SECTION 16.1 E-MAIL 469

d. Alice and Bob cannot directly communicate using an MTA client at the sender site
and an MTA server at the receiver site. This requires that the MTA server be running
all the time, because Bob does not know when a message will arrive. This is not
practical, because Bob probably turns off his computer when he does not need it.

E-mail Security

Sending an e-mail is a one-time activity. The nature of this activity is different from
those we will see in the next two chapters. In IPSec or SSL, we assume that the two
parties create a session between themselves and exchange data in both directions. In
e-mail, there is no session. Alice and Bob cannot create a session. Alice sends a mes-
sage to Bob; sometime later, Bob reads the message and may or may not send a reply.
We discuss the security of a unidirectional message because what Alice sends to Bob is
totally independent from what Bob sends to Alice.

Cryptographic Algorithms

If e-mail is a one-time activity, how can the sender and receiver agree on a crypto-
graphic algorithm to use for e-mail security? If there is no session and no handshaking
to negotiate the algorithms for encryption/decryption and hashing, how can the receiver
know which algorithm the sender has chosen for each purpose?

One solution is for the underlying protocol to select one algorithm for each crypto-
graphic operation and to force Alice to use only those algorithms. This solution is very
restrictive and limits the capabilities of the two parties.

A better solution is for the underlying protocol to define a set of algorithms for
each operation that the user used in his/her system. Alice includes the name (or identifi-
ers) of the algorithms she has used in the e-mail. For example, Alice can choose triple
DES for encryption/decryption and MD5 for hashing. When Alice sends a message to
Bob, she includes the corresponding identifiers for triple DES and MDS5 in her mes-
sage. Bob receives the message and extracts the identifiers first. He then knows which
algorithm to use for decryption and which one for hashing.

In e-mail security, the sender of the message needs to include the name or identifiers
of the algorithms used in the message.

Cryptographic Secrets

The same problem for the cryptographic algorithms applies to the cryptographic secrets
(keys). If there is no negotiation, how can the two parties establish secrets between
themselves? Alice and Bob could use asymmetric-key algorithms for authentication
and encryption, which do not require the establishment of a symmetric key. However,
as we have discussed, the use of asymmetric-key algorithms is very inefficient for the
encryption/decryption of a long message.

Most e-mail security protocols today require that encryption/decryption be done
using a symmetric-key algorithm and a one-time secret key sent with the message.
Alice can create a secret key and send it with the message she sends to Bob. To protect

470

CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

the secret key from interception by Eve, the secret key is encrypted with Bob’s public
key. In other words, the secret key itself is encrypted.

In e-mail security, the encryption/decryption is done using a symmetric-key algorithm,
but the secret key to decrypt the message is encrypted with the public key of the
receiver and is sent with the message.

Certificates

One more issue needs to be considered before we discuss any e-mail security protocol
in particular. It is obvious that some public-key algorithms must be used for e-mail
security. For example, we need to encrypt the secret key or sign the message. To
encrypt the secret key, Alice needs Bob’s public key; to verify a signed message, Bob
needs Alice’s public key. So, for sending a small authenticated and confidential mes-
sage, two public keys are needed. How can Alice be assured of Bob’s public key, and
how can Bob be assured of Alice’s public key? Each e-mail security protocol has a dif-
ferent method of certifying keys.

16.2 PGP

The first protocol discussed in this chapter is called Pretty Good Privacy (PGP). PGP
was invented by Phil Zimmermann to provide e-mail with privacy, integrity, and
authentication. PGP can be used to create a secure e-mail message or to store a file
securely for future retrieval.

Scenarios

Let us first discuss the general idea of PGP, moving from a simple scenario to a com-
plex one. We use the term “Data” to show the message or file prior to processing.

Plaintext

The simplest scenario is to send the e-mail message (or store the file) in plaintext as
shown in Figure 16.2. There is no message integrity or confidentiality in this scenario.
Alice, the sender, composes a message and sends it to Bob, the receiver. The message is
stored in Bob’s mailbox until it is retrieved by him.

Figure 16.2 A plaintext message

Alice Bob

= =
T !

SECTION 16.2 PGP 471

Message Integrity

Probably the next improvement is to let Alice sign the message. Alice creates a digest
of the message and signs it with her private key. When Bob receives the message, he
verifies the message by using Alice’s public key. Two keys are needed for this scenario.
Alice needs to know her private key; Bob needs to know Alice’s public key. Figure 16.3
shows the situation.

Figure 16.3 An authenticated message

Alice’s . Digitally signed with Ali_ces ?
private key A Alice’s private key public key

- A 2
== A (5@l =
—| Data |—| Digest I >

Compression

A further improvement is to compress the message to make the packet more compact.
This improvement has no security benefit, but it eases the traffic. Figure 16.4 shows the
new scenario.

Figure 16.4 A4 compressed message

Alice’s AR Digitally signed with Alice’s T
private key Alice’s private key public key

Alice . Bob
A
Data i R

(compressed) Llzesit 4

Confidentiality with One-Time Session Key

As we discussed before, confidentiality in an e-mail system can be achieved using
conventional encryption with a one-time session key. Alice can create a session key, use
the session key to encrypt the message and the digest, and send the key itself with the
message. However, to protect the session key, Alice encrypts it with Bob’s public key.
Figure 16.5 shows the situation.

When Bob receives the packet, he first decrypts the key, using his private key to
remove the key. He then uses the session key to decrypt the rest of the message. After
decompressing the rest of the message, Bob creates a digest of the message and
checks to see if it is equal to the digest sent by Alice. If it is, then the message is
authentic.

472 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Figure 16.5 A confidential message

A % Digitally signed with Alice’s private key
B ﬁ‘i Encrypted with Bob’s public key

Alice’s Bob’s Ja¥ . . Bob’s Alice’s
private key i?public key) Encrypted with shared session key private keyi public key
Alicei ?‘ ifob
= = y =
N B i}
Message Digest |
(compressed) 1ges I_l ”
Shared
session key

Code Conversion

Another service provided by PGP is code conversion. Most e-mail systems allow the
message to consist of only ASCII characters. To translate other characters not in the
ASCII set, PGP uses Radix-64 conversion. Each character to be sent (after encryption)
is converted to Radix-64 code, which is discussed later in the chapter.

Segmentation

PGP allows segmentation of the message after it has been converted to Radix-64 to make
each transmitted unit the uniform size as allowed by the underlying e-mail protocol.

Key Rings

In all previous scenarios, we assumed that Alice needs to send a message only to Bob.
That is not always the case. Alice may need to send messages to many people; she
needs key rings. In this case, Alice needs a ring of public keys, with a key belonging to
each person with whom Alice needs to correspond (send or receive messages). In addi-
tion, the PGP designers specified a ring of private/public keys. One reason is that Alice
may wish to change her pair of keys from time to time. Another reason is that Alice
may need to correspond with different groups of people (friends, colleagues, and so
on). Alice may wish to use a different key pair for each group. Therefore, each user
needs to have two sets of rings: a ring of private/public keys and a ring of public keys of
other people. Figure 16.6 shows a community of four people, each having a ring of
pairs of private/public keys and, at the same time, a ring of public keys belonging to
other people in the community.

Alice, for example, has several pairs of private/public keys belonging to her and
public keys belonging to other people. Note that everyone can have more than one pub-
lic key. Two cases may arise.

1. Alice needs to send a message to another person in the community.

a. She uses her private key to sign the digest.
b. She uses the receiver’s public key to encrypt a newly created session key.
c. She encrypts the message and signed digest with the session key created.

SECTION 16.2 PGP 473

Figure 16.6 Key rings in PGP

2. Alice receives a message from another person in the community.

a. She uses her private key to decrypt the session key.
b. She uses the session key to decrypt the message and digest.
c. She uses her public key to verify the digest.

PGP Algorithms
The following algorithms are used in PGP.

Public-Key Algorithms The public-key algorithms that are used for signing the digests
or encrypting the messages are listed in Table 16.1.

Table 16.1 Public-key algorithms

ID Description
1 RSA (encryption or signing)
2 RSA (for encryption only)
3 RSA (for signing only)
16 ElGamal (encryption only)
17 DSS
18 Reserved for elliptic curve
19 Reserved for ECDSA
20 ElGamal (for encryption or signing)
21 Reserved for Diffie-Hellman
100-110 Private algorithms

Symmetric-Key Algorithms The symmetric-key algorithms that are used for con-
ventional encrypting are shown in Table 16.2.

474 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Table 16.2 Symmetric-key algorithms

ID Description

No Encryption

IDEA

Triple DES
CAST-128

Blowfish
SAFER-SK128
Reserved for DES/SK
Reserved for AES-128
Reserved for AES-192
Reserved for AES-256
100-110 Private algorithms

Ol ||| BV —=]|O

Hash Algorithms The hash algorithms that are used for creating hashes in PGP are
shown in Table 16.3.

Table 16.3 Hash Algorithms

ID Description

1 MD5

2 SHA-1

3 RIPE-MD/160

4 Reserved for double-width SHA
5 MD2

6 TIGER/192

7 Reserved for HAVAL

100-110 Private algorithms

Compression Algorithms The compression algorithms that are used for compress-
ing text are shown in Table 16.4.

Table 16.4 Compression methods

1D Description
0 Uncompressed
1 ZIP
2 ZLIP
100-110 Private methods

SECTION 16.2 PGP 475

PGP Certificates

PGP, like other protocols we have seen so far, uses certificates to authenticate public
keys. However, the process is totally different.

X.509 Certificates

Protocols that use X.509 certificates depend on the hierarchical structure of the trust.
There is a predefined chain of trust from the root to any certificate. Every user fully
trusts the authority of the CA at the root level (prerequisite). The root issues certificates
for the CAs at the second level, a second level CA issues a certificate for the third level,
and so on. Every party that needs to be trusted presents a certificate from some CA in
the tree. If Alice does not trust the certificate issuer for Bob, she can appeal to a higher-
level authority up to the root (which must be trusted for the system to work). In other
words, there is one single path from a fully trusted CA to a certificate.

In X.509, there is a single path from the fully trusted authority to any certificate.

PGP Certificates

In PGP, there is no need for CAs; anyone in the ring can sign a certificate for anyone
else in the ring. Bob can sign a certificate for Ted, John, Anne, and so on. There is no
hierarchy of trust in PGP; there is no tree. The lack of hierarchical structure may result
in the fact that Ted may have one certificate from Bob and another certificate from Liz.
If Alice wants to follow the line of certificates for Ted, there are two paths: one starts
from Bob and one starts from Liz. An interesting point is that Alice may fully trust Bob,
but only partially trust Liz. There can be multiple paths in the line of trust from a fully
or partially trusted authority to a certificate. In PGP, the issuer of a certificate is usually
called an introducer.

In PGP, there can be multiple paths from fully or partially trusted authorities to any subject.

Trusts and Legitimacy

The entire operation of PGP is based on introducer trust, the certificate trust, and the
legitimacy of the public keys.

Introducer Trust Levels With the lack of a central authority, it is obvious that the
ring cannot be very large if every user in the PGP ring of users has to fully trust every-
one else. (Even in real life we cannot fully trust everyone that we know.) To solve this
problem, PGP allows different levels of trust. The number of levels is mostly imple-
mentation dependent, but for simplicity, let us assign three levels of trust to any intro-
ducer: none, partial, and full. The introducer trust level specifies the trust levels issued
by the introducer for other people in the ring. For example, Alice may fully trust Bob,
partially trust Anne, and not trust John at all. There is no mechanism in PGP to deter-
mine how to make a decision about the trustworthiness of the introducer; it is up to the
user to make this decision.

476 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Certificate Trust Levels When Alice receives a certificate from an introducer, she
stores the certificate under the name of the subject (certified entity). She assigns a level
of trust to this certificate. The certificate trust level is normally the same as the intro-
ducer trust level that issued the certificate. Assume that Alice fully trusts Bob, partially
trusts Anne and Janette, and has no trust in John. The following scenarios can happen.

1. Bob issues two certificates, one for Linda (with public key K1) and one for Lesley
(with public key K2). Alice stores the public key and certificate for Linda under
Linda’s name and assigns a full level of trust to this certificate. Alice also stores the
certificate and public key for Lesley under Lesley’s name and assigns a full level of
trust to this certificate.

2. Anne issues a certificate for John (with public key K3). Alice stores this certificate
and public key under John’s name, but assigns a partial level for this certificate.

3. Janette issues two certificates, one for John (with public key K3) and one for Lee
(with public key K4). Alice stores John’s certificate under his name and Lee’s certifi-
cate under his name, each with a partial level of trust. Note that John now has two
certificates, one from Anne and one from Janette, each with a partial level of trust.

4. John issues a certificate for Liz. Alice can discard or keep this certificate with a sig-
nature trust of none.

Key Legitimacy The purpose of using introducer and certificate trusts is to deter-
mine the legitimacy of a public key. Alice needs to know how legitimate the public keys
of Bob, John, Liz, Anne, and so on are. PGP defines a very clear procedure for deter-
mining key legitimacy. The level of the key legitimacy for a user is the weighted trust
levels of that user. For example, suppose we assign the following weights to certificate
trust levels:

1. A weight of 0 to a nontrusted certificate
2. A weight of 1/2 to a certificate with partial trust
3. A weight of 1 to a certificate with full trust

Then to fully trust an entity, Alice needs one fully trusted certificate or two partially
trusted certificates for that entity. For example, Alice can use John’s public key in the
previous scenario because both Anne and Janette have issued a certificate for John,
each with a certificate trust level of 1/2. Note that the legitimacy of a public key belong-
ing to an entity does not have anything to do with the trust level of that person.
Although Bob can use John’s public key to send a message to him, Alice cannot accept
any certificate issued by John because, for Alice, John has a trust level of none.

Starting the Ring

You might have realized a problem with the above discussion. What if nobody sends
a certificate for a fully or partially trusted entity? For example, how can the legiti-
macy of Bob’s public key be determined if no one has sent a certificate for Bob? In
PGP, the key legitimacy of a trusted or partially trusted entity can be also determined
by other methods.

1. Alice can physically obtain Bob’s public key. For example, Alice and Bob can meet
personally and exchange a public key written on a piece of paper or to a disk.

SECTION 16.2 PGP 477

2. If Bob’s voice is recognizable to Alice, Alice can call him and obtain his public key
on the phone.

3. A better solution proposed by PGP is for Bob to send his public key to Alice by
e-mail. Both Alice and Bob make a 16-byte MD5 (or 20-byte SHA-1) digest from
the key. The digest is normally displayed as eight groups of 4 digits (or ten groups
of 4 digits) in hexadecimal and is called a fingerprint. Alice can then call Bob
and verify the fingerprint on the phone. If the key is altered or changed during
the e-mail transmission, the two fingerprints do not match. To make it even more
convenient, PGP has created a list of words, each representing a 4-digit combina-
tion. When Alice calls Bob, Bob can pronounce the eight words (or ten words) for
Alice. The words are carefully chosen by PGP to avoid those similar in pronuncia-
tion; for example, if sword is in the list, word is not.

4. In PGP, nothing prevents Alice from getting Bob’s public key from a CA in a sepa-
rate procedure. She can then insert the public key in the public key ring.

Key Ring Tables

Each user, such as Alice, keeps track of two key rings: one private-key ring and one
public key ring. PGP defines a structure for each of these key rings in the form of a table.

Private Key Ring Table Figure 16.7 shows the format of a private key ring table.

Figure 16.7 Format of private key ring table

User | Key |Public| Encrypted |
@‘ 1D ID | key |private key Uit i)

Private ring

(1 User ID. The user ID is usually the e-mail address of the user. However, the user
may designate a unique e-mail address or alias for each key pair. The table lists the
user ID associated with each pair.

[d Key ID. This column uniquely defines a public key among the user’s public keys.
In PGP, the key ID for each pair is the first (least significant) 64 bits of the public
key. In other words, the key ID is calculated as (key mod 264). The key ID is
needed for the operation of PGP because Bob may have several public keys
belonging to Alice in his public key ring. When he receives a message from Alice,
Bob must know which key ID to use to verify the message. The key ID, which is
sent with the message, as we will see shortly, enables Bob to use a specific public
key for Alice from his public ring. You might ask why the entire public key is not
sent. The answer is that in public-key cryptography, the size of the public key may
be very long. Sending just 8 bytes reduces the size of the message.

(1 Public Key. This column just lists the public key belonging to a particular private
key/public key pair.

478

CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

(1 Encrypted Private Key. This column shows the encrypted value of the private
key in the private key/public key pair. Although Alice is the only person access-
ing her private ring, PGP saves only the encrypted version of the private key. We
will see later how the private key is encrypted and decrypted.

(J Timestamp. This column holds the date and time of the key pair creation. It
helps the user decide when to purge old pairs and when to create new ones.

Example 16.1

Let us show a private key ring table for Alice. We assume that Alice has only two user IDs,
alice@some.com and alice@anet.net. We also assume that Alice has two sets of private/public
keys, one for each user ID. Table 16.5 shows the private key ring table for Alice.

Table 16.5 Private key ring table for Example 1

Encrypted
User ID Key ID Public Key Private Key Timestamp
alice@anet.net ABI13...45 ABI13...45...59 32452398...23 | 031505-16:23
alice@some.com FA23...12 FA23...12..22 564A4923..23 | 031504-08:11

Note that although the values of key ID, public key, and private key are shown in hexadeci-
mal, and ddmmyy-time format is used for the timestamp, these formats are only for presentation
and may be different in an actual implementation.

Public Key Ring Table Figure 16.8 shows the format of a public key ring table.

Figure 16.8 Format of a public key ring table

User | Key | Public | Producer Certificate Key

ID ID key trust Omitiisi=() trust(s) |Legitimacy loc

Public ring

User ID. As in the private key ring table, the user ID is usually the e-mail address
of the entity.

Key ID. As in the private key ring table, the key ID is the first (least significant)
64 bits of the public key.

Public Key. This is the public key of the entity.

Producer Trust. This column defines the producer level of trust. In most imple-
mentations, it can only be of one of three values: none, partial, or full.

U U o O

Certificate(s). This column holds the certificate or certificates signed by other
entities for this entity. A user ID may have more than one certificate.

4

a

SECTION 16.2 PGP 479

Certificate Trust(s). This column represents the certificate trust or trusts. If Anne
sends a certificate for John, PGP searches the row entry for Anne, finds the value of
the producer trust for Anne, copies that value, and inserts it in the certificate trust
field in the entry for John.

Key Legitimacy. This value is calculated by PGP based on the value of the certifi-
cate trust and the predefined weight for each certificate trust.

Timestamp. This column holds the date and time of the column creation.

Example 16.2

A series of steps will show how a public key ring table is formed for Alice.

1.

Start with one row, Alice herself, as shown in Table 16.6. Use N (none), P (partial), and F
(full) for the levels of trust. For simplicity, also assume that everyone (including Alice) has
only one user ID.

Table 16.6 Example 2, starting table

User Key Public Prod. Cert. Key Time-
ID ID key trust Certificate trust legit. stamp
Alice... AB... AB....... F F | ...

Note that, based on this table, we assume that Alice has issued a certificate for herself (implic-
itly). Alice of course trusts herself fully. The producer level of trust is also fi«/l and so is the key
legitimacy. Although Alice never uses this first row, it is needed for the operation of PGP.
Now Alice adds Bob to the table. Alice fully trusts Bob, but to obtain his public key, she asks
Bob to send the public key by e-mail as well as his fingerprint. Alice then calls Bob to check
the fingerprint. Table 16.7 shows this new event.

Table 16.7 Example 2, after Bob is added to the table

User Key Public Prod. Cert. Key Time-

1D 1D key trust Certificate trust legit. stamp
Alice... AB... AB........ F F | ...
Bob... 12... 2. F F | ...

Note that the value of the producer trust is fu// for Bob because Alice fully trusts Bob. The
value of the certificate field is empty, which shows that this key has been received indirectly,
and not by a certificate.

Now Alice adds Ted to the table. Ted is fully trusted. However, for this particular user,
Alice does not have to call Ted. Instead, Bob, who knows Ted’s public key, sends Alice a
certificate that includes Ted’s public key, as shown in Table 16.8.

Table 16.8 Example 2, after Ted is added to the table

User Key Public Prod. Cert. Key Time-
ID D key trust Certificate trust legit. stamp
Alice... AB... AB........ F F | ...
Bob... 12... 12........ F F | ..
Ted... 48... 48........ F Bob’s F F | ...

480

CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Note that the value of certificate field shows that the certificate was received from Bob.
The value of the certificate trust is copied by PGP from Bob’s producer trust field. The
value of the key legitimacy field is the value of the certificate trust multiplied by 1 (the
weight).

4. Now Alice adds Anne to the list. Alice partially trusts Anne, but Bob, who is fully trusted,
sends a certificate for Anne. Table 16.9 shows the new event.

Table 16.9 Example 2, after Anne is added to the table

User Key Public Prod. Cert. Key Time-
1D ID key trust Certificate trust legit. stamp
Alice... AB... AB........ F F | ...
Bob... 12... 12........ F F | ...
Ted... 48... 48........ F Bob’s F | ...
Anne... 71... 71........ P Bob’s F | ...

Note that the producer trust value for Anne is partial, but the certificate trust and key legiti-

macy is full.
5. Now Anne introduces John, who is not trusted by Alice. Table 16.10 shows the new

event.

Table 16.10 Example 2, after John is added to the table

User Key Public Prod. Cert. Key Time-
D ID key Trust Certificate trust legit. stamp
Alice... AB... AB........ F F | ...
Bob... 12... 12........ F F | ...
Ted... 48... 48........ F Bob’s F | ...
Anne... 71... 7l........ P Bob’s F | .
John... 31... 31........ N Anne’s P

Note that PGP has copied the value of Anne’s producer trust (P) to the certificate trust
field for John. The value of the key legitimacy field for John is 1/2 (P) at this moment,
which means that Alice must not use John’s key until it changes to 1 (F).

6. Now Janette, who is unknown to Alice, sends a certificate for Lee. Alice totally ignores this
certificate because she does not know Janette.

7. Now Ted sends a certificate for John (John, who is trusted by Ted, has probably asked Ted to
send this certificate). Alice looks at the table and finds John’s user ID with the corresponding
key ID and public key. Alice does not add another row to the table; she just modifies the
table as shown in Table 16.11.

Because John has two certificates in Alice’s table and his key legitimacy value is 1, Alice
can use his key. But John is still untrustworthy. Note that Alice can continue to add entries to

the table.

SECTION 16.2 PGP 481

Table 16.11 Example 2, after one more certificate received for John

User Key Public Prod. Cert. Key Time-
1D 1D key trust Certificate trust legit. stamp
Alice... AB... AB........ F F | ...
Bob... 12... 12........ F F |
Ted... 48... 48........ F Bob’s F F | ...
Anne... 71... 71........ P Bob’s F F | ...
John... 31... 31........ N Anne’s P F | ...
Ted’s F
Trust Model in PGP

As Zimmermann has proposed, we can create a trust model for any user in a ring with the
user as the center of activity. Such a model can look like the one shown in Figure 16.9.
The figure shows the trust model for Alice at some moment. The diagram may change
with any changes in the public key ring table.

Figure 16.9 Trust model

i P \ @ P
E B =

o a &
Bob Anne Mark Helen] .
X has legitimate key

X introduced by Y

Z? 1? .—>X ? X introduced by an unknown entity
w John Kevin Duc .
- Fully trusted entity

Y 9 X 9
/ |:| Partially trusted entity
7
Bruce [« Jenny Luise |:| Untrusted entity

Let us elaborate on the figure. Figure 16.9 shows that there are three entities in
Alice’s ring with full trust (Alice herself, Bob, and Ted). The figure also shows three
entities with partial trust (Anne, Mark, and Bruce). There are also six entities with no
trust. Nine entities have a legitimate key. Alice can encrypt a message to any one of
these entities or verify a signature received from one of these entities (Alice’s key is
never used in this model). There are also three entities that do not have any legitimate

keys with Alice.

482

CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Bob, Anne, and Mark have made their keys legitimate by sending their keys by
e-mail and verifying their fingerprints by phone. Helen, on the other hand, has sent a
certificate from a CA because she is not trusted by Alice and verification on the phone
is not possible. Although Ted is fully trusted, he has given Alice a certificate signed by
Bob. John has sent Alice two certificates, one signed by Ted and one by Anne. Kevin
has sent two certificates to Alice, one signed by Anne and one by Mark. Each of these
certificates gives Kevin half a point of legitimacy; therefore, Kevin’s key is legitimate.
Duc has sent two certificates to Alice, one signed by Mark and the other by Helen.
Since Mark is half-trusted and Helen is not trusted, Duc does not have a legitimate
key. Jenny has sent four certificates, one signed by a half-trusted entity, two by un-
trusted entities, and one by an unknown entity. Jenny does not have enough points to
make her key legitimate. Luise has sent one certificate signed by an unknown entity.
Note that Alice may keep Luise’s name in the table in case future certificates for Luise
arrive.

Web of Trust

PGP can eventually make a web of trust between a group of people. If each entity
introduces more entities to other entities, the public key ring for each entity gets larger
and larger and entities in the ring can send secure e-mail to each other.

Key Revocation

It may become necessary for an entity to revoke his or her public key from the ring.
This may happen if the owner of the key feels that the key is compromised (stolen, for
example) or just too old to be safe. To revoke a key, the owner can send a revocation
certificate signed by herself. The revocation certificate must be signed by the old key
and disseminated to all the people in the ring that use that public key.

Extracting Information from Rings

As we have seen, the sender and receiver each have two key rings, one private and one
public. Let us see how information needed for sending and receiving a message is
extracted from these rings.

Sender Site

Assume that Alice is sending an e-mail to Bob. Alice needs five pieces of information:
the key ID of the public key she is using, her private key, the session key, Bob’s public-
key ID, and Bob’s public key. To obtain these five pieces of information, Alice needs to
feed four pieces of information to PGP: her user ID (for this e-mail), her passphrase, a
sequence of key strokes with possible pauses, and Bob’s user ID. See Figure 16.10.

Alice’s public-key ID (to be sent with the message) and her private key (to sign the
message) are stored in the private key ring table. Alice selects the user ID (her e-mail
address) that she wants to use as an index to this ring. PGP extracts the key ID and the
encrypted private key. PGP uses the predefined decryption algorithm and her hashed
passphrase (as the key) to decrypt this private key.

SECTION 16.2 PGP 483

Figure 16.10 Exiracting information at the sender site

Alice’s Key Bob’s

user ID Passphrase strokes user ID
Private key ring Public key ring
¥

PGP ___
7
Alice’s Alice’s Session Bob’s Bob’s
key ID private key key key ID public key

Alice also needs a secret session key. The session key in PGP is a random number
with a size defined in the encryption/decryption algorithm. PGP uses a random number
generator to create a random session key; the seed is a set of arbitrary keystrokes typed
by Alice on her keyboard. Each key stroke is converted to 8 bits and each pause
between the keystrokes is converted to 32 bits. The combination goes through a com-
plex random number generator to create a very reliable random number as the session
key. Note that the session key in PGP is a one-time random key (see Appendix K) and
used only once.

Alice also needs Bob’s key ID (to be sent with the message) and Bob’s public key
(to encrypt the session key). These two pieces of information are extracted from the
public key ring table using Bob’s user ID (his e-mail address).

Receiver Site

At the receiver site, Bob needs three pieces of information: Bob’s private key (to
decrypt the session key), the session key (to decrypt the data), and Alice’s public key
(to verify the signature). See Figure 16.11.

Bob uses the key ID of his public key sent by Alice to find his corresponding pri-
vate key needed to decrypt the session key. This piece of information can be extracted
from Bob’s private key ring table. The private key, however, is encrypted when stored.
Bob needs to use his passphrase and the hash function to decrypt it.

The encrypted session key is sent with the message; Bob uses his decrypted private
key to decrypt the session key.

Bob uses Alice’s key ID sent with the message to extract Alice’s public key, which
is stored in Bob’s public key ring table.

484 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Figure 16.11 Exiracting information at the receiver site

Bob’s Session Alice’s
private key key public key

{ I

PGP :
E ——————> Decrypt]
E Private key ring 1 Public key ring
i DecryptI i
] , | =
: ’ t n |
Passphrase ~ Bob’s Encrypted Alice’s

key ID session key key ID

From received message

PGP Packets

A message in PGP consists of one or more packets. During the evolution of PGP,
the format and the number of packet types have changed. Like other protocols we have
seen so far, PGP has a generic header that applies to every packet. The generic header,
in the most recent version, has only two fields, as shown in Figure 16.12.

Figure 16.12 Format of packet header

0: Old format
1: New format

mgibye) | —{ 1 |'[[[[| []

Length (1, 2, or 5 bytes) ' |
64 different packet types

(1 Tag. The recent format for this field defines a tag as an 8-bit flag; the first
bit (most significant) is always 1. The second bit is 1 if we are using the latest
version. The remaining six bits can define up to 64 different packet types, as shown
in Table 16.12.

(1 Length. The length field defines the length of the entire packet in bytes. The
size of this field is variable; it can be 1, 2, or 5 bytes. The receiver can determine

SECTION 16.2 PGP 485

Table 16.12 Some commonly used packet types

Value Packet type

1 Session key packet encrypted using a public key
2 Signature packet
5 Private-key packet
6 Public-key packet
8 Compressed data packet
9 Data packet encrypted with a secret key

11 Literal data packet

13 User ID packet

the number of bytes of the length field by looking at the value of the byte
immediately following the tag field.

a. If the value of the byte after the tag field is less than 192, the length field is
only one byte. The length of the body (packet minus header) is calculated as:

body length = first byte

b. If the value of the byte after the tag field is between 192 and 223 (inclusive),
the length field is two bytes. The length of the body can be calculated as:

body length = (first byte - 192) << 8 + second byte + 192

c. Ifthe value of the byte after the tag field is between 224 and 254 (inclusive),
the length field is one byte. This type of length field defines only the length
of part of the body (partial body length). The partial body length can be
calculated as:

partial body length = 1 << (first byte & 0x1F)

Note that the formula means 1 x 2(firstbyte & 0<IF) The power is actually the value of the
five rightmost bits. Because the field is between 224 and 254, inclusive, the value of
the five rightmost bits is between 0 and 30, inclusive. In other words, the partial body
length can be between one (20) and 1,073,741,824 (230). When a packet becomes
several partial bodies, the partial body length is applicable. Each partial body length
defines one part of the length. The last length field cannot be a partial body length
definer. For example, if a packet has four parts, it can have three partial length fields
and one length field of another type.

d. If the value of the byte after the tag field is 255, the length field con-
sists of five bytes. The length of the body is calculated as:

Body length = second byte << 24 | third byte << 16 | fourth byte << 8 | fifth byte

486

CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Literal Data Packet The literal data packet is the packet that carries or holds the
actual data that is being transmitted or stored. This packet is the most elementary type
of message; that is, it cannot carry any other packet. The format of the packet is shown
in Figure 16.13.

Figure 16.13 Literal data packet

Tag: 11
Body length
(1, 2, or 5 bytes)
Mode
Length of next field

File name
(variable length)

Timestamp

(4 bytes)

Literal data
(variable length)

Message,
file,
or keys

Y

LU U U 0

J

Mode. This one-byte field defines how data is written to the packet. The value of
this field can be “b” for binary, “t” for text, or any other locally defined value.
Length of next field. This one-byte field defines the length of the next field (file
name field).

File name. This variable-length field defines the name of the file or message as
an ASCII string.

Timestamp. This four-byte field defines the time of creation or last modification
of the message. The value can be 0, which means that the user chooses not to
specify a time.

Literal data. This variable-length field carries the actual data (file or message)
in text or binary (depending on the value of the mode field).

Compressed Data Packet This packet carries compressed data packets. Figure 16.14
shows the format of a compressed data packet.

Figure 16.14 Compressed data packet

Tag: 8

Length
(1 to 5 bytes)

Compression method

Packet

or Compressed data

packets

SECTION 16.2 PGP 487

(1 Compression method. This one-byte field defines the compression method used
to compress the data (next field). The values defined for this field so far are 1 (ZIP)
and 2 (ZLIP). Also, an implementation can use other experimental compression
methods. ZIP is discussed in Appendix M.

(1 Compressed data. This variable-length field carries the data after compres-
sion. Note that the data in this field can be one packet or the concatenation of
two or more packets. The common situation is a single literal data packet or a
combination of a signature packet followed by a literal data packet.

Data Packet Encrypted with Secret Key This packet carries data from one packet
or a combination of packets that have been encrypted using a conventional symmetric-
key algorithm. Note that a packet carrying the one-time session key must be sent before
this packet. Figure 16.15 shows the format of the encrypted data packet.

Figure 16.15 Encrypted data packet

?] Encrypted with shared session key Tag: 9
Length
n‘ (1 to 5 bytes)
Packet L
or Encrypted data
packets

Signature Packet A signature packet, as we discussed before, protects the integrity
of the data. Figure 16.16 shows the format of the signature packet.

Figure 16.16 Signature packet

A ﬁa"l Encrypted with Alice’s private key Tag: 2

Length
(1 to 5 bytes)

Version

Length

Signature type

Message, Timestamp
file,

or other Key ID
information (8 bytes)

v v Public-key algorithm

Hash .
Algo. Hash algorithm
l First two bytes of

A fﬁ\‘ digest

Digest Signature

488

CHAPTER 16

(]

SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Version. This one-byte field defines the PGP version that is being used.

Length. This field was originally designed to show the length of the next two
fields, but because the size of these fields is now fixed, the value of this field is 5.
Signature type. This one-byte field defines the purpose of the signature, the docu-
ment it signs. Table 16.13 shows some signature types.

Table 16.13 Some signature values

Value Signature

0x00 Signature of a binary document (message or file).

0x01 Signature of a text document (message or file).

0x10 Generic certificate of a user ID and public-key packet. The signer does not
make any particular assertion about the owner of the key.

0x11 Personal certificate of a user ID and public-key packet. No verification is
done on the owner of the key.

0x12 Casual certificate of a User ID and public-key packet. Some casual verification
done on the owner of the key.

0x13 Positive certificate of a user ID and public-key packet. Substantial verification
done.

0x30 Certificate revocation signature. This removes an earlier certificate (0x10
through Ox13).

(I

Timestamp. This four-byte field defines the time the signature was calculated.
Key ID. This eight-byte field defines the public-key ID of the signer. It indicates to
the verifier which signer public key should be used to decrypt the digest.
Public-key algorithm. This one-byte field gives the code for the public-key algo-
rithm used to encrypt the digest. The verifier uses the same algorithm to decrypt
the digest.

Hash algorithm. This one-byte field gives the code for the hash algorithm used to
create the digest.

First two bytes of message digest. These two bytes are used as a kind of check-
sum. They ensure that the receiver is using the right key ID to decrypt the digest.
Signature. This variable-length field is the signature. It is the encrypted digest
signed by the sender.

Session-Key Packet Encrypted with Public Key This packet is used to send the
session key encrypted with the receiver public key. The format of the packet is shown in
Figure 16.17.

J
J

J

Version. This one-byte field defines the PGP version being used.

Key ID. This eight-byte field defines the public-key ID of the sender. It indicates to
the receiver which sender public key should be used to decrypt the session key.
Public-key algorithm. This one-byte field gives the code for the public-key algo-
rithm used to encrypt the session key. The receiver uses the same algorithm to
decrypt the session key.

SECTION 16.2 PGP 489

Figure 16.17 Session-key packet

B iLx\' Encrypted with Bob’s public key Tag: 1

Length

(1 to 5 bytes)

Version

Key ID

8 byt
Symmetric-key (8 bytes)

algorithm B itii\i Public-key algorithm
Session key Encrypt Encrypted session key
(variable length)
Checksum

(1 Encrypted session. This variable-length field is the encrypted value of the session key
created by the sender and sent to the receiver. The encryption is done on the following:

a. One-octet symmetric encryption algorithm
b. The session key
c. A two-octet checksum equal to the sum of the preceding session-key octets

Public-Key Packet This packet contains the public key of the sender. The format of
the packet is shown in Figure 16.18.

Figure 16.18 Public-key packet

Tag: 6

Length
(1 to 5 bytes)

Version

Key ID
(8 bytes)

Public-key algorithm

Public key

Version. This one-byte field defines the PGP version of the PGP being used.
Timestamp. This four-byte field defines the time the key was created.

Validity. This two-byte field shows the number of days the key is valid. If the value
is 0, it means the key does not expire.

Public-key algorithm. This one-byte field gives the code for the public-key algorithm.

Public key. This variable-length field holds the public key itself. Its contents
depend on the public-key algorithm used.

oL dod

490 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

User ID Packet This packet identifies a user and can normally associate the user ID
contents with a public key of the sender. Figure 16.19 shows the format of the user
ID packet. Note that the length field of the general header is only one byte.

Figure 16.19 User ID packet

Tag: 13
Length
(1 byte)

User ID

(1 User ID. This variable-length string defines the user ID of the sender. It is normally
the name of the user followed by an e-mail address.

PGP Messages

A message in PGP is a combination of sequenced and/or nested packets. Even though
not all combinations of packets can make a message, the list of combinations is still
long. In this section, we give a few examples to show the idea.

Encrypted Message

An encrypted message can be a sequence of two packets, a session-key packet and a
symmetrically encrypted packet. The latter is normally a nested packet. Figure 16.20
shows this combination.

Figure 16.20 Encrypted message

Tag: 1
Session key
packet
Encrypted session key
Tag: 9
Tag: 8
Encrypted data
packet Tag: 11
Literal data

SECTION 16.2 PGP 491

Note that the session-key packet is just a single packet. The encrypted data packet,
however, is made of a compressed packet. The compressed packet is made of a literal
data packet. The last one holds the literal data.

Signed Message

A signed message can be the combination of a signature packet and a literal packet, as
shown in Figure 16.21.

Figure 16.21 Signed message

Tag: 2

Signature packet

Signature

Tag: 11

Literal data packet

Literal data

Certificate Message

Although a certificate can take many forms, one simple example is the combination of a
user ID packet and a public-key packet as shown in Figure 16.22. The signature is then
calculated on the concatenation of the key and user ID.

Figure 16.22 Certificate message

Tag: 2
Signature packet
Signature calculated on key and user ID
Tag: 13
User ID packet
User ID
Tag: 6
Public-key packet
Public key

492

CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Applications of PGP

PGP has been extensively used for personal e-mails. It will probably continue to be.

16.3 S/MIME

Another security service designed for electronic mail is Secure/Multipurpose Inter-
net Mail Extension (S/MIME). The protocol is an enhancement of the Multipurpose
Internet Mail Extension (MIME) protocol. To better understand S/MIME, first we
briefly describe MIME. Next, S/MIME is discussed as the extension to MIME.

MIME

Electronic mail has a simple structure. Its simplicity, however, comes with a price. It
can send messages only in NVT 7-bit ASCII format. In other words, it has some limita-
tions. For example, it cannot be used for languages that are not supported by 7-bit
ASCII characters (such as Arabic, Chinese, French, German, Hebrew, Japanese, and
Russian). Also, it cannot be used to send binary files or video or audio data.

Multipurpose Internet Mail Extensions (MIME) is a supplementary protocol that
allows non-ASCII data to be sent through e-mail. MIME transforms non-ASCII data at
the sender site to NVT ASCII data and delivers it to the client MTA to be sent through
the Internet. The message at the receiving side is transformed back to the original data.

We can think of MIME as a set of software functions that transform non-ASCII
data to ASCII data, and vice versa, as shown in Figure 16.23.

Figure 16.23 MIME

User User
UA UA
A
Non-ASCII code Non-ASCII code
Y
MIME MIME
A
7-bit ASCII 7-bit ASCII
Y
7-bit ASCII
MTA > MTA

MIME defines five headers that can be added to the original e-mail header section
to define the transformation parameters:

1. MIME-Version
2. Content-Type

SECTION 16.3 S/MIME 493

3. Content-Transfer-Encoding
4. Content-I1d
5. Content-Description
Figure 16.24 shows the MIME headers. We will describe each header in detail.

Figure 16.24 MIME header

E-mail header

MIME-Version: 1.1
Content-Type: type/subtype
Content-Transfer-Encoding: encoding type MIME headers
Content-1d: message id

Content-Description: textual explanation of nontextual contents

E-mail body

MIME-Version

This header defines the version of MIME used. The current version is 1.1.
MIME-Version: 1.1

Content-Type

This header defines the type of data used in the body of the message. The content type
and the content subtype are separated by a slash. Depending on the subtype, the header
may contain other parameters.

Content-Type: <type / subtype; parameters>

MIME allows seven different types of data. These are listed in Table 16.14 and described
in more detail below.

(1 Text. The original message is in 7-bit ASCII format and no transformation by
MIME is needed. There are two subtypes currently used, plain and HTML.

[Multipart. The body contains multiple, independent parts. The multipart
header needs to define the boundary between each part. A parameter is used for
this purpose. The parameter is a string token that comes before each part; it is on
a separate line by itself and is preceded by two hyphens. The body is terminated
using the boundary token, again preceded by two hyphens, and then terminated with
two hyphens.

Four subtypes are defined for this type: mixed, parallel, digest, and alternative.
In the mixed subtype, the parts must be presented to the recipient in the exact order

494 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Table 16.14 Data types and subtypes in MIME

Tpe Subtype Description
Plain Unformatted.
HTML HTML format.
Multipart Mixed Body contains ordered parts of different data types.
Parallel Same as above, but no order.
Digest Similar to Mixed, but the default is message/RFC822.
Alternative Parts are different versions of the same message.
Message RFC822 Body is an encapsulated message.
Partial Body is a fragment of a bigger message.
External-Body Body is a reference to another message.
Image JPEG Image is in JPEG format.
GIF Image is in GIF format.
Video MPEG Video is in MPEG format.
Audio Basic Single channel encoding of voice at § KHz.
Application PostScript Adobe PostScript.
Octet-stream General binary data (eight-bit bytes).

as in the message. Each part has a different type and is defined at the boundary.
The parallel subtype is similar to the mixed subtype, except that the order of the
parts is unimportant. The digest subtype is also similar to the mixed subtype except
that the default type/subtype is message/RFC822, as defined below. In the alterna-
tive subtype, the same message is repeated using different formats. The following
is an example of a multipart message using a mixed subtype:

Content-Type: multipart/mixed; boundary=xxxx

--XXXX
Content-Type: text/plain;

--XXXX
Content-Type: image/gif;

-=XXXX~-~

(1 Message. In the message type, the body is itself an entire mail message, a part
of a mail message, or a pointer to a message. Three subtypes are currently used:
RFC822, partial, and external-body. The subtype RFC822 is used if the body is
encapsulating another message (including header and the body). The partial subtype

SECTION 16.3 S/MIME 495

is used if the original message has been fragmented into different mail mes-
sages and this mail message is one of the fragments. The fragments must be
reassembled at the destination by MIME. Three parameters must be added: id,
number, and the fotal. The id identifies the message and is present in all the
fragments. The number defines the sequence order of the fragment. The total defines
the number of fragments that comprise the original message. The following is an
example of a message with three fragments:

Content-Type: message/partial;
id=“forouzan@challenger.atc.fhda.edu”;
number=1;

total=3;

The subtype external-body indicates that the body does not contain the actual
message but is only a reference (pointer) to the original message. The parameters
following the subtype define how to access the original message. The following
is an example:

Content-Type: message/external-body;
name=*“report.txt”;

site=“fhda.edu”;

access-type=“ftp”;

Image. The original message is a stationary image, indicating that there is no ani-
mation. The two currently used subtypes are Joint Photographic Experts Group
(JPEG), which uses image compression, and Graphics Interchange Format (GIF).
Video. The original message is a time-varying image (animation). The only sub-
type is Moving Picture Experts Group (MPEG). If the animated image contains
sounds, it must be sent separately using the audio content type.

Audio. The original message is sound. The only subtype is basic, which uses 8 kHz
standard audio data.

Application. The original message is a type of data not previously defined. There
are only two subtypes used currently: PostScript and octet-stream. PostScript is
used when the data are in Adobe PostScript format. Octet-stream is used when the
data must be interpreted as a sequence of 8-bit bytes (binary file).

496 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME
Content-Transfer-Encoding
This header defines the method used to encode the messages into Os and 1s for transport:
Content-Transfer-Encoding: <type>
The five types of encoding methods are listed in Table 16.15.

Table 16.15 Content-transfer-encoding

Bpe Description

7bit NVT ASCII characters and short lines.

8bit Non-ASCII characters and short lines.

Binary Non-ASCII characters with unlimited-length lines.

Radix-64 6-bit blocks of data are encoded into 8-bit ASCII characters using
Radix-64 conversion.

Quoted-printable Non-ASCII characters are encoded as an equal sign followed by an
ASCII code.

(A 7bit. This is 7-bit NVT ASCII encoding. Although no special transformation is
needed, the length of the line should not exceed 1,000 characters.

(1 8bit. This is 8-bit encoding. Non-ASCII characters can be sent, but the length of
the line still should not exceed 1,000 characters. MIME does not do any encoding
here; the underlying SMTP protocol must be able to transfer 8-bit non-ASCII char-
acters. It is, therefore, not recommended. Radix-64 and quoted-printable types are
preferable.

(1 Binary. This is 8-bit encoding. Non-ASCII characters can be sent, and the length
of the line can exceed 1,000 characters. MIME does not do any encoding here; the
underlying SMTP protocol must be able to transfer binary data. It is, therefore, not
recommended. Radix-64 and quoted-printable types are preferable.

(1 Radix-64. This is a solution for sending data made of bytes when the highest bit is
not necessarily zero. Radix-64 transforms this type of data to printable characters,
which can then be sent as ASCII characters or any type of character set supported
by the underlying mail transfer mechanism.

Radix-64 divides the binary data (made of streams of bits) into 24-bit
blocks. Each block is then divided into four sections, each made of 6 bits (see
Figure 16.25).

Each 6-bit section is interpreted as one character according to Table 16.16.

(1 Quoted-printable. Radix-64 is a redundant encoding scheme; that is, 24 bits
become four characters, and eventually are sent as 32 bits. We have an overhead of
25 percent. If the data consist mostly of ASCII characters with a small non-ASCII
portion, we can use quoted-printable encoding. If a character is ASCI], it is sent as
is. If a character is not ASCII, it is sent as three characters. The first character is the
equal sign (=). The next two characters are the hexadecimal representations of the
byte. Figure 16.26 shows an example.

SECTION 16.3 S/MIME 497

Figure 16.25 Radix-64 conversion

Non-ASCII | 11001100 | 10000001 | 00111001 |
data
Radix-64
converter
A4
110011 [001000 | 000100 [111001
(51) ®) “4) (57)
ASCII

i [01111010 | 01001001 | 01000101 | 00110101 |

Table 16.16 Radix-64 encoding table

Value | Code | Value | Code | Value | Code | Value | Code | Value | Code | Value | Code
0 A 11 L 22 w 33 h 44 s 55 3
1 B 12 M 23 X 34 i 45 t 56 4
2 C 13 N 24 Y 35 j 46 u 57 5
3 D 14 (0] 25 y/ 36 k 47 v 58 6
4 E 15 P 26 a 37 1 48 w 59 7
5 F 16 Q 27 b 38 m 49 X 60 8
6 G 17 R 28 c 39 n 50 y 61 9
7 H 18 S 29 d 40 0 51 z 62 +
8 I 19 T 30 e 41 p 52 0 63 /
9 J 20 U 31 f 42 q 53 1
10 K 21 \% 32 g 43 r 54 2
Figure 16.26 Quoted-printable
00100110 | 01001100 | 10011101 | 00111001 | 01001011 | Mixed ASCII and
& L Non-ASCII 9 K non-ASCII data
Quolted-
printable
|
001(‘);)110 010(11100 0011=1101 001191001 010(1);)100 001191001 010(;(1011 ASCII data

498 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Content-1d

This header uniquely identifies the whole message in a multiple message environment.
Content-Id: id=<content-id>

Content-Description

This header defines whether the body is image, audio, or video.

Content-Description: <description>

S/MIME

S/MIME adds some new content types to include security services to the MIME. All of
these new types include the parameter “application/pkcs7-mime,” in which “pkcs”
defines “Public Key Cryptography Specification.”

Cryptographic Message Syntax (CMS)

To define how security services, such as confidentiality or integrity, can be added to
MIME content types, S/MIME has defined Cryptographic Message Syntax (CMS).
The syntax in each case defines the exact encoding scheme for each content type. The
following describe the type of message and different subtypes that are created from these
messages. For details, the reader is referred to RFC 3369 and 3370.

Data Content Type This is an arbitrary string. The object created is called Data.

Signed-Data Content Type This type provides only integrity of data. It contains
any type and zero or more signature values. The encoded result is an object called
signedData. Figure 16.27 shows the process of creating an object of this type. The
following are the steps in the process:

1. For each signer, a message digest is created from the content using the specific
hash algorithm chosen by that signer.

2. Each message digest is signed with the private key of the signer.

3. The content, signature values, certificates, and algorithms are then collected to cre-
ate the signedData object.

Enveloped-Data Content Type This type is used to provide privacy for the message.
It contains any type and zero or more encrypted keys and certificates. The encoded
result is an object called envelopedData. Figure 16.28 shows the process of creating an
object of this type.
1. A pseudorandom session key is created for the symmetric-key algorithms to be used.
2. For each recipient, a copy of the session key is encrypted with the public key of
each recipient.
3. The content is encrypted using the defined algorithm and created session key.
4. The encrypted contents, encrypted session keys, algorithm used, and certificates
are encoded using Radix-64.

SECTION 16.3 S/MIME

499

Figure 16.27 Signed-data content type

S, ﬁh Signed with private key of signer 1

Sy fﬁ Signed with private key of signer N

Si % -
Hash Digital signature Slgpature +
. —»m—» . —> certificate +
algorithm algorithm ;
algorithm
Sy & .
Hash Digital signature ignature +
(aglc;ntt;]r)lz) algorithm qm galgoritghmu | certificate +
algorithm
Content
(any type)
signedData
Figure 16.28 Enveloped-data content type
R, &) Encrypted with public key of recipient 1
Ry x[ﬁ Encrypted with public key of recipient N R n'
18
?1 Encrypted with session key Public-key Recipient identification
> ipher > Public-key certificate
oD Encrypted session key
Session key created by .
pseudorandom — : B
generator Ry x?l °
- Recipient identification
> Publli—key > Public-key certificate
cipher Encrypted session key
@
Content .| Symmetric-key N Encrypted
(any type) ” cipher ” content

envelopedData

500

CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Digested-Data Content Type This type is used to provide integrity for the message.
The result is normally used as the content for the enveloped-data content type. The
encoded result is an object called digestedData. Figure 16.29 shows the process of cre-
ating an object of this type.

Figure 16.29 Digest-data content type

Content Hash M Digest +
(any type) " algorithm "| Hash algorithm
| R Content
(any type)
digestedData

1. A message digest is calculated from the content.

2. The message digest, the algorithm, and the content are added together to create the
digestedData object.

Encrypted-Data Content Type This type is used to create an encrypted version of
any content type. Although this looks like the enveloped-data content type, the
encrypted-data content type has no recipient. It can be used to store the encrypted data
instead of transmitting it. The process is very simple, the user employs any key (normally
driven from the password) and any algorithm to encrypt the content. The encrypted con-
tent is stored without including the key or the algorithm. The object created is called
encryptedData.

Authenticated-Data Content Type This type is used to provide authentication of
the data. The object is called authenticatedData. Figure 16.30 shows the process.

1. Using a pseudorandom generator, a MAC key is generated for each recipient.
2. The MAC key is encrypted with the public key of the recipient.

3. A MAC is created for the content.
4

. The content, MAC, algorithms, and other informations are collected together to
form the authenticatedData object.

Key Management

The key management in S/MIME is a combination of key management used by X.509
and PGP. S/MIME uses public-key certificates signed by the certificate authorities
defined by X.509. However, the user is responsible to maintain the web of trust to ver-
ify signatures as defined by PGP.

SECTION 16.3 S/MIME 501

Figure 16.30 Authenticated-data content type

R, Q’i Encrypted with public key of recipient 1
Ry ﬁ?’l Encrypted with public key of recipient N

R,)
T Public-key N
cipher ” MAC +
1 certificate +
v algorithms +
_,| MAC m > session key
algorithm

Ry @)

T Public-key R

cipher MAC +
Content ' certificate +
(any type) Y algorithms +

o] MAC | MAC session key
algorithm

Y

Content

(any type)

Y

authenticatedData

Cryptographic Algorithms

S/MIME defines several cryptographic algorithms as shown in Table 16.17. The term
“must” means an absolute requirement; the term “should” means recommendation.

Table 16.17 Cryptographic algorithm for S/MIME

Sender Receiver Sender Receiver

Algorithm must support | must support | should support | should support
Content-encryption Triple DES Triple DES 1. AES
algorithm 2.RC2/40
Session-key encryption RSA RSA Diffie-Hellman | Diffie-Hellman
algorithm
Hash algorithm SHA-1 SHA-1 MD5
Digest-encryption DSS DSS RSA RSA
algorithm
Message-authentication HMAC with
algorithm SHA-1

502 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Example 16.3

The following shows an example of an enveloped-data in which a small message is encrypted
using triple DES.

Content-Type: application/pkcs7-mime; mime-type=enveloped-data
Content-Transfer-Encoding: Radix-64

Content-Description: attachment

name=“report.txt”;

cb32ut67f4bhijHU210i87eryb028 7hmnklsgFDoY 8bc659GhIGfH6543mhjkdsaH23 YjBnmN
ybmlkzjhgfdyhGe23Kjk34XiuD678Es16se09jy76jHuytTMDcbnmlkjgfFdiuyu678543m0On3h
G34un12P2454H0i87¢2rybOH2MjN6KuyrlsgFDoY 897fk923j1jk1301XiuD6gh78EsUyT23y

Applications of S'MIME

It is predicted that S/MIME will become the industry choice to provide security for
commercial e-mail.

164 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this
chapter. The items in brackets refer to the reference list at the end of the text.

Books

Electronic mail is discussed in [For06] and [For07]. PGP is discussed in [Sta06],
[KPS02], and [Rhe03]. S/MIME is discussed in [Sta06] and [Rhe03].

WebSites

The following websites give more information about topics discussed in this chapter.

http://axion.physics.ubc.ca/pgp-begin.html
csre.nist.gov/publications/nistpubs/800-49/sp800-49.pdf
www.fags.org/rfcs/rfc2632.html

16.5 KEY TERMS

Cryptographic Message Syntax (CMS) quoted-printable

electronic mail (e-mail) Radix-64 encoding

key ring Secure/Multipurpose Internet Mail
message access agent (MAA) Extension (S/MIME)

message transfer agent (MTA) user agent (UA)

Multipurpose Internet Mail Extension (MIME) web of trust
Pretty Good Privacy (PGP)

SECTION 16.7 EXERCISES 503

16.6 SUMMARY

a

Because there is no session in e-mail communication, the sender of the message
needs to include the name or identifiers of the algorithms used in the message. In
e-mail communication, encryption/decryption is done using a symmetric-key algo-
rithm, but the secret key to decrypt the message is encrypted with the public key of
the receiver and is sent with the message.

The first protocol discussed in this chapter is called Pretty Good Privacy (PGP),
which was invented by Phil Zimmermann to provide e-mail with privacy, integrity,
and authentication. PGP can be used to create a secure e-mail message or to store a
file securely for future retrieval.

In PGP, Alice needs a ring of public keys for each person with whom Alice needs
to correspond. She also needs a ring of private/public keys belonging to her.

In PGP, there is no need for CAs; anyone in the ring can sign a certificate for any-
one else in the ring. There is no hierarchy of trust in PGP; there is no tree. There
can be multiple paths from fully or partially trusted authorities to any subject.

The entire operation of PGP is based on introducer trust, levels of trust, and the
legitimacy of the public keys. PGP makes a web of trust between a group of people.

PGP has defined several packet types: literal data packet, compressed data packet,
data packet encrypted with secret key, signature packet, session-key packet
encrypted with public key, public-key packet, and user ID packet.

In PGP, we can have several types of messages: encrypted message, signed message,
and certificate message.

Another security service designed for electronic mail is Secure/Multipurpose
Internet Mail Extension (S/MIME). The protocol is an enhancement of the Multi-
purpose Internet Mail Extension (MIME) protocol, which is a supplementary
protocol that allows non-ASCII data to be sent through e-mail. S/MIME adds some
new content types to MIME to provide security services.

Cryptographic Message Syntax (CMS) has defined several message types that
produce new content types to be added to MIME. This chapter mentioned several
message types, including data content type, signed-data content type, enveloped-
data content type, digested-data content type, encrypted-data content type, and
authenticated-data content type.

The key management in S/MIME is a combination of key management used by
X.509 and PGP. S/MIME uses public-key certificates signed by the certificate
authorities.

16.7 EXERCISES

Review Questions

1.

Explain how Bob finds out what cryptographic algorithms Alice has used when he
receives a PGP message from her.

504

CHAPTER 16

XS

SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Explain how Bob finds out what cryptographic algorithms Alice has used when he
receives an S/MIME message from her.

In PGP, explain how Bob and Alice exchange the secret key for encrypting messages.

In S/MIME, explain how Bob and Alice exchange the secret key for encrypting
messages.

Compare and contrast the nature of certificates in PGP and S/MIME. Explain the
web of trust made from certificates in PGP and in S/MIME.

Name seven types of packets used in PGP and explain their purposes.
Name three types of messages in PGP and explain their purposes.
Name all content types defined by CMS and their purposes.

Compare and contrast key management in PGP and S/MIME.

Exercises

10.

11.

12.

13.

14.

Bob receives a PGP message. How can he find out the type of the packet if the tag
value is

a. 8
b. 9
c. 2

In PGP, can an e-mail message use two different public-key algorithms for encryp-
tion and signing? How is this defined in a message sent from Alice to Bob?

Answer the following questions about tag values in PGP:
a. Can a packet with a tag value of 1 contain another packet?
b. Can a packet with a tag value of 6 contain another packet?

What types of a packet should be sent in PGP to provide the following security
services:

Confidentiality

Message integrity
Authentication
Nonrepudiation
Combination of a and b
Combination of a and ¢
Combination of a, b, and ¢

F@® o a0 o

. Combination of a, b, ¢, and d.

What content type in S/MIME provides the following security services:
a. confidentiality

message integrity

authentication

nonrepudiation

o /o o

combination of a and b

