
Chapter 11
Hash Functions

Hash functions are an important cryptographic primitive and are widely used in
protocols. They compute a digest of a message which is a short, fixed-length bit-
string. For a particular message, the message digest, or hash value, can be seen as
the fingerprint of a message, i.e., a unique representation of a message. Unlike all
other crypto algorithms introduced so far in this book, hash functions do not have
a key. The use of hash functions in cryptography is manifold: Hash functions are
an essential part of digital signature schemes and message authentication codes, as
discussed in Chapter 12. Hash functions are also widely used for other cryptographic
applications, e.g., for storing of password hashes or key derivation.

In this chapter you will learn:

� Why hash functions are required in digital signature schemes
� Important properties of hash functions
� A security analysis of hash functions, including an introduction to the birthday

paradox
� An overview of different families of hash functions
� How the popular hash function SHA-1 works

C. Paar, J. Pelzl, Understanding Cryptography, 293
DOI 10.1007/978-3-642-04101-3 11, c� Springer-Verlag Berlin Heidelberg 2010

294 11 Hash Functions

11.1 Motivation: Signing Long Messages

Even though hash functions have many applications in modern cryptography, they
are perhaps best known for the important role they play in the practical use of
digital signatures. In the previous chapter, we have introduced signature schemes
based on the asymmetric algorithms RSA and the discrete logarithm problem. For
all schemes, the length of the plaintext is limited. For instance, in the case of RSA,
the message cannot be larger than the modulus, which is in practice often between
1024 and 3072-bits long. Remember this translates into only 128–384 bytes; most
emails are longer than that. Thus far, we have ignored the fact that in practice the
plaintext x will often be (much) larger than those sizes. The question that arises at
this point is simple: How are we going to efficiently compute signatures of large
messages? An intuitive approach would be similar to the ECB mode for block ci-
phers: Divide the message x into blocks xi of size less than the allowed input size of
the signature algorithm, and sign each block separately, as depicted in Figure 11.1.

x2 xn

kprkpr kpr

. . .

. . .

prk

1s

1x

2s 3s sn

sigsig sig sig

3x

Fig. 11.1 Insecure approach to signing of long messages

However, this approach yields three serious problems:

Problem 1: High Computational Load Digital signatures are based on computa-
tionally intensive asymmetric operations such as modular exponentiations of large
integers. Even if a single operation consumes a small amount of time (and energy,
which is relevant in mobile applications), the signatures of large messages, e.g.,
email attachments or multimedia files, would take too long on current computers.
Furthermore, not only does the signer have to compute the signature, but the verifier
also has to spend a similar amount of time and energy to verify the signature.

Problem 2: Message Overhead Obviously, this naı̈ve approach doubles the mes-
sage overhead because not only must the message be sent but also the signature,
which is of the same length in this case. For instance, a 1-MB file must yield an
RSA signature of length 1 MB, so that a total of 2 MB must be transmitted.

Problem 3: Security Limitations This is the most serious problem if we attempt
to sign a long message by signing a sequence of message blocks individually. The
approach shown in Fig. 11.1 leads immediately to new attacks: For instance, Oscar
could remove individual messages and the corresponding signatures, or he could re-
order messages and signatures, or he could reassemble new messages and signatures
out of fragments of previous messages and signatures, etc. Even though an attacker

11.1 Motivation: Signing Long Messages 295

cannot perform manipulations within an individual block, we do not have protection
for the whole message.

Hence, for performance as well as for security reasons we would like to have one
short signature for a message of arbitrary length. The solution to this problem is
hash functions. If we had a hash function that somehow computes a fingerprint of
the message x, we could perform the signature operation as shown in Figure 11.2

. . .3x2 xn

h

kpr
sig

s

x1 x

Fig. 11.2 Signing of long messages with a hash function

Assuming we possess such a hash function, we now describe a basic protocol for
a digital signature scheme with a hash function. Bob wants to send a digitally signed
message to Alice.

Basic Protocol for Digital Signatures with a Hash Function:

Alice Bob
kpub,B←−−−−−−−−−−

z = h(x)
s = sigkpr,B

(z)
(x,s)←−−−−−−−−−−

z� = h(x)
verkpub,B(s,z�) = true/false

Bob computes the hash of the message x and signs the hash value z with his
private key kpr,B. On the receiving side, Alice computes the hash value z� of the
received message x. She verifies the signature s with Bob’s public key kpub,B. We
note that both the signature generation and the verification operate on the hash value
z rather than on the message itself. Hence, the hash value represents the message.
The hash is sometimes referred to as the message digest or the fingerprint of the
message.

Before we discuss the security properties of hash functions in the next section,
we can now get a rough feeling for a desirable input–output behavior of hash func-
tions: We want to be able to apply a hash function to messages x of any size, and

296 11 Hash Functions

it is thus desirable that the function h is computationally efficient. Even if we hash
large messages in the range of, say, hundreds of megabytes, it should be relatively
fast to compute. Another desirable property is that the output of a hash function is
of fixed length and independent of the input length. Practical hash functions have
output lengths between 128–512 bits. Finally, the computed fingerprint should be
highly sensitive to all input bits. That means even if we make minor modifications
to the input x, the fingerprint should look very different. This behavior is similar
to that of block ciphers. The properties which we just described are symbolized in
Figure 11.3.

�

�

�

��
����������������������������������
�������������������������

�����������������

����������������

��������

��������

��������

������� ��������������

Fig. 11.3 Principal input–output behavior of hash functions

11.2 Security Requirements of Hash Functions

As mentioned in the introduction, unlike all other crypto algorithms we have dealt
with so far, hash functions do not have keys. The question is now whether there are
any special properties needed for a hash function to be “secure”. In fact, we have
to ask ourselves whether hash functions have any impact on the security of an ap-
plication at all since they do not encrypt and they don’t have keys. As is often the
case in cryptography, things can be tricky and there are attacks which use weak-
nesses of hash functions. It turns out that there are three central properties which
hash functions need to possess in order to be secure:

1. preimage resistance (or one-wayness)
2. second preimage resistance (or weak collision resistance)
3. collision resistance (or strong collision resistance)

These three properties are visualized in Figure 11.4. They are derived in the fol-
lowing.

11.2 Security Requirements of Hash Functions 297

�

�� ������

�������������

���������������
����������

�

�

����

�������������������

�

������

�������������

��������������������

������

Fig. 11.4 The three security properties of hash functions

11.2.1 Preimage Resistance or One-Wayness

Hash functions need to be one-way: Given a hash output z it must be computation-
ally infeasible to find an input message x such that z = h(x). In other words, given a
fingerprint, we cannot derive a matching message. We demonstrate now why preim-
age resistance is important by means of a fictive protocol in which Bob is encrypting
the message but not the signature, i.e., he transmits the pair:

(ek(x),sigkpr,B
(z)).

Here, ek() is a symmetric cipher, e.g., AES, with some symmetric key shared by
Alice and Bob. Let’s assume Bob uses an RSA digital signature, where the signature
is computed as:

s = sigkpr,B
(z) ≡ zd mod n

The attacker Oscar can use Bob’s public key to compute

se ≡ z mod n.

If the hash function is not one-way, Oscar can now compute the message x from
h−1(z) = x. Thus, the symmetric encryption of x is circumvented by the signature,
which leaks the plaintext. For this reason, h(x) should be a one-way function.

In many other applications which make use of hash functions, for instance in key
derivation, it is even more crucial that they are preimage resistant.

11.2.2 Second Preimage Resistance or Weak Collision Resistance

For digital signatures with hash it is essential that two different messages do not
hash to the same value. This means it should be computationally infeasible to create
two different messages x1 �= x2 with equal hash values z1 = h(x1) = h(x2) = z2.
We differentiate between two different types of such collisions. In the first case, x1

298 11 Hash Functions

is given and we try to find x2. This is called second preimage resistance or weak
collision resistance. The second case is given if an attacker is free to choose both
x1 and x2. This is referred to as strong collision resistance and is dealt with in the
subsequent section.

It is easy to see why second preimage resistance is important for the basic
signature with hash scheme that we introduced above. Assume Bob hashes and
signs a message x1. If Oscar is capable of finding a second message x2 such that
h(x1) = h(x2), he can run the following substitution attack:

Alice Oscar Bob
kpub,B←−−−−−

z = h(x1)
s = sigkpr,B

(z)
(x2,s)←−−−−− � substitute

(x1,s)←−−−−−
z = h(x2)
verkpub,B(s,z) = true

As we can see, Alice would accept x2 as a correct message since the verification
gives her the statement “true”. How can this happen? From a more abstract view-
point, this attack is possible because both signing (by Bob) and verifying (by Alice)
do not happen with the actual message itself, but rather with the hashed version of
it. Hence, if an attacker manages to find a second message with the same fingerprint
(i.e., hash output), signing and verifying are the same for this second message.

The question now is how we can prevent Oscar from finding x2. Ideally, we would
like to have a hash function for which weak collisions do not exist. This is, unfor-
tunately, impossible due to the pigeonhole principle, a more impressive term for
which is Dirichlet’s drawer principle. The pigeonhole principle uses a counting ar-
gument in situations like the following: If you are the owner of 100 pigeons but in
your pigeon loop are only 99 holes, at least one pigeonhole will be occupied by 2
birds. Since the output of every hash function has a fixed bit length, say n bit, there
are “only” 2n possible output values. At the same time, the number of inputs to the
hash functions is infinite so that multiple inputs must hash to the same output value.
In practice, each output value is equally likely for a random input, so that weak
collisions exist for all output values.

Since weak collisions exist in theory, the next best thing we can do is to assure
that they cannot be found in practice. A strong hash function should be designed
such that given x1 and h(x1) it is impossible to construct x2 such that h(x1) = h(x2).
This means there is no analytical attack. However, Oscar can always randomly pick
x2 values, compute their hash values and check whether they are equal to h(x1). This
is similar to an exhaustive key search for a symmetric cipher. In order to prevent this
attack given today’s computers, an output length of n = 80 bit is sufficient. However,
we see in the next section that more powerful attacks exist which force us to use even
longer output bit lengths.

11.2 Security Requirements of Hash Functions 299

11.2.3 Collision Resistance and the Birthday Attack

We call a hash function collision resistant or strong collision resistant if it is com-
putationally infeasible to find two different inputs x1 �= x2 with h(x1) = h(x2). This
property is harder to achieve than weak collision resistance since an attacker has two
degrees of freedom: Both messages can be altered to achieve similar hash values.
We show now how Oscar could turn his ability to find collisions into an attack. He
starts with two messages, for instance:

x1 = Transfer $10 into Oscar’s account

x2 = Transfer $10,000 into Oscar’s account

He now alters x1 and x2 at “nonvisible” locations, e.g., he replaces spaces by tabs,
adds spaces or return signs at the end of the message, etc. This way, the semantics
of the message is unchanged (e.g., for a bank), but the hash value changes for every
version of the message. Oscar continues until the condition h(x1) = h(x2) is fulfilled.
Note that if an attacker has, e.g., 64 locations that he can alter or not, this yields 264

versions of the same message with 264 different hash values. With the two messages,
he can launch the following attack:

Alice Oscar Bob
kpub,B←−−−−−
x1−−−−−→

z = h(x1)
s = sigkpr,B

(z)
(x2,s)←−−−−− � substitute

(x1,s)←−−−−−
z = h(x2)
verkpub,B(s,z) = true

This attack assumes that Oscar can trick Bob into signing the message x1. This
is, of course, not possible in every situation, but one can imagine scenarios where
Oscar can pose as an innocent party, e.g., an e-commerce vendor on the Internet,
and x1 is the purchase order that is generated by Oscar.

As we saw earlier, due to the pigeonhole principle, collisions always exist. The
question is how difficult it is to find them. Our first guess is probably that this is as
difficult as finding second preimages, i.e., if the hash function has an output length of
80 bits, we have to check about 280 messages. However, it turns out that an attacker
needs only about 240 messages! This is a quite surprising result which is due to the
birthday attack. This attack is based on the birthday paradox, which is a powerful
tool that is often used in cryptanalysis.

It turns out that the following real-world question is closely related to finding
collisions for hash functions: How many people are needed at a party such that
there is a reasonable chance that at least two people have the same birthday? By

300 11 Hash Functions

birthday we mean any of the 365 days of the year. Our intuition might lead us to
assume that we need around 183 people (i.e., about half the number of days in a
year) for a collision to occur. However, it turns out that we need far fewer people.
The piecewise approach to solve this problem is to first compute the probability of
two people not having the same birthday, i.e., having no collision of their birthdays.
For one person, the probability of no collision is 1, which is trivial since a single
birthday cannot collide with anyone else’s. For the second person, the probability
of no collision is 364 over 365, since there is only one day, the birthday of the first
person, to collide with:

P(no collision among 2 people) =
�

1− 1
365

�

If a third person joins the party, he or she can collide with both of the people already
there, hence:

P(no collision among 3 people) =
�

1− 1
365

�
·
�

1− 2
365

�

Consequently, the probability for t people having no birthday collision is given by:

P(no collision among t people) =
�

1− 1
365

�
·
�

1− 2
365

�
· · ·

�
1− t −1

365

�

For t = 366 people we will have a collision with probability 1 since a year has only
365 days. We return now to our initial question: how many people are needed to
have a 50% chance of two colliding birthdays? Surprisingly—following from the
equations above—it only requires 23 people to obtain a probability of about 0.5 for
a birthday collision since:

P(at least one collision) = 1−P(no collision)

= 1−
�

1− 1
365

�
· · ·

�
1− 23−1

365

�

= 0.507 ≈ 50%.

Note that for 40 people the probability is about 90%. Due to the surprising outcome
of this gedankenexperiment, it is often referred to as the birthday paradox.

Collision search for a hash function h() is exactly the same problem as finding
birthday collisions among party attendees. For a hash function there are not 365
values each element can take but 2n, where n is the output width of h(). In fact, it
turns out that n is the crucial security parameter for hash functions. The question is
how many messages (x1,x2, . . . ,xt) does Oscar need to hash until he has a reasonable
chance that h(xi) = h(x j) for some xi and x j that he picked. The probability for no
collisions among t hash values is:

11.2 Security Requirements of Hash Functions 301

P(no collision) =
�

1− 1
2n

��
1− 2

2n

�
· · ·

�
1− t −1

2n

�

=
t−1

∏
i=1

�
1− i

2n

�

We recall from our calculus courses that the approximation

e−x ≈ 1− x,

holds1 since i/2n << 1. We can approximate the probability as:

P(no collision) ≈
t−1

∏
i=1

e−
i

2n

≈ e−
1+2+3+···+t−1

2n

The arithmetic series

1+2+ · · ·+ t −1 = t(t −1)/2,

is in the exponent, which allows us to write the probability approximation as

P(no collision) ≈ e−
t(t−1)
2·2n .

Recall that our goal is to find out how many messages (x1,x2, . . . ,xt) are needed to
find a collision. Hence, we solve the equation now for t. If we denote the probability
of at least one collision by λ = 1−P(no collision), then

λ ≈ 1− e−
t(t−1)
2n+1

ln(1−λ) ≈ − t(t −1)
2n+1

t(t −1) ≈ 2n+1 ln

�
1

1−λ

�
.

Since in practice t >> 1, it holds that t2 ≈ t(t −1) and thus:

t ≈
�

2n+1 ln

�
1

1−λ

�

t ≈ 2(n+1)/2

�
ln

�
1

1−λ

�
. (11.1)

1 This follows from the Taylor series representation of the exponential function: e−x = 1− x +
x2/2!− x3/3!+ · · · for x << 1.

302 11 Hash Functions

Equation (11.1) is extremely important: it describes the relationship between the
number of hashed messages t needed for a collision as a function of the hash output
length n and the collision probability λ . The most important consequence of the
birthday attack is that the number of messages we need to hash to find a colli-
sion is roughly equal to the square root of the number of possible output values,
i.e., about

√
2n = 2n/2. Hence, for a security level (cf. Section 6.2.4) of x bit, the

hash function needs to have an output length of 2x bit. As an example, assume we
want to find a collision for a hypothetical hash function with 80-bit output. For a
success probability of 50%, we expect to hash about:

t = 281/2

ln(1/(1−0.5)) ≈ 240.2

input values. Computing around 240 hashes and checking for collisions can be done
with current laptops! In order to thwart collision attacks based on the birthday para-
dox, the output length of a hash function must be about twice as long as an output
length which protects merely against a second preimage attack. For this reason,
all hash functions have an output length of at least 128 bit, where most modern
ones are much longer. Table 11.1 shows the number of hash computations needed
for a birthday-paradox collision for output lengths found in current hash functions.
Interestingly, the desired likelihood of a collision does not influence the attack com-
plexity very much, as is evidenced by the small difference between the success
probabilities λ = 0.5 and λ = 0.9. It should be stressed that the birthday attack is a

Table 11.1 Number of hash values needed for a collision for different hash function output lengths
and for two different collision likelihoods

Hash output length
λ 128 bit 160 bit 256 bit 384 bit 512 bit
0.5 265 281 2129 2193 2257

0.9 267 282 2130 2194 2258

generic attack. This means it is applicable against any hash function. On the other
hand, it is not guaranteed that it is the most powerful attack available for a given
hash function. As we will see in the next section, for some of the most popular hash
functions, in particular MD5 and SHA-1, mathematical collision attacks exist which
are faster than the birthday attack.

It should be stressed that there are many applications for hash functions, e.g.,
storage of passwords, which only require preimage resistance. Thus, a hash function
with a relatively short output, say 80 bit, might be sufficient since collision attacks
do not pose a threat.

At the end of this section we summarize all important properties of hash functions
h(x). Note that the first three are practical requirements, whereas the last three relate
to the security of hash functions.

11.3 Overview of Hash Algorithms 303

Properties of Hash Functions
1. Arbitrary message size h(x) can be applied to messages x of any size.
2. Fixed output length h(x) produces a hash value z of fixed length.
3. Efficiency h(x) is relatively easy to compute.
4. Preimage resistance For a given output z, it is impossible to find any

input x such that h(x) = z, i.e, h(x) is one-way.
5. Second preimage resistance Given x1, and thus h(x1), it is computa-

tionally infeasible to find any x2 such that h(x1) = h(x2).
6. Collision resistance It is computationally infeasible to find any pairs

x1 �= x2 such that h(x1) = h(x2).

11.3 Overview of Hash Algorithms

So far we only discussed the requirements for hash functions. We now introduce
how to actually built them. There are two general types of hash functions:

1. Dedicated hash functions These are algorithms that are specifically designed to
serve as hash functions.

2. Block cipher-based hash functions It is also possible to use block ciphers such
as AES to construct hash functions.

As we saw in the previous section, hash functions can process an arbitrary-length
message and produce a fixed-length output. In practice, this is achieved by segment-
ing the input into a series of blocks of equal size. These blocks are processed se-
quentially by the hash function, which has a compression function at its heart. This
iterated design is known as Merkle–Damgård construction. The hash value of the
input message is then defined as the output of the last iteration of the compression
function (Fig. 11.5).

�����������
��������

������������������

����

Fig. 11.5 Merkle–Damgård hash function construction

