and one in

the generic header for the Handshake messages ??

Record message may carry two Handshake messages at the same time if there is no

need for another message in between.

Generic header for Handshake Protocol

Types of Handshake messages

TRANSPORT LAYER SECURITY

 The Transport Layer Security (TLS) protocol is the IETF standard version of the

SSL protocol. The two are very similar, with slight differences. Instead of

describing TLS in full, we highlight the differences between TLS and SSL

protocols.

Record Protocol message for

application data

Version Encrypted The first difference is the version number (major and minor).

The current version of SSL is 3.0; the current version of TLS is 1.0. In other

words, SSLv3.0 is compatible with TLSv1.0.

Cipher Suite Another minor difference between SSL and TLS is the lack of

support for the Fortezza method. TLS does not support Fortezza for key

exchange or for encryption/decryption.

Generation of Cryptographic Secrets

 The generation of cryptographic secrets is more complex in TLS than in

SSL. TLS first defines two functions: the data-expansion function and the

pseudorandom function.

1.Data-Expansion Function

 The data-expansion function uses a predefined HMAC (either MD5 or SHA-

1) to expand a secret into a longer one. This function can be considered a

multiple section function, where each section creates one hash value. The

extended secret is the concatenation of the hash values. Each section uses

two HMACs, a secret and a seed. The data-expansion function is the

chaining of as many sections as required. However, to make the next section

dependent on the previous, the second seed is actually the out put of the first

HMAC of the previous section

Data-expansion function

2.Pseudorandom Function (PRF)

 TLS defines a pseudorandom function (PRF) to be the combination of two

data-expansion functions, one using MD5 and the other SHA-1. PRF takes

three inputs, a secret, a label, and a seed. The label and seed are

concatenated and serve as the seed for each data expansion function. The

secret is divided into two halves; each half is used as the secret for each

data-expansion function. The output of two data-expansion functions is

exclusive ored together to create the final expanded secret.

 Note that because the hashes created from MD5 and SHA-1 are of different

sizes, extra sections of MD5-based functions must be created to make the

two outputs the same size.

PRF

Pre-master Secret The generation of the pre-master secret in TLS is exactly the

same as in SSL.

Master Secret

 TLS uses the PRF function to create the master secret from the pre-master

secret. This is achieved by using the pre-master secret as the secret, the string

“master secret” as the label, and concatenation of the client random number

and server random number as the seed.

 Note that the label is actually the ASCII code of the string “master secret”. In

other words, the label defines the output (to be created), the master secret.

Key Material

TLS uses the PRF function to create the key material from the master secret.

This time the secret is the master secret, the label is the string “key expansion”,

and the seed is the concatenation of the server random number and the client

random number,

Key material generation

Alert Protocol
TLS supports all of the alerts defined in SSL except for NoCertificate.

TLS also adds some new ones to the list

Alerts defined for TLS (continued)

Handshake Protocol
 TLS has made some changes in the Handshake Protocol. Specifically, the

details of the CertificateVerify message and the Finished message have been

changed.

CertificateVerify Message

 In SSL, the hash used in the CertificateVerify message is the two-step hash of

the hand shake messages plus a pad and the master secret.

 TLS has simplified the process. The hash in the TLS is only over the handshake

messages,

Hash for CertificateVerify message in TLS

 Finished Message The calculation of the hash for the Finished message has

also been changed. TLS uses the PRF to calculate two hashes used for the

Finished message.

Hash for Finished message in TLS

Record Protocol

 The only change in the Record Protocol is the use of HMAC for signing the

message. TLS uses the MAC, as defined in Chapter 11, to create the HMAC.

TLS also adds the protocol version (called Compressed version) to the text

to be signed.

HMAC for TLS

Thank You

Introductio
n to
Cryptograp
hy

