
Advanced Encryption Standard

Sachin Tripathi

IIT(ISM), Dhanbad

 Overview of AES & Inside

Algorithm

Mathematics behind this Algorithm

Conclusions

Outline

Introductio
n to
Cryptograp
hy

Department of CSE, ISM Dhanbad

2January 20, 2025

A replacement of DES was needed since Key
size is too small.

In 1990's the cracking of DES algorithm became possible.

Around 50hrs of brute forcing allowed to crack the message.

3DES secure but slow

In 1997, National Institute of Standards and
Technology (NIST) called for new proposal

Motivation behind AES

Introductio
n to
Cryptograp
hy

Department of CSE, ISM Dhanbad

3January 20, 2025

Block cipher must be supported with 128 bit block

size

Three key must be supported 128, 192 and 256 bits

Efficiency in software and hardware

NIST requirements

Introductio
n to
Cryptograp
hy

Department of CSE, ISM Dhanbad

4January 20, 2025

AES is an encryption standard chosen by the
National Institute of Standards and Technology (NIST)
and accepted in worldwide as a desirable algorithm to
encrypt sensitive data.

It is the most widely used symmetric ciphers .

In 2001 Rijndael algorithm designed by Rijment and
Daemon of Belgium was declared as the winner of
the competition.

About AES

Introductio
n to
Cryptograp
hy

5

In 1999, five finalist algorithms were announced:

Mars by IBM Corporation

RC6 by RSA Laboratories

Rijndael, by Joan Daemen and Vincent Rijmen

Serpent, by Ross Anderson, Eli Biham and Lars Knudsen

Twofish, by Bruce Schneier, John Kelsey, Doug Whiting,
DavidWagner, Chris Hall and Niels Ferguson

On October 2, 2000, NIST announced that it had chosen
Rijndael as the AES.

On November 26, 2001, AES was formally approved as a US
federal standard.

Introductio
n to
Cryptograp
hy

6January 20, 2025

General Design of AES Encryption

Data Units Used in AES

Block to State Transformation

Example
Let us see how a 16-character block can be shown as a 4 × 4 matrix. Assume that the

text block is “AES uses a matrix”. We add two bogus characters at the end to get

“AESUSESAMATRIXZZ”.

 Now we replace each character with an integer between 00 and 25. We then

show each byte as an integer with two hexadecimal digits. For example, the

character “S” is first changed to 18 and then written as 12 in hexadecimal. The

state matrix is then filled up, column by column,

Round Structure

At the decryption site inverse transformations are used :

InvSubByte, InvShiftRows,InvMixColumns and AddRoundKey

Substitution
AES, like DES, uses substitution. However, the mechanism is different.
 First, the substitution is done for each byte.
 Second, only one table is used for transformation of every byte, which means

that if two bytes are the same, the transformation is also the same.
 Third, the transformation is defined by either a table lookup process or

mathematical calculation in the GF(28) field. AES uses two invertible
transformations.

SubByte Substitution

To substitute a byte, we interpret the byte as two

hexadecimal digits. The left digit defines the row

and the right digit defines the column of the substitution

table. The two hexadecimal digits at the junction of the

row and the column are the new byte

Transformation Table

InvSubBytes Table

Example

Transformation using GF(28)
 AES also defines the transformation algebraically using the GF(28)

field with the irreducible polynomials (x8 + x4 + x3+ x + 1),

 The SubBytes transformation repeats a routine, called subbyte,
sixteen times.The InvSubBytes repeats a routine called invsubbyte.
Each iteration transforms one byte.

 In the subbyte routine, the multiplicative inverse of the byte (as
an 8-bit binary string) is found in GF(28) with the irreducible
polynomial as the modulus.

 if the byte is (00)16 , its inverse is itself.

 The inverted byte is then interpreted as a column matrix with the
least significant bit at the top and the most significant bit at the
bottom.

 This column matrix is multiplied by a constant square matrix,X, and
the result, which is a column matrix, is added with a constant column
matrix, y, to give the new byte.

 Note that multiplication and addition of bits are done in GF(2).The
invsubbyte is doing the same thing in reverse order.

 After finding the multiplicative inverse of the byte, the process is
similar to the affine ciphers

 In the encryption, multiplication is first and addition is second.
 In the decryption, subtraction (addition by inverse) is first and

division(multiplication by inverse) is second.
 It can be easily proved that two transformations are inverses of each

other because addition or subtraction in GF(2) is actually the
XOR operation.

Example
Let us show how the byte 0C is transformed to FE by subbyte routine and
transformed back to 0C by the invsubbyte routine

 subbyte:

 The multiplicative inverse of 0C in GF(28) field is B0, which means b is

(10110000).

 Multiplying matrix X by this matrix results in c = (10011101)

 The result of XOR operation is d = (11111110), which is FE in

hexadecimal.

 invsubbyte:

 The result of XOR operation is c = (10011101)

 The result of multiplying by matrix X-1 is (11010000) or B0

 The multiplicative inverse of B0 is 0C.

Algorithm

 The ByteToMatrix routine transforms a byte to an 8 × 1 column
matrix. The MatrixToByte routine transforms an 8 × 1 column matrix
to a byte.

 The expansion of these routines and the algorithm for InvSubBytes
are left as exercises.

 Although the multiplication and addition of matrices in the subbyte
routine are an affine-type transformation and linear, the
replacement of the byte by its multiplicative inverse in GF(28) is
nonlinear. This step makes the whole transformation nonlinear.

Permutation
 Another transformation found in a round is shifting, which permutes

the bytes. Unlike DES, in which permutation is done at the bit level,
shifting transformation in AES is done at the byte level; the order of
the bits in the byte is not changed.

 In the encryption, the transformation is called ShiftRows and the
shifting is to the left.

 The number of shifts depends on the row number (0, 1, 2, or 3) of

the state matrix. This means the row 0 is not shifted at all and the

last row is shifted three bytes.

ShiftRows Transformation

Algorithm

Example

Mixing
 The substitution provided by the SubBytes transformation changes

the value of the byte based only on original value and an entry in the
table; the process does not include the neighboring bytes.

 The permutation provided by the ShiftRows transformation exchanges
bytes without permuting the bits inside the bytes, i.e. ShiftRows is a
byte-exchange transformation.

 Need an interbyte transformation that changes the bits inside a
byte, based on the bits inside the neighboring bytes.

 Need to mix bytes to provide diffusion at the bit level.

 The mixing transformation changes the contents of each byte by
taking four bytes at a time and combining them to recreate four
new bytes.

 To guarantee that each new byte is different (even if all four bytes
are the same), the combination process first multiplies each byte
with a different constant and then mixes them.

 The mixing can be provided by matrix multiplication

Mixing bytes using multiplication

MixColumns
 The MixColumns transformation operates at the column level; it

transforms each column of the state to a new column.
 The transformation is actually the matrix multiplication of a

state column by a constant square matrix.
 The bytes in the state column and constants matrix are interpreted

as 8-bit words (or polynomials) with coefficients in GF(2).
 Multiplication of bytes is done in GF(28) with modulus (10001101) or

(x 8+ x4+ x3 + x + 1).
 Addition is the same as XORing of 8-bit words.

InvMixColumns
 The InvMixColumns transformation is basically the same as the

MixColumns transformation. If the two constant matrices are
inverses of each other, it is easy to prove that the two
transformations are inverses of each other.

Algorithm

Example

