Advanced Encryption Standard

Sachin Tripathi

1IT(ISM), Dhanbad

Outline

[Overview of AES & Inside
Algorithm

d Mathematics behind this Algorithm

Conclusions

Januaty 20, 2025

Motivation behind AES

A replacement of DES was needed since Key
size is too small.

In 1990's the cracking of DES algorithm became possible.

Around 50hrs of brute forcing allowed to crack the message.
3DES secure but slow

In 1997, National Institute of Standards and
Technology (NIST) called for new proposal

Januafy 20, 2025

NIST requirements

Block cipher must be supported with 128 bit block
size

Three key must be supported 128, 192 and 256 bits
Efficiency in software and hardware

Januafy 20, 2025

About AES

AES is an encryption standard chosen by the
National Institute of Standards and Technology (NIST)

and accepted in worldwide as a desirable algorithm to
encrypt sensitive data.

It is the most widely used symmetric ciphers .

In 2001 Rijndael algorithm designed by Rijment and

Daemon of Belgium was declared as the winner of
the competition.

In 1999, five finalist algorithms were announced:
e Mars by IBM Corporation

e RC6 by RSA Laboratories

e Rijndael, by Joan Daemen and Vincent Rijmen

e Serpent, by Ross Anderson, Eli Biham and Lars Knudsen

e Twofish, by Bruce Schneier, John Kelsey, Doug Whiting,
DavidWagner, Chris Hall and Niels Ferguson

e On October 2, 2000, NIST announced that it had chosen
Rijndael as the AES.

¢ On November 26, 2001, AES was formally approved as a US
federal standard.

General Design of AES Encryption

128-bit plaintext
AES

| Round keys
A
P i ‘{1-8 bits)
transformation LI 2 Cipher key

(128, 192, or 256 bits)

=
K, 2
5; Nr | Key size
opah 2 I’—K, 5 10| 128
. . 5 12 192
: ’ 14 | 256
Round N, Relationship between
(slightly different) number of rounds
and cipher key size

128-bit ciphertext

Data Units Used in AES

Byte —>[u, by by bs by bs bg by |—» | 3 Word —>E3(, B, B, B{l—»
b b bs W w B

Byte b Word

State

.
Block to State Transformation

% bl bz b! b‘ bs b6 b7 b‘ h bm bll bl?. bl3 bl‘ b]s
Block L 4

| Simod4,i4 <«— block, I

Soo=by Sg; = by So2 = by Sa3 = b2
$10=b; $;;=bs 5,,=by $,3=b;
S20% by S3;7bg 55, =byy s,53= by,
S30=Db; S5,=b; 55,=b;; s;5= by,

State

block; .4y «— 5, l

Block y
by [by | by | b3 | by |bs|bs by [bg | bg [byg|byy|bia|bys|brg|bis

Example

Let us see how a 16-character block can be shown as a 4 x 4 matrix. Assume that the
text block is “AES uses a matrix”. We add two bogus characters at the end to get

“AESUSESAMATRIXZZ”.

L Now we replace each character with an integer between 00 and 25. We then
show each byte as an integer with two hexadecimal digits. For example, the
character “S” is first changed to 18 and then written as 12 in hexadecimal. The

state matrix is then filled up, column by column,

Text | A E 8 U § E 8§ A M A T R I X Z Z

Hexadecimal | 00 04 12 14 12 04 12 00 OC OO0 13 11 O8 23 19 19
(00 12 0C 08
04 04 00 23|
State
12 12 13 19
14 00 11 19

Round Structure
Smwﬂ

[Sub;y‘tes I

+

I ShifiRows I

Notes:

Round

+ 2

State
2.

One AddRoundKey isapplied
before the first round.

The third ransformaton is
missing in the last round.

[MixColumns I

v

State @

.»‘\ddRounqui
;2

o R

At the decryption site inverse transformations are used :

Round key

InvSubByte, InvShiftRows,InvMixColumns and AddRoundKey

Substitution

AES, like DES, uses substitution. However, the mechanism is different.
QO First, the substitution is done for each byte.

L Second, only one table is used for transformation of every byte, which means
that if two bytes are the same, the transformation is also the same.
O Third, the transformation is defined by either a table lookup process or

mathematical calculation in the GF(28) field. AES uses two invertible
transformations.

SubByte Substitution

To substitute a byte, we interpret the byte as two
hexadecimal digits. The left digit defines the row

and the right digit defines the column of the substitution
table. The two hexadecimal digits at the junction of the
row and the column are the new byte

Transformation Table

' Wlolwn|lw|leg || ®
Nlc|lU| Ao |U | A
' (a4 N AN o
= L Mm@ IO
~ ||| @ MmO |
NlalalalN |]e|m
RO AR O
Moo n
o) (1] F. HlNm || &
™ (2N | & (w4 ™M >

w| g (lw]lolv @] o
"Mold|R|lo|a|lm]|o
> S|l |IN|IA|IHAA]D
olQla]ldA]lm|U]| K

w | @ @ T I o R T
s ™M [mM | O Ty 0 <
Njnjle|lL|g]le AN
Ul |UD]lw | |00]| @

[CTRN I o ol T T I A I T

< Wlg|x|lolwnn|/@]m
o M| > : (o I C1 R O B
'‘'tTolwnn|m|o WO | K|«
- ™) W | @ et} (= ™M
[= ™M |~ ™~ ™ <

e MmMlAalelm|ag Q] M
I NI AR &

= Nl mm | DO A
"Ir|luloa ||]|o| -
e L0 I o B e T I o T I I €9
Flo|lR|D]lo Q]
~|mM|A|]]| mM|O
Slo|lUlm|loele|ln]lo
= =~ ™ - vy o

PR O o T v O o O 7
SlaleclalecleololalalA
| M(OA|dIHIA(Q|@ (@
Nlm|A|lo|@a|d|o]A|[o]|a
Q [0 B T I I T = A T T T I R

(70 T VoI e Ol VI L Vo T T
' Ol HA|~AlWV|[@MIw|A|©
MlidlolQlo|lw|e|o|U|M

HlQl9 (N[00 |~
Q Nl m|H|W & S A Ao
w | RO Uld[a|f]|Q
L I v T I P I AT I
a VIt |H[mlw(f@fwv|A]|®

mlal@ialuwlalm|A]o
w(U||O|N|[U|0]~]|@m([A
"IMmU| (U] |«
rlnlc|loalUlog]w @[]|o
B T T O T I O = e
el@|t|O(R]|O[A]N

mlg o< |/m|k|o]|«

pArIeldlwln]lwlm|o|w
“lalalclolalelolalm
w (70 IV I T A I IO e O

N[O~]|0 A
m|B(UIU|AIQ|R|O]|A|A
'Tol@AIQlelw|IN|lY]HA|O
PO =0 N T el Vo T I
Haldla[m[m|lalmlo]|o
o | M Ul N|@M|o|&)0 |~

Adlo|la[m|UlmMm]|~|A
~|[HlAlo|le|r|d|lo|A|U
SlnjujloR | EA~A|o

. ’ ~ |t '

Nl |mR(VN|N S

InvSubBytes Table

0 2 3 - 5 (2] 7 & 9 A g C D E e
0 52 09 LN D5 30 36 A5 38 BF 40 3 oOE 81 F3 D7 FB
7 7C 39 82 98 2F FF 87 24 S8E 43 44 ca DE ES CHB
2 54 78 a4 32 A5 cz2 23 3D EE 4C 95 oB 42 FA C3 4E
3 08 ZE | A1 66 28 D9 24 B2 76 5B | A2 49 6D sSB D1 25
4 72 FB F& sS4 B& 8 98 i6 D4 e 5C cCc 5D &5 B& 92
5 &eC 70 48 50 FD ED B9 DX S5E 15 45 57 a7 8D 9D 854
o S0 D8 A8 00 8C BC D3 oA ¥7 E4 58 05 BS B3 45 0s
7 | DO 2C 1E BF cAa 3F oF 0z c1l AF BD 03 01 13 ZFN (y=
& £ 91 11 41 4 &7 DC En 97 2 CF CE FO 24 ES 73
9 96 aC 74 22 E7 2D 35 BS E2 F9o 37 EB 1C 75 DF SE
A | 47 F1 1a | 71 1D 23 C5 89 &F | B7 62 OE on 18 BE 1B
B | FC 56 3E 4B Cce D2 79 20 S | DB Cco FE 78 CD 5a Fa
Gl T F DD | AB 33 88 07 Cc7 31 Bl 12 10 59 27 80 EC 5F
D| &0 51 7F A9 19 Bs an oD 2D ES TA 9F 93 Cc9 = EF
E |20 EO 3B 4D AE 2A F5 BO CS8 EB BB 3C 83 S3 61
F|l17 28 (O -8 TE BA 77 Ds§ 26 E1l &9 14 &3 55 21 C 7D

Example

State

—
~J

ESE

o) el 2

[SubByte

63 C9 FE

F2
9

InvSubByte

FA

F2
C9
63

63
7D
82

State

Transformation using GF(2°3)

d AES also defines the transformation algebraically using the GF(28)
field with the irreducible polynomials (x® + x* + x3+ x + 1),

 The SubBytes transformation repeats a routine, called subbyte,
sixteen times.The InvSubBytes repeats a routine called invsubbyte.
Each iteration transforms one byte.

O In the subbyte routine, the multiplicative inverse of the byte (as
an 8-bit binary string) is found in GF(28) with the irreducible
polynomial as the modulus.

O if the byte is (00),¢ its inverse is itself.

The inverted byte is then interpreted as a column matrix with the
least significant bit at the top and the most significant bit at the
bottom.

This column matrix is multiplied by a constant square matrix, X, and
the result, which is a column matrix, is added with a constant column
matrix, y, to give the new byte.

Note that multiplication and addition of bits are done in GF(2).The
invsubbyte is doing the same thing in reverse order.

After finding the multiplicative inverse of the byte, the process is
similar to the affine ciphers

O In the encryption, multiplication is first and addition is second.
O In the decryption, subtraction (addition by inverse) is first and
division(multiplication by inverse) is second.
[It can be easily proved that two transformations are inverses of each
other because addition or subtraction in GF(2) is actually the
XOR operation.

subbyte: = d= \I\Tl
mvsubbyte: = (X ld’“\b] -[\ l\l\“ +*\ By -[l\“l |

State

State

|

|

I

i .

[)

“ MO OO DS
|

|

I

I

I

I

| (B mee =g
|

I

I

I

I

SIS SIS IS Ve

QRO mCOm™
“OOHMQOO ™D
OOmOO™mOm™ .
DO mE A
“OOmQOmOQ
COmMQOuOO-

mTT————

it adiatadl |
I
B sl e o]

. PNt MY PN
vounouwuy Y
S

T gy v

o

vsubbyte

Repeat invsubbyte
16 umes

Repeat subbyte

16 times

th.v_ : W.. O O o g | P
I&

_\]
> 5848 SE 8
—
‘.Il.-looo.l_
- DD D e

- DD D e -

DD -

|

|

|

| O - -0
| _.l.l.l.l.looo_
|

|

|

|

|

MO OO D
Lo =]

.

O m MMt WO P
ProunouLL Y
S — |

]

.U!ZEJ.:&..
TouuuUYwew ©

subb yte

InvSubByvtes

SubByvtes

State

Example

Let us show how the byte OC is transformed to FE by subbyte routine and
transformed back to OC by the invsubbyte routine

O subbyte:

» The multiplicative inverse of 0C in GF(28) field is BO, which means b is
(10110000).

» Multiplying matrix X by this matrix results in ¢ = (10011101)

» The result of XOR operation is d =(11111110), which is FE in
hexadecimal.

O invsubbyte:

» The result of XOR operation is ¢ = (10011101)

» The result of multiplying by matrix X-1is (11010000) or BO
» The multiplicative inverse of BO is OC.

Algorithm

Pseudocode for SubBytes transformation

SubBytes (S)

for(r=0t03)
for{ic=01tw 3)
S;c = subbyte (S, o)

subbyte (byte)
{
a < byte™
ByteToMatrix (a. b)
fori=0t07)

]
1

: / Multiplicative inverse in GF(2%) with inverse of 00 to be 00

C <« b ®biisymods D Drisimods @ Dlissmmod 8 @ Biis7imod 8
d, < C; ® BytcToMatnx (0x63)

)
MatrixToByte (d. d)
byte «— d

The ByteToMatrix routine transforms a byte to an 8 x 1 column
matrix. The MatrixToByte routine transforms an 8 X 1 column matrix
to a byte.

The expansion of these routines and the algorithm for InvSubBytes
are left as exercises.

Although the multiplication and addition of matrices in the subbyte
routine are an affine-type transformation and linear, the
replacement of the byte by its multiplicative inverse in GF(28) is
nonlinear. This step makes the whole transformation nonlinear.

Permutation

1 Another transformation found in a round is shifting, which permutes
the bytes. Unlike DES, in which permutation is done at the bit level,
shifting transformation in AES is done at the byte level; the order of
the bits in the byte is not changed.

O In the encryption, the transformation is called ShiftRows and the
shifting is to the left.

O The number of shifts depends on the row number (0, 1, 2, or 3) of
the state matrix. This means the row 0 is not shifted at all and the
last row is shifted three bytes.

ShiftRows Transformation

ShiftRow

et et et]
41
Shift left

Row 0: no shift

Row 1: 1-byte shift
Row 2: 2-byte shift
Row 3: 3-byte shift

State State

Algorithm

Pseudocode for ShiftRows transformation

ShiftRows (S)

for(r=11t03)

shiftrow (s, 7) // $pis the rth row
:
shiftrow (row, n) // m is the number of bytes to be shifted
~:
CopyRow (row, t) / tis a temporary row

for(c=0103)
r()W(C__ n) mod 4 =

—
L]

Example

State

63 |C9

FE

F2 | F2

63 |-

C91C9

FA

Gl

InvShifiRow

i

Mixing
[The substitution provided by the SubBytes transformation changes

the value of the byte based only on original value and an entry in the
table; the process does not include the neighboring bytes.

[The permutation provided by the ShiftRows transformation exchanges
bytes without permuting the bits inside the bytes, i.e. ShiftRows is a
byte-exchange transformation.

(d Need an interbyte transformation that changes the bits inside a
byte, based on the bits inside the neighboring bytes.
d Need to mix bytes to provide diffusion at the bit level.

d The mixing transformation changes the contents of each byte by
taking four bytes at a time and combining them to recreate four
new bytes.

1 To guarantee that each new byte is different (even if all four bytes
are the same), the combination process first multiplies each byte
with a different constant and then mixes them.

[The mixing can be provided by matrix multiplication

Mixing bytes using multiplication

ax + by +cz+dt -' 1 -a b ¢ d- Px i
ex+ fy+gz+ht — P e f g h v
i+ jy+kz+ it —| | k1 z
mx +ny+oz+pt —-E m n o p t
New matrix Constant matrix Old matnx
02 03 01 O OE OB OD 09
01 02 03 01 & Inverse 4 09 OE OB 0D
01 01 02 03 oD 09 OE OB
03 01 01 02_ _OB 0D 09 OE_

C St

MixColumns

[The MixColumns transformation operates at the column level; it
transforms each column of the state to a new column.
[The transformation is actually the matrix multiplication of a
state column by a constant square matrix.
d The bytes in the state column and constants matrix are interpreted
as 8-bit words (or polynomials) with coefficients in GF(2).
d Multiplication of bytes is done in GF(28) with modulus (10001101) or
(x 8+ x*+ x3 + x + 1).
O Addition is the same as XORing of 8-bit words.

State

MixColumns

State

InvMixColumns

d The InvMixColumns transformation is basically the same as the
MixColumns transformation. If the two constant matrices are

inverses of each other, it is easy to prove that the two
transformations are inverses of each other.

Algorithm

Pseudocode for MixColumns transformation

MixColumns (S)

for(c=01t 3)

mixcolumn (s,.)

mixcolumn (col)
4
CopyColumn (col. t)

7 tis a temporary column
colyg<— (0x02)e ty @ (OxO3 @ ;) D t, Doy
coly «— 1y @ (Ox02)et; @ (OxO3)ety; @ ty
col, «— 1, @D ;D (0x02)et, @ (Ox03)et,

col3<-—(()x030 iy) D L B @ (2@ (Ox)2) e i3

Example

>| MixColumn I l

63 9 FE 30 62 02 27 26]
R CF 92 91 0D|.
State State

D D4 9 €9 0C 0C F4 D6

D4 FA 63 82 99 18 30 74

T InvMixColumn |<

