\

5

Email Security

/

Sachin Tripathi

1IT(ISM), Dhanbad

NS

e
E-mail Architecture

UA: User agent MAA %a UA
-::hent\ \
MTA: Message transfer agent _Eﬂb

MAA: Message access agent e
/ " LAN or WAN

Y >
MTA
client
Mail server Mail server

a

DO

Example

Assume that Alice is working in an organization that runs an e-mail
server; every employee is connected to the e-mail server through a
LAN. Or alternatively, Alice could be connected to the e-mail server
of an ISP through a WAN (telephone line or cable line).

Bob is also in one of the above two situations.

The administrator of the e-mail server at Alice’s site has created a
queuing system that sends e-mail to the Internet one by one. The
administrator of the e-mail server at Bob’s site has created a mailbox
for every user connected to the server; the mailbox holds the received
messages until they are retrieved by the recipient

O When Alice needs to send a message to Bob, she invokes a user agent
(UA) program to prepare the message. She then uses another program,
a message transfer agent (MTA), to send the message to the mail
server at her site.

Note that the MTA is a client/server program with the client installed at
Alice’s computer and the server installed at the mail server.

O The message received at the mail server at Alice’s site is queued with
all other messages; each goes to its corresponding destination. In
Alice’s case, her message goes to the mail server at Bob’s site.

O A client/server MTA is responsible for the e-mail transfer
between the two servers.

O When the message arrives at the destination mail server, it is
stored in Bob’s mailbox, a special file that holds the message
until it is retrieved by Bob.

O When Bob needs to retrieve his messages, including the one
sent by Alice, he invokes another program, which we call a
message access agent (MAA).

O The MAA is also designed as a client/server program with the
client installed at Bob’s computer and the server installed at the
mail server.

e

Important Points of Email Architecture

O The sending of an e-mail from Alice to Bob is a store-retrieve activity. Alice

can send an e-mail today; Bob, being busy, may check his e-mail three days
later. During this time, the e-mail is stored in Bob’s mailbox until it is
retrieved.

The main communication between Alice and Bob is through two application
programs: the MTA client at Alice’s computer and the MAA client at Bob’s
computer.

The MTA client program is a push program; the client pushes the message
when Alice needs to send it. The MAA client program is a pull program; the
client pulls the messages when Bob is ready to retrieve his e-mail.

Alice and Bob cannot directly communicate using an MTA client at the sender
site and an MTA server at the receiver site. This requires that the MTA server
be running all the time, because Bob does not know when a message will
arrive. This is not practical, because Bob probably turns off his computer when
he does not need it.

e
Email Security

O Sending an e-mail is a one-time activity.

O In IPSec or SSL, we assume that the two parties create a session between
themselves and exchange data in both directions.

O In e-mail, there is no session. Alice and Bob cannot create a session. Alice
sends a message to Bob; sometime later, Bob reads the message and may
or may not send a reply.

O Security of a unidirectional message is needed because what Alice sends to
Bob is totally independent from what Bob sends to Alice.

Cryptographic Algorithms

O If e-mail is a one-time activity, how can the sender and receiver agree on a
crypto graphic algorithm to use for e-mail security?

O If there is no session and no handshaking to negotiate the algorithms for
encryption/decryption and hashing, how can the receiver know which
algorithm the sender has chosen for each purpose?

4 N

O One solution is for the underlying protocol to select one algorithm for each
crypto graphic operation and to force Alice to use only those algorithms. This
solution is very restrictive and limits the capabilities of the two parties.

O A better solution is for the underlying protocol to define a set of algorithms for
each operation that the user used in his/her system. Alice includes the name (or
identifiers) of the algorithms she has used in the e-mail.

» For example, Alice can choose triple DES for encryption/decryption and MD5
for hashing. When Alice sends a message to Bob, she includes the corresponding
identifiers for triple DES and MD5 in her message. Bob receives the message
and extracts the identifiers first. He then knows which algorithm to use for
decryption and which one for hashing.

Note :In e-mail security, the sender of the message needs to include the name or identifiers of
the algorithms used in the message.

N /

Cryptographic Secrets

O The same problem for the cryptographic algorithms applies to the
cryptographic secrets (keys). If there iIs no negotiation, how can the two
parties establish secrets between themselves? Alice and Bob could use
asymmetric-key algorithms for authentication and encryption, which do
not require the establishment of a symmetric key.

» Most e-mail security protocols today require that encryption/decryption
be done using a symmetric-key algorithm and a one-time secret key sent
with the message. Alice can create a secret key and send it with the
message she sends to Bob. To protect the secret key from interception
by Eve, the secret key is encrypted with Bob’s public key. In other
words, the secret key itself is encrypted.

In e-mail security, the encryption/decryption is done using a
symmetric-key algorithm, but the secret key to decrypt the
message is encrypted with the public key of the receiver and
IS sent with the message.

4 N

Certificates

(1 One more issue needs to be considered before we discuss any e-mail security
protocol in particular. It is obvious that some public-key algorithms must be used
for e-mail security. For example, we need to encrypt the secret key or sign the
message.

O To encrypt the secret key, Alice needs Bob’s public key; to verify a signed
message, Bob needs Alice’s public key. So, for sending a small authenticated and
confidential message, two public keys are needed. How can Alice be assured of
Bob’s public key, and how can Bob be assured of Alice’s public key?

Each e-mail security protocol has a different method of certifying keys.

Pretty Good Privacy (PGP)

O PGP was invented by Phil Zimmermann to provide e-mail with privacy,

Integrity, and authentication.
O PGP can be used to create a secure e-mail message or to store a file securely for

future retrieval.

Let us first discuss the general idea of PGP in Different Scenarios

Plaintext
The simplest scenario is to send the e-mail message (or store the file) in plaintext .

There is no message integrity or confidentiality in this scenario. Alice, the sender,
composes a message and sends it to Bob, the receiver. The message is stored in
Bob’s mailbox until it 1s retrieved by him.

Alice Bob

Fc= -

/

Pretty Good Privacy (PGP)

Message Integrity
O Probably the next improvement is to let Alice sign the message. Alice creates a

digest of the message and signs it with her private key. When Bob receives the
message, he verifies the message by using Alice’s public key. Two keys are
needed for this scenario. Alice needs to know her private key; Bob needs to
know Alice’s public key.

An authenticated message

Alice’s n' Digitally signed with Alices
private key AR Alice’s private key public key
ol 2
A i
Data Digest >

;~
Pretty Good Privacy (PGP)

Compression

O A further improvement is to compress the message to make the packet more
compact. This improvement has no security benefit, but it eases the traffic.
Figure below shows the new scenario. .

An compressed message

Alirete Digitally signed with T
lice s A ﬁ, Alice’s private key A]H-L .
FT]"r'“.IL' kt}r =]'-'I o pllh]]‘L J":.E:r'
Alice Bob
. Af——
Data Di
(compressed) Lgest

4 ™
Pretty Good Privacy (PGP)

Confidentiality with One-Time Session Key

O confidentiality in an e-mail system can be achieved using conventional
encryption with a one-time session key. Alice can create a session key, use the
session key to encrypt the message and the digest, and send the key itself with
the message. However, to protect the session key, Alice encrypts it with Bob’s
public key. Figure below shows the situation.

An confidential message

A ﬁ‘] Digitally signed with Alice’s private key
B é?] Encrypted with Bob’s public key

Alice’s Bob's _ . . Bob's Alice’s
private key i?pub]it key a Encrypted with shated session key private key i ? public key
Alice ﬂ Bob

Afi——| B ‘;’:E‘ i

Message Dicest .

{compressed) ‘ 1ges _] r|

Shared
session key

4 ™
Pretty Good Privacy (PGP)

Code Conversion

L Another service provided by PGP is code conversion. Most e-mail systems
allow the message to consist of only ASCII characters. To translate other
characters not in the ASCII set, PGP uses Radix-64 conversion. Each character
to be sent (after encryption) is converted to Radix-64 code.

Segmentation

O PGP allows segmentation of the message after it has been converted to Radix-
64 to make each transmitted unit the uniform size as allowed by the underlying
e-mail protocol.

4 ™
Key Rings

 In all previous scenarios, we assumed that Alice needs to send a
message only to Bob. That is not always the case. Alice may need
to send messages to many people; she needs key rings. In this case,
Alice needs a ring of public keys, with a key belonging to each
person with whom Alice needs to correspond (send or receive
messages). In addition, the PGP designers specified a ring of
private/public keys. One reason is that Alice may wish to change
her pair of keys from time to time. Another reason is that Alice
may need to correspond with different groups of people (friends,
colleagues, and so on). Alice may wish to use a different key pair
for each group. Therefore, each user needs to have two sets of
rings: a ring of private/public keys and a ring of public keys of
other people.

N /

4 N
Key Rings

Figure below a community of four people, each having a ring of pairs
of private/public keys and, at the same time, a ring of public keys
belonging to other people in the community.

4 ™
Key Rings

O Alice, for example, has several pairs of private/public keys belonging to her and
public keys belonging to other people. Note that everyone can have more than
one public key. Two cases may arise.

1. Alice needs to send a message to another person in the community.

a. She uses her private key to sign the digest.

b. She uses the receiver’s public key to encrypt a newly created session key.

c. She encrypts the message and signed digest with the session key created.

2. Alice receives a message from another person in the community

a. She uses her private key to decrypt the session key.
b. She uses the session key to decrypt the message and digest.
c. She uses her public key to verify the digest

4 N
PGP Algorithms

1.Public-Key Algorithms:-The public-key algorithms that are used for
signing the digests or encrypting the messages are listed below

D Description
1 RSA (encryption or signing)
2 RSA (for encryption only)
3 RSA (for signing only)
16 ElGamal (encryption only)
17 DSS
18 Reserved for elliptic curve
19 Reserved for ECDSA
20) ElGamal (for encryption or signing)
21 Feserved for Diffie-Hellman
100110 Private algorithms

;~

PGP Algorithms

2.Symmetric-Key Algorithms:-The symmetric-key algorithms that are used
for conventional encrypting are shown in Table below

1D

Description

0

No Encryption

—

IDEA

Triple DES

CAST-128

Blowfish

SAFER-S5K128

o | Wh | e | e | B

Reserved for DES/SK

Reserved for AES-128

Reserved for AES-192

b= (= |

Reserved for AES-256

100-110

Private algorithms

™~

4 N
PGP Algorithms

3. Hash Algorithms:- The hash algorithms that are used for creating hashes in
PGP are shown in Table below

D Description

1 MD35

2 SHA-I

3 RIPE-MD/160

B Reserved for double-width SHA
5 MD2

b TIGER/192

7 Feserved for HAVAL

100-110 Private algorithms

;~

PGP Algorithms

4.Compression Algorithms:- The compression algorithms that are used for
compressing text are shown in Table below

ID Description
{ Uncompressed
1 ZIP
2 ZLIP
100-110 Private methods

™~

e
PGP Certificates

process is totally different

» X.509 Certificates

a certificate. .

Note:-In X.509, there is a single path from the fully trusted authority to any certificate.

N

™~

PGP, uses certificates to authenticate public keys. However, the

Protocols that use X.509 certificates depend on the hierarchical structure of the
trust. There is a predefined chain of trust from the root to any certificate. Every user
fully trusts the authority of the CA at the root level (prerequisite). The root issues
certificates for the CAs at the second level, a second level CA issues a certificate for
the third level, and so on. Every party that needs to be trusted presents a certificate
from some CA In the tree. If Alice does not trust the certificate issuer for Bob, she
can appeal to a higher level authority up to the root (which must be trusted for the
system to work). In other words, there is one single path from a fully trusted CA to

4 ™
PGP Certificates

J PGP Certificates

» In PGP, there is no need for CAs; anyone in the ring can sign a certificate for
anyone else in the ring.

» Bob can sign a certificate for Ted, John, Anne, and so on.

» There is no hierarchy of trust in PGP; there is no tree.

» The lack of hierarchical structure may result in the fact that Ted may have one
certificate from Bob and another certificate from Liz. If Alice wants to follow
the line of certificates for Ted, there are two paths: one starts from Bob and one
starts from Liz.

» An interesting point is that Alice may fully trust Bob, but only partially trust Liz.
There can be multiple paths in the line of trust from a fully or partially trusted
authority to a certificate. In PGP, the issuer of a certificate is usually called an
introducer.

Note:-In PGP, there can be multiple paths from fully or partially trusted authorities
to any subject.

N /

4 ™
PGP Certificates

d Trusts and Legitimacy
The entire operation of PGP is based on introducer trust, the certificate trust, and the
legitimacy of the public keys.

U Introducer Trust Levels

With the lack of a central authority, it is obvious that the ring cannot be very large if
every user in the PGP ring of users has to fully trust everyone else. (Even in real life
we cannot fully trust everyone that we know.) To solve this problem, PGP allows
different levels of trust. The number of levels is mostly implementation dependent,
but for simplicity, let us assign three levels of trust to any introducer: none, partial,
and full. The introducer trust level specifies the trust levels issued by the introducer
for other people in the ring. For example, Alice may fully trust Bob, partially trust
Anne, and not trust John at all. There is no mechanism in PGP to deter mine how to
make a decision about the trustworthiness of the introducer; it is up to the user to

make this decision.,

N /

4 ™
PGP Certificates

Certificate Trust Levels

» When Alice receives a certificate from an introducer, she stores the certificate
under the name of the subject (certified entity).

» She assigns a level of trust to this certificate. The certificate trust level is
normally the same as the introducer trust level that issued the certificate.
Assume that Alice fully trusts Bob, partially trusts Anne and Janette, and has no
trust in John. The following scenarios can happen.

1. Bob issues two certificates, one for Linda (with public key K1) and one for
Lesley (with public key K2). Alice stores the public key and certificate for
Linda under Linda’s name and assigns a full level of trust to this certificate.
Alice also stores the certificate and public key for Lesley under Lesley’s name
and assigns a full level of trust to this certificate.

2. Anne issues a certificate for John (with public key K3). Alice stores this
certificate and public key under John’s name, but assigns a partial level for this
certificate.

4 ™
PGP Certificates

« 3. Janette issues two certificates, one for John (with public key K3)
and one for Lee (with public key K4). Alice stores John’s
certificate under his name and Lee’s certificate under his name,
each with a partial level of trust. Note that John now has two
certificates, one from Anne and one from Janette, each with a
partial level of trust.

« 4.John issues a certificate for Liz. Alice can discard or keep this
certificate with a sig nature trust of none.

e

PGP Certificates

4 Key Legitimacy

» The purpose of using introducer and certificate trusts is to deter mine
the legitimacy of a public key. Alice needs to know how legitimate the
public keys of Bob, John, Liz, Anne, and so on are.

» PGP defines a very clear procedure for deter mining key legitimacy.
The level of the key legitimacy for a user is the weighted trust levels of
that user. For example, suppose we assign the following weights to
certificate trust levels:

1. A weight of 0 to a nontrusted certificate

2. A weight of 1/2 to a certificate with partial trust

3. A weight of 1 to a certificate with full trust

Then to fully trust an entity, Alice needs one fully trusted certificate or
two partially trusted certificates for that entity..

» For example, Alice can use John’s public key in the previous scenario
because both Anne and Janette have issued a certificate for John, each
with a certificate trust level of 1/2.

> Note that the legitimacy of a public key belonging to an entity does
not have anything to do with the trust level of that person. Although
Bob can use John’s public key to send a message to him, Alice cannot
accept any certificate issued by John because, for Alice, John has a
trust level of none

e
PGP Certificates

 Starting the Ring

You might have realized a problem with the above discussion. What if nobody

sends a certificate for a fully or partially trusted entity? For example, how can

the legitimacy of Bob’s public key be determined if no one has sent a certificate
for Bob? In PGP, the key legitimacy of a trusted or partially trusted entity can
be also determined by other methods.

1. Alice can physically obtain Bob’s public key. For example, Alice and Bob
can meet personally and exchange a public key written on a piece of paper
or to a disk.

2. If Bob’s voice is recognizable to Alice, Alice can call him and obtain his
public key on the phone.

4 ™
PGP Certificates

» 3. A better solution proposed by PGP is for Bob to send his public key to Alice by
e-mail. Both Alice and Bob make a 16-byte MD5 (or 20-byte SHA-1) digest from
the key. The digest is normally displayed as eight groups of 4 digits (or ten groups
of 4 digits) in hexadecimal and is called a fingerprint. Alice can then call Bob and
verify the fingerprint on the phone. If the key is altered or changed during the e-
mail transmission, the two fingerprints do not match. To make it even more
convenient, PGP has created a list of words, each representing a 4-digit
combination. When Alice calls Bob, Bob can pronounce the eight words (or ten
words) for Alice. The words are carefully chosen by PGP to avoid those similar in
pronunciation; for example, if sword is in the list, word is not.

* 4. In PGP, nothing prevents Alice from getting Bob’s public key from a CA in a
separate procedure. She can then insert the public key in the public key ring.

4 N
Key Ring Tables

L Each user, such as Alice, keeps track of two key rings: one private-key ring and
one public key ring. PGP defines a structure for each of these key rings in the form

of a table.

O Format of Private Key Ring Table

User | Key |Public| Encrypted |
D 1D key |private key Timestamp
" -
. . .

Private ring

LE N
LR
LE N

(1 User ID. The user ID is usually the e-mail address of the user. However, the user
may designate a unique e-mail address or alias for each key pair. The table lists the
user ID associated with each pair.

. /

e

Key Ring Tables

Q Key ID.

>

This column uniquely defines a public key among the user’s public
keys. In PGP, the key ID for each pair is the first (least significant)
64 bits of the public key. In other words, the key ID is calculated as
(key mod 2 64). The key ID is needed for the operation of PGP
because Bob may have several public keys belonging to Alice in
his public key ring. When he receives a message from Alice, Bob
must know which key ID to use to verify the message.

The key ID, which is sent with the message, enables Bob to use a
specific public key for Alice from his public ring.

Note the size of the public key may be very long. Sending just 8
bytes reduces the size of the message.

O Public Key. This column just lists the public key

belonging to a particular private key/public key pair

Key Ring Tables

O Encrypted Private Key. This column shows the encrypted value of
the private key in the private key/public key pair. Although Alice is the
only person accessing her private ring, PGP saves only the encrypted
version of the private key. We will see later how the private key is
encrypted and decrypted.

O Timestamp. This column holds the date and time of the key pair
creation. It helps the user decide when to purge old pairs and when to
create new ones.

e

Key Ring Tables

Format of a Public Key Ring Table

User
ID

Key
1D

Public
key

Producer
trust

Certificate(s)

Certificate
trust(s)

Key
Legitimacy

Timestamp

Fublic ring

O User ID. As in the private key ring table, the user ID is usually the e-mail address

of the entity.

O Key ID. As in the private key ring table, the key ID is the first (least significant)

64 bits of the public key.

O Public Key. This is the public key of the entity.
O Producer Trust. This column defines the producer level of trust. In most
Implementations, it can only be of one of three values: none, partial, or full.

N

/

4 ™
Key Ring Tables

O Certificate(s). This column holds the certificate or certificates signed by other
entities for this entity. A user ID may have more than one certificate.

O Certificate Trust(s). This column represents the certificate trust or trusts.

O Key Legitimacy. This value is calculated by PGP based on the value of the
certificate trust and the predefined weight for each certificate trust.

O Timestamp. This column holds the date and time of the column creation.

e
PGP Packets

A message in PGP consists of one or more packets. During the evolution of
PGP, the format and the number of packet types have changed. Like other
protocols we have seen so far, PGP has a generic header that applies to every
packet. The generic header, in the most recent version, has only two fields

Format of packet header

0: Old format
l: Mew format

4
L !

Tag (1 byte)

Length {1, 2, or § bytes) | |
64 different packet types

k4

;~

types

PGP Packets

O Tag. The recent format for this field defines a tag as an 8-bit flag; the first
bit (most significant) is always 1. The second bit is 1 if we are using the
latest version. The remaining six bits can define up to 64 different packet

Falue Facket type

| session key packet encrypted using a public key
2 slgnature packet
5 Private-key packet
B Public-key packet
8 Compressed data packet
9 Data packet encrypted with a secret key

[l Literal data packet

13 User 1D packet

e
PGP Packets

J Length. The length field defines the length of the entire packet in bytes. The
size of this field is variable; it can be 1, 2, or 5 bytes. The receiver can determine
the number of bytes of the length field by looking at the value of the byte
Immediately following the tag field.

a. If the value of the byte after the tag field is less than 192, the length field is
only one byte. The length of the body (packet minus header) is calculated as:
body length = first byte

b. If the value of the byte after the tag field is between 192 and 223 (inclusive),
the length field is two bytes. The length of the body can be calculated as:
body length = (first byte - 192) << 8 + second byte + 192

4 ™
PGP Packets

C. If the value of the byte after the tag field is between 224 and 254 (inclusive), the
length field is one byte. This type of length field defines only the length of part of the
body (partial body length). The partial body length can be calculated as:

partial body length = 1 << (first byte & Ox1F)
d. If the value of the byte after the tag field is 255, the length field con sists of five

bytes. The length of the body is calculated as:
Body length=second byte<< 24 | third byte << 16 | fourth byte << 8

;~
PGP Packets -Literal Data Packet

O Literal Data Packet:- The literal data packet is the packet that carries or
holds the actual data that is being transmitted or stored. This packet is the
most elementary type of message; that is, it cannot carry any other packet.

Tag: 11
Body length
(1, 2, or 5 bytes)
Mode

Length of next hield

File name
(variable length)

Timestamp
(4 bytes)

Messape,
file, "
or Keys

Literal data
(vanable length)

e
PGP Packets -Literal Data Packet

O Mode. This one-byte field defines how data is written to the packet. The
value of this field can be “b” for binary, “t” for text, or any other locally
defined value.

O Length of next field. This one-byte field defines the length of the next field
(file name field).

O File name. This variable-length field defines the name of the file or
message as an ASCII string.

O Timestamp. This four-byte field defines the time of creation or last
modification of the message. The value can be 0, which means that the user
chooses not to specify a time.

O Literal data. This variable-length field carries the actual data (file or
message) in text or binary (depending on the value of the mode field).

4 N
PGP Packets -Compressed Data
Packet

Compressed Data Packet This packet carries compressed data
packets.
format of a compressed data packet.

Tag: 8
Length
(110 5 byles)
Compression method
Packet
oF —)-I Compress |—» Compressed data
packets

e

PGP Packets -Compressed Data
Packet

1 Compression method. This one-byte field defines the compression
method used to compress the data (next field). The values defined for
this field so far are 1 (ZIP) and 2 (ZLIP). Also, an implementation can
use other experimental compression methods. .

[J Compressed data. This variable-length field carries the data after
compression. Note that the data in this field can be one packet or the
concatenation of two or more packets. The common situation is a
single literal data packet or a combination of a signature packet
followed by a literal data packet.

4 N
PGP Packets -Data Packet Encrypted
with Secret Key

Data Packet Encrypted with Secret Key This packet carries data from one packet
or a combination of packets that have been encrypted using a conventional symmetric
key algorithm. Note that a packet carrying the one-time session key must be sent
before this packet.

ﬁ Encrypted with shared session key Tag: %
Length
(1 to 5 bytes)
Packet ﬁ
o —» LEncrypt I—)- Encrypted data
packets

e
PGP Packets -Sighature Packet

Signature Packet A signature packet, protects the integrity of the data.

A @T Encrypted with Alice’s private key Tag: 2

Length
(1 to 5 bytes)

Wersion

Length
IV Signature type

Message, L Timestamp
file,
or other Key ID
information (8 bytes)

v W Plel.iC‘—klE!':," ﬂ]gﬂﬂtht’l‘l
Hash
Alea.

Hash algonthm
First two bytes of
A ﬁ’] digest

Encrypt Signature

:

e

PGP Packets -Sighature Packet

O Version. This one-byte field defines the PGP version that is being used.

O Length. This field was originally designed to show the length of the next two
fields, but because the size of these fields is now fixed, the value of this field is 5.

O Signature type. This one-byte field defines the purpose of the signature, the
document it signs.(some signature values given below)

EE]

Falue

Kignature

(1)

Signature of a binary document {message or file).

001

Signature of a text document {message or file).

010

Generic certificate of a user ID and public-key packet. The signer does not
make any particular assertion about the owner of the key.

Oxl]

Personal certificate of a user ID and public-key packet. No verification is
done on the owner of the key.

0x12

Casual certificate of a User ID and public-key packet. Some casual verification
done on the owner of the key.

Ox13

Positive certificate of a user ID and public-key packet. Substantial verification
done.

=30

Certificate revocation signature. This removes an earlier certificate (10
through Ox13).

™~

OO

PGP Packets -Sighature Packet

Timestamp. This four-byte field defines the time the signature was calculated.
Key ID. This eight-byte field defines the public-key ID of the signer. It indicates
to the verifier which signer public key should be used to decrypt the digest.
Public-key algorithm. This one-byte field gives the code for the public-key
algorithm used to encrypt the digest. The verifier uses the same algorithm to
decrypt the digest.

Hash algorithm. This one-byte field gives the code for the hash algorithm used to
create the digest.

First two bytes of message digest. These two bytes are used as a kind of check
sum. They ensure that the receiver is using the right key ID to decrypt the digest.
Signature. This variable-length field is the signature. It is the encrypted digest
signed by the sender.

4 N
PGP Packets-Session-Key Packet

Encrypted with Public Key

Session-Key Packet Encrypted with Public Key This packet is used to send the
session key encrypted with the receiver public key.

B fﬁ Encrypted with Bob's public key Tag: |
Length
(1 1o 5 bytes)

Yersion

Key ID

% bytes
Symmetric-key (8 bytes)

algorithm ‘ . % Public-key algorithm

Session key Encrypl I—) Encrypted session key

(variable length)

Checksum

I
N y

e
PGP Packets-Session-Key Packet
Encrypted with Public Key

 Version. This one-byte field defines the PGP version being used.

L Key ID. This eight-byte field defines the public-key ID of the sender. It
Indicates to the receiver which sender public key should be used to
decrypt the session key.

O Public-key algorithm. This one-byte field gives the code for the public-
key algorithm used to encrypt the session key. The receiver uses the same
algorithm to decrypt the session key.

e
PGP Packets-Session-Key Packet

Encrypted with Public Key

1 Encrypted session. This variable-length field is the encrypted value
of the session key created by the sender and sent to the receiver. The
encryption is done on the following:

a. One-octet symmetric encryption algorithm

b. The session key
c. A two-octet checksum equal to the sum of the preceding session-key

octets

,
PGP Packets-Public-Key Packet

Public-Key Packet:- This packet contains the public key of the sender.

Version

Key ID
(8 bytes)

Public-key algorithm

Public key

e
PGP Packets-Public Key Packet

O Version. This one-byte field defines the PGP version of the PGP being used.

O Timestamp. This four-byte field defines the time the key was created.

O Validity. This two-byte field shows the number of days the key is valid. If the
value is O, it means the key does not expire.

O Public-key algorithm. This one-byte field gives the code for the public-key
algorithm,

O Public key. This variable-length field holds the public key itself. Its contents
depend on the public-key algorithm used.

e
PGP Packets-User ID Packet

User ID Packet This packet identifies a user and can normally associate the user

ID contents with a public key of the sender. Note that the length field of the
general header is only one byte

Tag: 13

Length
(1 byte)

User [D

. User ID. This variable-length string defines the user ID of the sender. It is
normally the name of the user followed by an e-mail address.

PGP Messages

O A message in PGP is a combination of sequenced and/or nested packets.
Even though not all combinations of packets can make a message.

Encrypted Message

O An encrypted message can be a sequence of two packets, a session-key
packet and a symmetrically encrypted packet. The latter is normally a
nested packet.

Encrypted Message

Tag: 1
Session key
packet
Encrypted session key
Tag: 9
Tag: 8
Encrypted data
packet Tag- 11
Literal data

Note:-The session-key packet is just a single packet. The encrypted data
packet, however, is made of a compressed packet. The compressed packet is
made of a literal data packet. The last one holds the literal data.

PGP Messages -Signhed Message

1 A signed message can be the combination of a signature packet
and a literal packet, as shown in Figure

Tag: 2

Signature packet

Signature

Tag: 11

Literal data packet

Literal data

PGP Messages -Certificate Message

O Although a certificate can take many forms, one simple example is the
combination of a user ID packet and a public-key packet The signature is
then calculated on the concatenation of the key and user ID.

Tag: 2

Signature packet

Signature caleulated on key and user 1D

Tag: 13

User 1D packet
User [Dy

Tag: 6

Public-key packet

Public key

Applications of PGP

1 PGP has been extensively used for personal e-mails. It will
probably continue to be.

S/MIME

0 S/MIME adds some new content types to include security services to the
MIME.

All of these new types include the parameter “application/pkcs7-mime,” in
which “pkcs” defines “Public Key Cryptography Specification.”

S/MIME

d Cryptographic Message Syntax (CMS)

To define how security services, such as confidentiality or integrity, can be
added to MIME content types, SIMIME has defined Cryptographic Message
Syntax (CMS). The syntax in each case defines the exact encoding scheme for
each content type. The following describe the type of message and different
subtypes that are created from these messages.

Data Content Type This is an arbitrary string. The object created is
called Data.

e

S/MIME

U Signed-Data Content Type This type provides only integrity of data. It
contains any type and zero or more signature values. The encoded result is

an object called signedData.

5 3"::.1] Signed with private keyv of signer]

Sy fh Signed with private key of signer &

S, &

- - B i .!- ¥
Hash Dhigital signature m‘-‘"_"ﬂ”m g
" i aleori certificate +
algorithm algorithm :
algorithm

v

&
-
#

Sy i

Content .| Hash M Digital signature
{any type) "| algorithm algorithm

Signature +
certificate +
algorithm

k4

Content
{any type)

signedDana

S/MIME

The following are the steps in the process:
1. For each signer, a message digest is created from the content using the
specific hash algorithm chosen by that signer.
2. Each message digest is signed with the private key of the signer.
3. The content, signature values, certificates, and algorithms are then collected
to create the signedData object

S/MIME

U Enveloped-Data Content Type

This type Is used to provide privacy for the message. It contains any type and
zero or more encrypted keys and certificates. The encoded result is an object
called envelopedData. Process of creating an object of this type

1. A pseudorandom session key is created for the symmetric-key algorithms to
be used.

2. For each recipient, a copy of the session key is encrypted with the public key
of each recipient.

3. The content is encrypted using the defined algorithm and created session key.
4. The encrypted contents, encrypted session keys, algorithm used, and
certificates are encoded using Radix-64.

S/MIME

O Enveloped-data content type

R, ﬁ] Encrypted with public key of recipient 1

R, flll Encrypted with public key of recipient NV

ﬁ Encrypted with session key

Session key created by
paeudorandom
generator

Lk} |

Ry £

Public-key
cipthet

Ry)

w

Recipient identification
Public-key certificate
Encryptled session key

o | Public-key
| cipher

Content
(any type)

sSymmetric-key
cipher

k3

Encrypled session key

Recipient wdentification
Public-key certificate

Encrypted
content

envelopedData

4 ™
S/MIME

[Digested-Data Content Type
This type is used to provide integrity for the message. The result is normally used
as the content for the enveloped-data content type. The encoded result is an object

called digestedData.

process of creating an object of this type.

Content .| Hash _>m . Digest +
(any type) i algorithm N Hash algorithm

Content

(any type)

digestedData

1. A message digest is calculated from the content.
2. The message digest, the algorithm, and the content are added

together to create the digestedData object.

N /

e

S/MIME

d Encrypted-Data Content Type

This type is used to create an encrypted version of any content type.
Although this looks like the enveloped-data content type, the
encrypted-data content type has no recipient. It can be used to store the
encrypted data instead of transmitting it. The process is very simple,
the user employs any key (normally driven from the password) and any
algorithm to encrypt the content. The encrypted content is stored
without including the key or the algorithm. The object created is called
encrypted Data.

e
S/MIME

Authenticated-Data Content Type This type is used to provide
authentication of the data. The object is called authenticatedData.

Process

1. Using a pseudorandom generator, a MAC key is generated for
each recipient.

2. The MAC key Is encrypted with the public key of the recipient.

3. A MAC is created for the content.

4. The content, MAC, algorithms, and other informations are
collected together to form the authenticatedData object.

S/MIME

Authenticated-Data Content Type

R, fﬁ Encrypied with public key of recipient 1
Ry T.-?‘I Encrypted with public key of recipient N

R, i)

-T .| Public-key o] -
- " cipher " MAC +
1 certificate +
¥ algorithms +
o MAC m - session key
"| algorithm "
:)
Ry)
f.r . | Public-key N -
. cipher v MAC +
Content 4 certificate +
(any type) - alporithms +
R o MAC _>m > session key
algorithin
» Content
{any type)

authenticatedData

S/MIME

Key Management

O The key management in S/MIME is a combination of key management used
by X.509 and PGP. S/IMIME uses public-key certificates signed by the
certificate authorities defined by X.509. However, the user is responsible to
maintain the web of trust to verify signatures as defined by PGP.

S/MIME

4 Cryptographic Algorithms

d S/IMIME defines several cryptographic algorithms as shown in

table below .

1 The term “must” means an absolute requirement; the term

“should” means recommendation.

Sender Receiver Sender Receiver

Algorithm must support | must support | should support | should support
Content-encryphion Triple DES | Trple DES . AES
algorithm 2. RC2/40
Session-key encryption R5A R5A Dnthe-Hellman | Dithe-Hellman
algorithm
Hash algonthm SHA-1 SHA-I MD5
Dhigest-encryption DsSs D5S RSA RSA
algorithm
Message-authentication HMAC with
algorithm SHA-1

Applications of S/MIME

O It is predicted that S/MIME will become the industry choice to provide
security for commercial e-mail.

Thank You

. Janudfy 20, 2025

