Advanced Encryption Standard-II

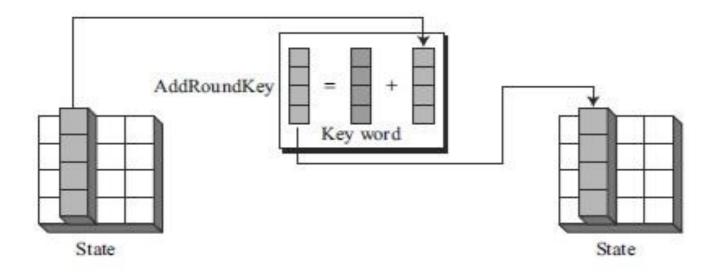
Sachin Tripathi

IIT(ISM), Dhanbad

Key Addition Layer

- The two inputs to the Key Addition layer are the current 16-byte state matrix and a subkey which also consists of 16 bytes (128 bits).
- The two inputs are combined through a bitwise XOR operation.
 - Note that the XOR operation is equal to addition in the Galois field GF(2).

Add Round



Algorithm

Pseudocode for AddRoundKey transformation

```
AddRoundKey (S)

{

for (c = 0 \text{ to } 3)

s_c \leftarrow s_c \oplus w_{4 \text{ round} + c}
}
```

Key Expansion

- \square To create round key for each round, AES uses a keyexpansion process. If the number of rounds is N_r, the keyexpansion routine creates N_r + 1, 128-bit round keys from one single 128-bit cipher key.
- ☐ The first round key is used for pre-round transformation (AddRoundKey)
- ☐ Remaining round keys are used for the last transformation (AddRoundKey) at the end of each round.
- ☐ The key-expansion routine creates round keys word by word, where a word is an array of four bytes. The routine creates $4 \times (N_r + 1)$ words that are called w_0 , w_1 , w_2 , ..., $w_{4(Nr+1)-1}$

(In other words, in the AES-128 version (10 rounds), there are 44 words)

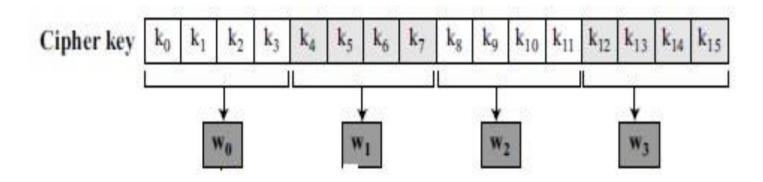
Words for each Round

Round			Words	
Pre-round	\mathbf{w}_0	\mathbf{w}_1	\mathbf{w}_2	w ₃
1	w_4	w ₅	\mathbf{w}_6	\mathbf{w}_7
2	w ₈	W9	\mathbf{w}_{10}	\mathbf{w}_{11}
N_r	w_{4N_r}	w_{4N_r+1}	W4Nr +2	W_{4N_r+3}

Key Expansion Process

The first four words (w_0, w_1, w_2, w) are made from the cipher key.

The cipher key is thought of as an array of 16 bytes (k_0 to k_{15}).



The rest of the words (w_i for i = 4 to 43) are made as follows: If ($i \mod 4$) $\neq 0$, $w_i = w_{i-1} \oplus w_{i-4}$ If ($i \mod 4$) = 0, $w_i = t \oplus w_{i-4}$

$$t = \text{SubWord} (\text{RotWord} (\mathbf{w}_{i-1})) \oplus \text{RCon}_{i/4}$$

□ RotWord

The RotWord (rotate word) routine is similar to the ShiftRows transformation, but it is applied to only one row. The routine takes a word as an array of four bytes and shifts each byte to the left with wrapping.

□ SubWord

The SubWord (substitute word) routine is similar to the SubBytes transformation, but it is applied only to four bytes. The routine takes each byte in the word and substitutes another byte for it.

Round Constant

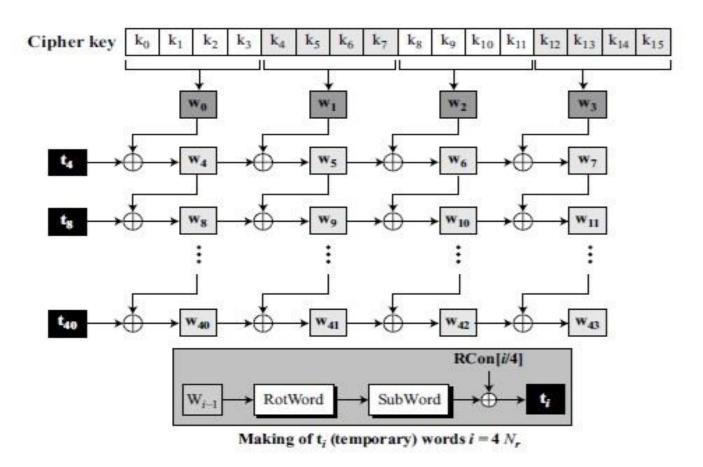
Round	Constant (RCon)	Round	Constant (RCon)
1	(<u>01</u> 00 00 00) ₁₆	6	(20 00 00 00) ₁₆
2	(<u>02</u> 00 00 00) ₁₆	7	(<u>40</u> 00 00 00) ₁₆
3	(<u>04</u> 00 00 00) ₁₆	8	(<u>80</u> 00 00 00) ₁₆
4	(<u>08</u> 00 00 00) ₁₆	9	(1B 00 00 00)16
5	(10 00 00 00) ₁₆	10	(36 00 00 00) ₁₆

The key-expansion routine can either use the above table when calculating the words

Use the GF(2⁸) field to calculate the leftmost byte dynamically.

The leftmost byte, which is called RC_i is actually x^{i-1} , where i is the round number. AES uses the irreducible polynomial ($x^8 + x^4 + x^3 + x + 1$).

Key Expansion in AES-128



Algorithm

```
KeyExpansion ([key0 to key15], [w0 to w43])
      for (i = 0 \text{ to } 3)
            \mathbf{w}_i \leftarrow \ker_{4i} + \ker_{4i+1} + \ker_{4i+2} + \ker_{4i+3}
       for (i = 4 \text{ to } 43)
          if (i \mod 4 \neq 0) \mathbf{w}_i \leftarrow \mathbf{w}_{i-1} + \mathbf{w}_{i-4}
           else
                t \leftarrow \text{SubWord} (\text{RotWord} (\mathbf{w}_{i-1})) \oplus \text{RCon}_{i/4} // t is a temporary word
                \mathbf{w}_i \leftarrow \mathbf{t} + \mathbf{w}_{i-4}
```

Key Expansion Example

Round	Values of t's	First word in the round	Second word in the round	Third word in the round	Fourth word in the round
_		$w_{00} = 2475A2B3$	$w_{01} = 34755688$	$w_{02} = 31E21200$	w ₀₃ =13AA5487
1	AD20177D	w ₀₄ = 8955B5CE	$w_{05} = BD20E346$	w ₀₆ =8CC2F146	$w_{07} = 9F68A5C1$
2	470678DB	w ₀₈ = CE53 CD15	$w_{09} = 73732E53$	w_{10} = FFB1DF15	$w_{11} = 60D97AD4$
3	31DA48D0	w ₁₂ = FF8985C5	w ₁₃ = 8 CFAAB96	w ₁₄ =734B7483	$w_{15} = 2475A2B3$
4	47AB5B7D	w ₁₆ = B822deb8	w ₁₇ =34D8752E	w ₁₈ =479301AD	w ₁₉ = 54010FFA
5	6C762D20	w ₂₀ = D454F398	w ₂₁ = E08C86B6	w ₂₂ = A71F871B	w ₂₃ = F31E88E1
6	52C4F80D	w ₂₄ = 86900B95	w ₂₅ = 661C8D23	w ₂₆ = C1030A38	$w_{27} = 321D82D9$
7	E4133523	w ₂₈ = 62833EB6	w ₂₉ =049FB395	w ₃₀ = C5 9CB 9AD	$w_{31} = F7813B74$
8	8CE29268	w ₃₂ = EE61ACDE	$w_{33} = EAFE1F4B$	w ₃₄ = 2F62A6E6	$w_{35} = D8E39D92$
9	0A5E4F61	w ₃₆ = E43FE3BF	w ₃₇ = 0 EC1 FCF4	$w_{38} = 21A35A12$	$w_{39} = F940C780$
10	3FC6CD99	w ₄₀ = DBF92E26	w ₄₁ = D538D2D2	w ₄₂ = F4 9B8 8C0	$w_{43} = 0DDB4F40$

Illustration

```
RotWord (13AA5487) = AA548713 → SubWord (AA548713) = AC20177D 
t = AC20177D \oplus RCon<sub>1</sub> = AC20 17 7D \oplus 01000000<sub>16</sub> = AD20177D
```

The two sets of round keys can be created from two cipher keys that are different only in one bit.

Cipher Key 1: 12 45 A2 A1 23 31 A4 A3 B2 CC AA 34 C2 BB 77 23 Cipher Key 2: 12 45 A2 A1 23 31 A4 A3 B2 CC AB 34 C2 BB 77 23

Comparing two sets of round keys

R.		Round key	s for set 1			Round key	vs for set 2		B. D.
_	1245A2A1	2331A4A3	B2CCAA34	C2BB7723	1245A2A1	2331A4A3	B2CCAB34	C2BB7723	01
1	F9B08484	DA812027	684D8 <u>A</u> 13	AAF6F <u>D</u> 30	F9B08484	DA812027	684D8 <u>B</u> 13	AAF6FC30	02
2	B9E48028	6365A00F	0B282A1C	A1DED72C	B9008028	6381A00F	OBCC2B1C	A13AD72C	17
3	AOEAF11A	C38F5115	C8A77B09	6979AC25	3D0EF11A	5E8F5115	55437A09	F479AD25	30
4	1E7BCEE3	DDF49FF6	1553E4FF	7C2A48DA	839BCEA5	DD149FB0	8857E5B9	7C2E489C	31
5	KB2999F3	36DD0605	238EE2FA	5FA4AA20	A2C910B5	7FDD8F05	F78A6ABC	8BA42220	34
6	82852E3C	B4582839	97D6CAC3	C87260E3	CB5AA788	B487288D	430D4231	C8A96011	56
7	82553FD4	360D17ED	A1DBDD2E	69A9BDCD	588A2560	ECODODED	AF004FDC	67A92FCD	50
8	D12F822D	E72295C0	46F948EE	2F50F523	0B9F98E5	E7929508	4892DAD4	2F3BF519	44
9	99C9A438	7EEB31F8	38127916	17428C35	F2794CF0	15EBD9F8	5D79032C	7242F635	51
10	83AD32C8	FD460330	C5547A26	D216F613	E83BDAB0	FDD00348	A0A90064	D2EBF651	52

Key Expansion in AES -192

In AES-192, the words are generated in groups of six instead of four.

The cipher key creates the first six words (w_0 to w_5). If i mod $6 \neq 0$, $w_i \leftarrow w_{i-1} + w_{i-6}$; otherwise, $w_i \leftarrow t + w_{i-6}$

Key Expansion in AES -256

In AES-256, the words are generated in groups of eight instead of four.

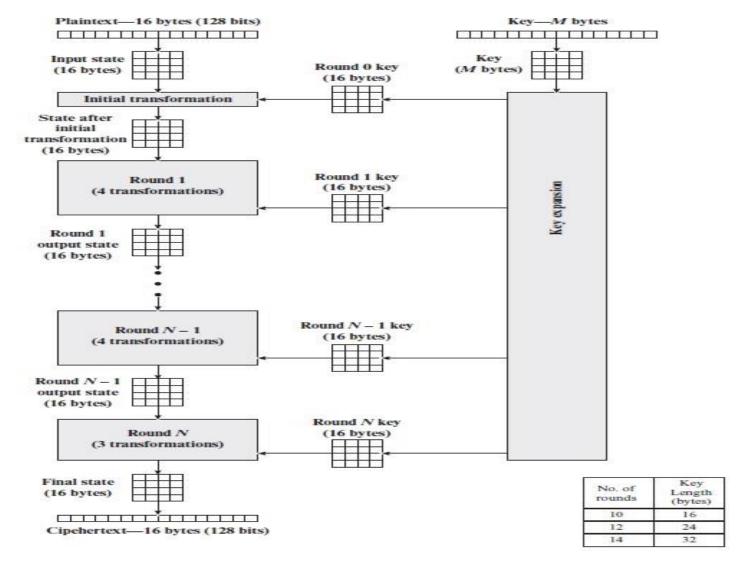
- The cipher key creates the first eight words (w_0 to w_7).
- If i mod $8 \neq 0$, $w_i \leftarrow w_{i-1} + w_{i-8}$; otherwise, $w_i \leftarrow t + w_{i-8}$.
- If i mod 4 = 0, but i mod $8 \neq 0$, then wi = SubWord $(w_{i-1}) + w_{i-8}$

Key-Expansion Analysis

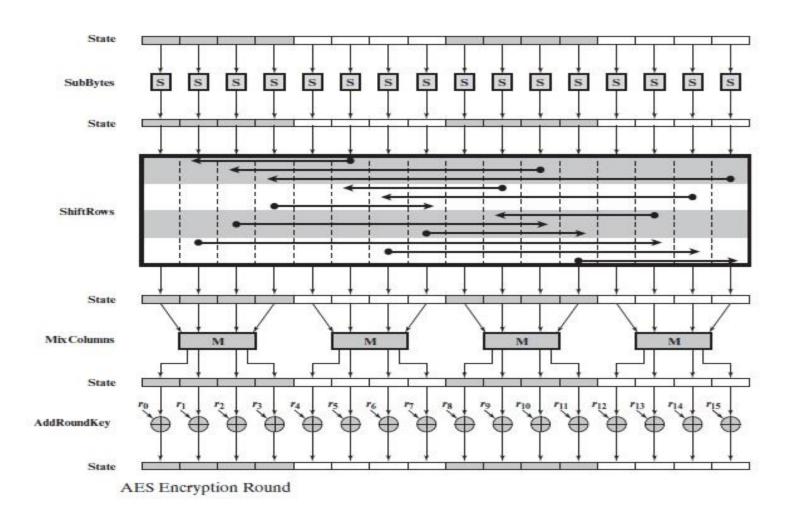
The key-expansion mechanism in AES has been designed to provide several features that thwart the cryptanalyst.

- Even if Eve knows only part of the cipher key or the values of the words in some round keys, she still needs to find the rest of the cipher key before she can find all round keys. This is because of the nonlinearity produced by SubWord transformation in the key-expansion process.
- 2. Two different cipher keys, no matter how similar to each other, produce two expansions that differ in at least a few rounds.
- 3. Each bit of the cipher key is diffused into several rounds. For example, changing a single bit in the cipher key, will change some bits in several rounds.
- 4. The use of the constants, the RCons, removes any symmetry that may have been created by the other transformations.
- 5. There are no serious weak keys in AES, unlike in DES.
- 6. The key-expansion process can be easily implemented on all platforms.
- 7. The key-expansion routine can be implemented without storing a single table; all calculations can be done using the $GF(2^8)$ and FG(2) fields.

AES Encryption



AES Encryption Round



AES round function for rounds $1, 2, \ldots, N_r-1$



ShiftRows Sublayer

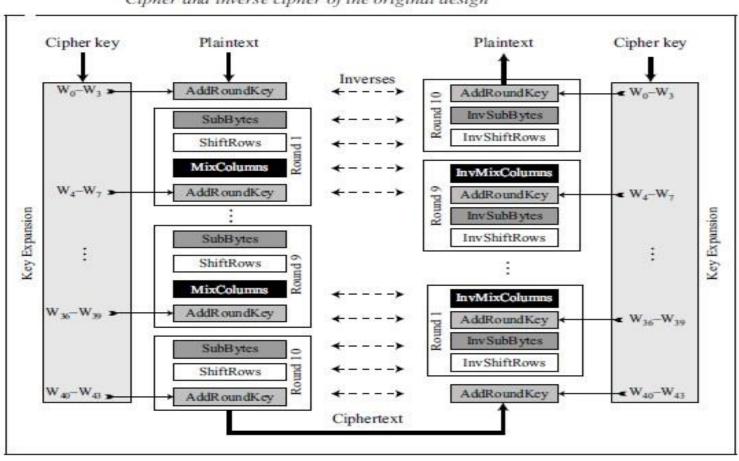
B_0	B_4	B_8	B_{12}
B_1	B_5	B_9	B_{13}
B_2	B_6	B_{10}	B_{14}
B_3	B_7	B_{11}	B_{15}

the output is the new state:

B_0	B_4	B_8	B_{12}		no shift
B_5	B_9	B_{13}	B_1	←	one position left shift
B_{10}	B_{14}	B_2	B_6		two positions left shift
B_{15}	B_3	B_7	B_{11}		three positions left shift

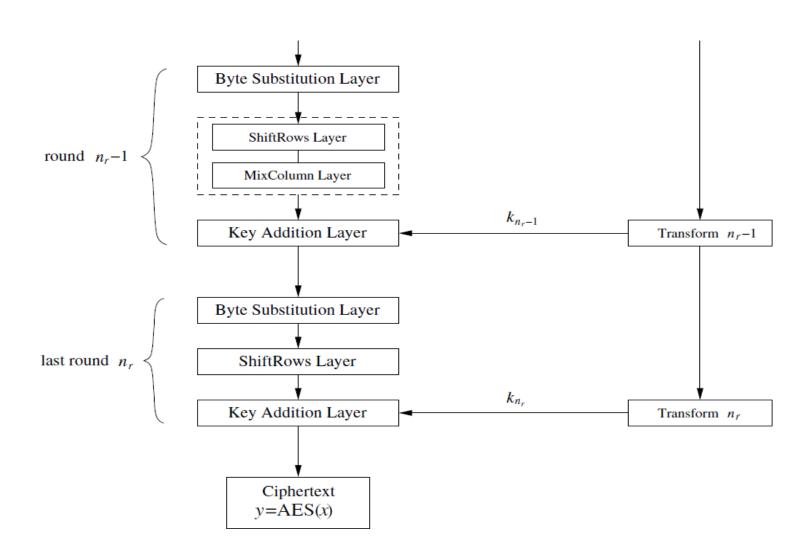
Original Design

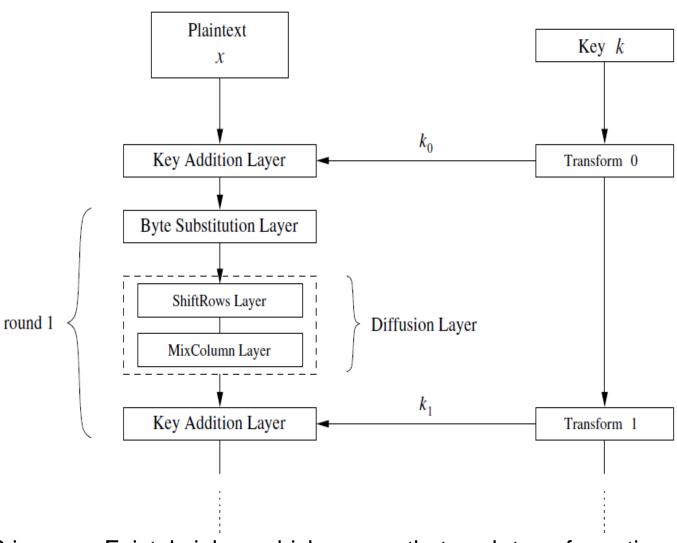
Cipher and inverse cipher of the original design



☐ The order of transformations in each round is not the same in the cipher and reverse cipher ☐ First, the order of SubBytes and ShiftRows is changed in the reverse cipher. ☐ Second, the order of MixColumns and AddRoundKey is changed in the reverse cipher. ☐ This difference in ordering is needed to make each transformation in the cipher aligned with its inverse in the reverse cipher.

- ☐ Consequently, the decryption algorithm as a whole is the inverse of the encryption algorithm.
- □ Round keys are used in the reverse order. Note that the encryption and decryption algorithms in the original design are not similar.





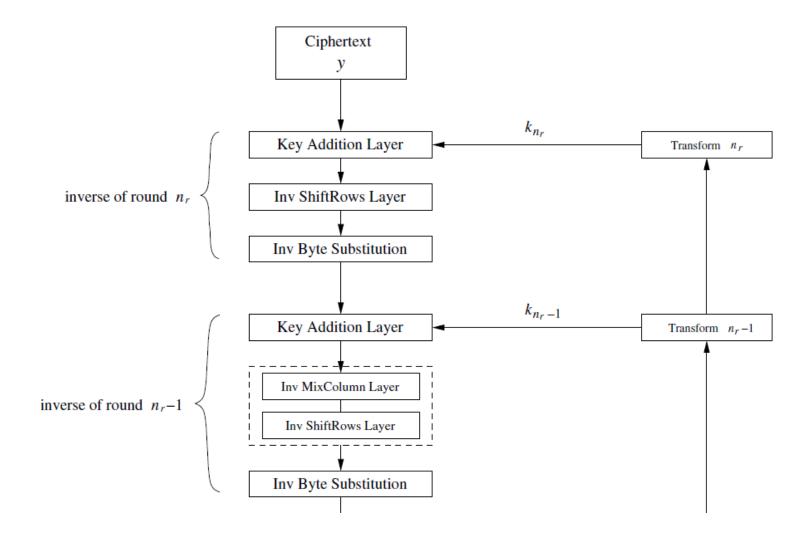
AES is a non-Feistel cipher, which means that each transformation or group of transformations must be invertible

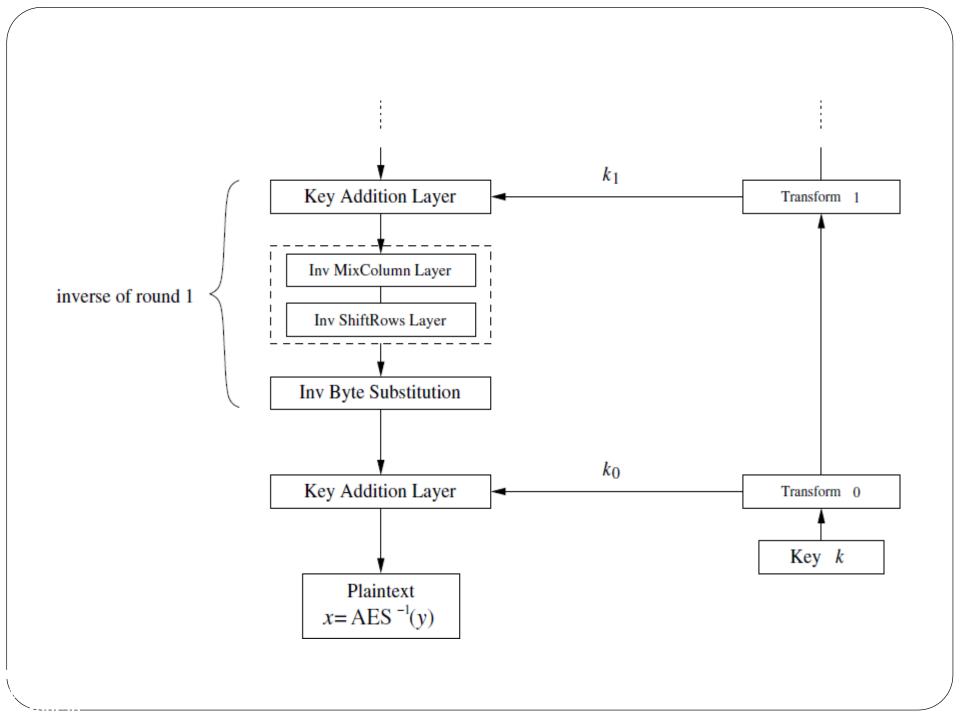
```
Cipher (InBlock [16], OutBlock [16], w[0 ... 43])
   BlockToState (InBlock, S)
   S \leftarrow AddRoundKey (S, w[0...3])
    for (round = 1 to 10)
       S \leftarrow SubBytes(S)
       S \leftarrow ShiftRows(S)
        if (round \neq 10) S \leftarrow MixColumns (S)
        S \leftarrow AddRoundKey (S, w[4 \times round, 4 \times round + 3])
  StateToBlock (S, OutBlock);
```

AES Decryption

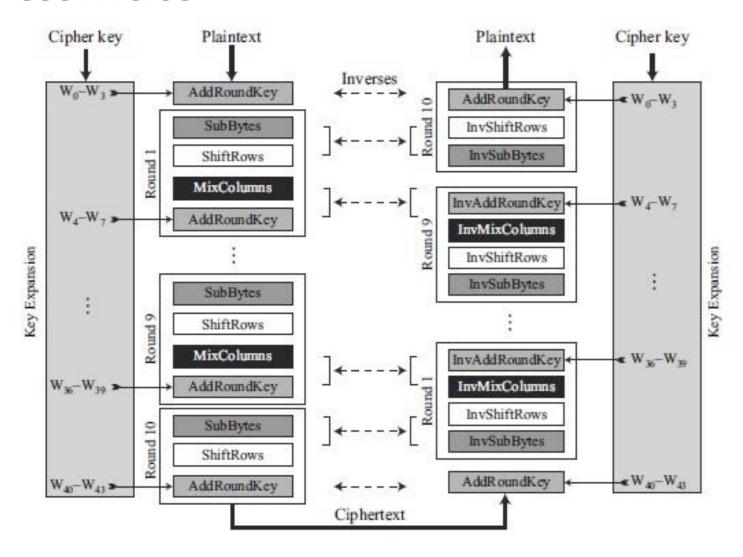
- AES is not based on a Feistel network.
- The Byte Substitution layer becomes the Inv Byte Substitution layer.
- The ShiftRows layer becomes the Inv ShiftRows layer, and the MixColumn layer becomes Inv MixColumn layer.
- The order of the subkeys is reversed.

AES decryption block diagram





Alternate



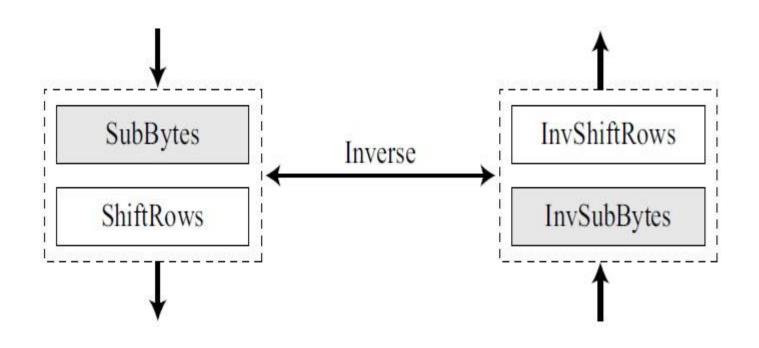
☐ SubBytes/ShiftRows Pairs

SubBytes change the contents of each byte without changing the order of the bytes in the state;

ShiftRows change the order of the bytes in the state without changing the contents of the bytes.

- This implies that we can change the order of these two transformations in the inverse cipher without affecting the invertibility of the whole algorithm.
- The combination of two transformations in the cipher and inverse cipher are the inverses of each other.

Invertibility of SubBytes and ShiftRows combinations

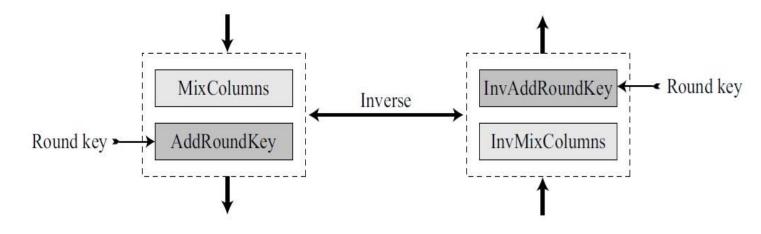


MixColumns/AddRoundKey Pair

Here the two involved transformations are of different nature.

However, the pairs can become inverses of each other if we multiply the key matrix by the inverse of the constant matrix used in MixColumns transformation.

We call the new transformation InvAddRoundKey.



It can be proved that the two combinations are now inverses of each other. In the cipher we call the input state to the combination S and the output state T. In the reverse cipher the input state to the combination is T. The following shows that the output state is also S. Note that the MixColumns transformation is actually multiplication of the C matrix (constant matrix by the state).

Cipher: $T = CS \oplus K$

Inverse Cipher: $C^{-1}T \oplus C^{-1}K = C^{-1}(CS \oplus K) \oplus C^{-1}K = C^{-1}CS \oplus C^{-1}K \oplus C^{-1}K = S$

☐ Changing Key-Expansion Algorithm

Instead of using InvRoundKey transformation in the reverse cipher, the key-expansion algorithm can be changed to create a different set of round keys for the inverse cipher. However, note that the round key for the pre-round operation and the last round should not be changed. The round keys for rounds 1 to 9 need to be multiplied by the constant

rounds 1 to 9 need to be multiplied by the constant matrix

Examples

The following shows the ciphertext block created from a plaintext block using a randomly selected cipher key.

```
Plaintext: 00 04 12 14 12 04 12 00 0C 00 13 11 08 23 19 19
```

Cipher Key: 24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54 87

Ciphertext: BC 02 8B D3 E0 E3 B1 95 55 0D 6D FB E6 F1 82 41

Analysis of AES

□ Security

AES was designed after DES. Most of the known attacks on DES were already tested on AES; none of them has broken the security of AES so far.

□ Brute-Force Attack

AES is definitely more secure than DES due to the larger-size key (128, 192, and 256 bits). Let us compare DES with 56-bit cipher key and AES with 128-bit cipher key. For DES we need 2^{56} (ignoring the key complement issue) tests to find the key; for AES we need 2^{128} tests to find the key. This means that if we can break DES in *t* seconds, we need $(2^{72} \times t)$ seconds to break AES. This would be almost impossible. In addition, AES provides two other versions with longer cipher keys. The lack of weak keys is another advantage of AES over DES.

■ Statistical Attacks

The strong diffusion and confusion provided by the combination of the SubBytes, ShiftRows, and MixColumns transformations removes any frequency pattern in the plaintext. Numerous tests have failed to do statistical analysis of the ciphertext.

☐ Differential and Linear Attacks

AES was designed after DES. Differential and linear cryptanalysis attacks were no doubt taken into consideration. There are no differential and linear attacks on AES as yet.

- AES was designed after DES
- Most of the known attacks on DES were already tested on AES.
- Brute-Force attack
- There are no differential and linear attacks on AES yet.
- It can be easily implemented using cheap processors.

Thank You