
Cryptographic Hash Algorithms

Sachin Tripathi

IIT(ISM), Dhanbad



 Cryptographic hash function
 Important properties of hash function
 Security analysis of hash function
 Overview of different families of hash

functions

Outline



 A cryptographic hash function takes a message of arbitrary length
and creates a message digest of fixed length.

 For a particular message, the message digest, or hash value, can be
seen as the fingerprint of a message, i.e., a unique representation of
a message.

 All cryptographic hash functions need to create a fixed-size digest out
of a variable-size message.

 The best way to create such function is using iteration, and used a
necessary number of times.

 The fixed-size input function is referred to as a compression function.

Introduction



Working Procedure



Problem 1: High Computational Load

Problem 2: Message Overhead

Problem 3: Security Limitations

Motivation: Signing Long Messages



Signing of long messages with a hash 

function



 There are three central properties which hash

functions need to possess in order to be secure:

 Preimage resistance (or one-wayness)

 Second preimage resistance (or weak collision

resistance)

 Collision resistance (or strong collision resistance)

Security Requirements of Hash Function



 Hash functions need to be one-way
Given a hash output z it must be computationally
infeasible to find an input message x such that z = h(x).

Preimage Resistance



 It is essential that two different messages do not hash to the same value.
 It should be computationally infeasible to create two different messages

x1≠x2 with equal hash values h(x1) = h(x2).

Second Preimage Resistance



It is computationally infeasible to find two different

inputs x1≠x2 with h(x1) = h(x2).

Collision Resistance





Cryptographic hash function must be
 computationally infeasible to find data mapping to specific hash (one-

way property)
 computationally infeasible to find two data to same hash (collision-free

property)

Design Goals



 Due to the pigeonhole principle, collisions always exist.The question is how
difficult it is to find them.

 Our first guess is probably that this is as difficult as finding second preimages,
i.e., if the hash function has an output length of 80 bits, we have to check
about 280 messages. However, it turns out that an attacker needs only about
240 messages due to the birthday attack.

Birthday Attack



Problem Statement: How many people are needed at a party such that
there is a reasonable chance that at least two people have the same
birthday?

Solution:

Birthday Paradox



Contd…



 Collision search for a hash function h() is exactly the same
problem as finding birthday collisions among party attendees.

 For a hash function there are not 365 values each element can
take but 2n, where n is the output width of h(). In fact, it turns out
that n is the crucial security parameter for hash functions.

 The question is how many messages (x1,x2, . . . ,xt) does Eve
need to hash until he has a reasonable chance that h(xi) = h(x j)
for some xi and xj that he picked.

Birthday Attack







The most important consequence of the birthday attack

is that the number of messages we need to hash to find a

collision is roughly equal to the square root of the

number of possible output values



Block Ciphers as Hash Functions

can use block ciphers as hash functions
using H0=0 and zero-pad of final block
compute: Hi = EMi

[Hi-1]
and use final block as the hash value
similar to CBC but without a key

resulting hash is too small (64-bit)
both due to direct birthday attack
and to “meet-in-the-middle” attack

other variants also susceptible to attack



SHA-512


