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CHAPTER 18

Security at the Network Layer: IPSec

Objectives

This chapter has several objectives:

❏ To define the architecture of IPSec

❏ To discuss the application of IPSec in transport and tunnel modes

❏ To discuss how IPSec can be used to provide only authentication

❏ To discuss how IPSec can be used to provide both confidentiality and

authentication 

❏ To define Security Association and explain how it is implemented for

IPSec

❏ To define Internet Key Exchange and explain how it is used by IPSec

The two previous chapters have discussed the security at the applica-

tion layer and transport layer. However, security at the above two layers

may not be enough in some cases. First, not all client/server programs

are protected at the application layer; for example, PGP and S/MIME

protect only electronic mail. Second, not all client/server programs at the

application layer use the service of TCP to be protected by SSL or TLS;

some programs use the service of UDP. Third, many applications, such

as routing protocols, directly use the service of IP; they need security

services at the IP layer. 

IP Security (IPSec) is a collection of protocols designed by the

Internet Engineering Task Force (IETF) to provide security for a packet

at the network level. The network layer in the Internet is often referred to

as the Internet Protocol or IP layer. IPSec helps create authenticated and

confidential packets for the IP layer as shown in Figure 18.1. 



550 CHAPTER 18 SECURITY AT THE NETWORK LAYER: IPSEC

IPSec can be useful in several areas. First, it can enhance the security

of those client/server programs, such as electronic mail, that use their

own security protocols. Second, it can enhance the security of those client/

server programs, such as HTTP, that use the security services provided at

the transport layer. It can provide security for those client/server pro-

grams that do not use the security services provided at the transport

layer. It can provide security for node-to-node communication programs

such as routing protocols. 

18.1  TWO MODES

IPSec operates in one of two different modes: transport mode or tunnel mode. 

Transport Mode

In transport mode, IPSec protects what is delivered from the transport layer to the net-

work layer. In other words, transport mode protects the network layer payload, the pay-

load to be encapsulated in the network layer, as shown in Figure 18.2. 

Figure 18.1 TCP/IP protocol suite and IPSec

Figure 18.2 IPSec in transport mode
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Note that transport mode does not protect the IP header. In other words, transport

mode does not protect the whole IP packet; it protects only the packet from the trans-

port layer (the IP layer payload). In this mode, the IPSec header (and trailer) are added

to the information coming from the transport layer. The IP header is added later. 

Transport mode is normally used when we need host-to-host (end-to-end) protec-

tion of data. The sending host uses IPSec to authenticate and/or encrypt the payload

delivered from the transport layer. The receiving host uses IPSec to check the authenti-

cation and/or decrypt the IP packet and deliver it to the transport layer. Figure 18.3

shows this concept. 

Tunnel Mode

In tunnel mode, IPSec protects the entire IP packet. It takes an IP packet, including the

header, applies IPSec security methods to the entire packet, and then adds a new IP

header, as shown in Figure 18.4. 

The new IP header, as we will see shortly, has different information than the origi-

nal IP header. Tunnel mode is normally used between two routers, between a host and a

router, or between a router and a host, as shown in Figure 18.5. In other words, tunnel

mode is used when either the sender or the receiver is not a host. The entire original

IPSec in transport mode does not protect the IP header; it only protects the information 

coming from the transport layer.

Figure 18.3 Transport mode in action

Figure 18.4 IPSec in tunnel mode
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packet is protected from intrusion between the sender and the receiver, as if the whole

packet goes through an imaginary tunnel. 

Comparison

In transport mode, the IPSec layer comes between the transport layer and the network

layer. In tunnel mode, the flow is from the network layer to the IPSec layer and then

back to the network layer again. Figure 18.6 compares the two modes.  

18.2 TWO SECURITY PROTOCOLS

IPSec defines two protocolsthe Authentication Header (AH) Protocol and the Encap-

sulating Security Payload (ESP) Protocolto provide authentication and/or encryption

for packets at the IP level.

Authentication Header (AH)

The Authentication Header (AH) Protocol is designed to authenticate the source host

and to ensure the integrity of the payload carried in the IP packet. The protocol uses a

hash function and a symmetric key to create a message digest; the digest is inserted in

Figure 18.5 Tunnel mode in action

IPSec in tunnel mode protects the original IP header.

Figure 18.6 Transport mode versus tunnel mode
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the authentication header. The AH is then placed in the appropriate location, based on

the mode (transport or tunnel). Figure 18.7 shows the fields and the position of the

authentication header in transport mode. 

When an IP datagram carries an authentication header, the original value in the

protocol field of the IP header is replaced by the value 51. A field inside the authentica-

tion header (the next header field) holds the original value of the protocol field (the type

of payload being carried by the IP datagram). The addition of an authentication header

follows these steps:

1. An authentication header is added to the payload with the authentication data field

set to 0.

2. Padding may be added to make the total length even for a particular hashing

algorithm.

3. Hashing is based on the total packet. However, only those fields of the IP header

that do not change during transmission are included in the calculation of the mes-

sage digest (authentication data).

4. The authentication data are inserted in the authentication header.

5. The IP header is added after changing the value of the protocol field to 51.

A brief description of each field follows:

❏ Next header. The 8-bit next header field defines the type of payload carried by the

IP datagram (such as TCP, UDP, ICMP, or OSPF). It has the same function as the

protocol field in the IP header before encapsulation. In other words, the process

copies the value of the protocol field in the IP datagram to this field. The value of

the protocol field in the new IP datagram is now set to 51 to show that the packet

carries an authentication header. 

Figure 18.7 Authentication Header (AH) protocol
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❏ Payload length. The name of this 8-bit field is misleading. It does not define the

length of the payload; it defines the length of the authentication header in 4-byte

multiples, but it does not include the first 8 bytes. 

❏ Security parameter index. The 32-bit security parameter index (SPI) field plays

the role of a virtual circuit identifier and is the same for all packets sent during a

connection called a Security Association (discussed later).

❏ Sequence number. A 32-bit sequence number provides ordering information for

a sequence of datagrams. The sequence numbers prevent a playback. Note that the

sequence number is not repeated even if a packet is retransmitted. A sequence num-

ber does not wrap around after it reaches 232; a new connection must be established.

❏ Authentication data. Finally, the authentication data field is the result of apply-

ing a hash function to the entire IP datagram except for the fields that are changed

during transit (e.g., time-to-live). 

Encapsulating Security Payload (ESP)

The AH protocol does not provide privacy, only source authentication and data integrity.

IPSec later defined an alternative protocol, Encapsulating Security Payload (ESP), that

provides source authentication, integrity, and privacy. ESP adds a header and trailer. Note

that ESP’s authentication data are added at the end of the packet, which makes its calcula-

tion easier. Figure 18.8 shows the location of the ESP header and trailer. 

When an IP datagram carries an ESP header and trailer, the value of the protocol

field in the IP header is 50. A field inside the ESP trailer (the next-header field) holds

the original value of the protocol field (the type of payload being carried by the IP data-

gram, such as TCP or UDP). The ESP procedure follows these steps:

1. An ESP trailer is added to the payload.

2. The payload and the trailer are encrypted.

3. The ESP header is added.

4. The ESP header, payload, and ESP trailer are used to create the authentication data.

The AH protocol provides source authentication and data integrity, but not privacy.

Figure 18.8 ESP
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5. The authentication data are added to the end of the ESP trailer.

6. The IP header is added after changing the protocol value to 50. 

The fields for the header and trailer are as follows:

❏ Security parameter index. The 32-bit security parameter index field is similar to

that defined for the AH protocol. 

❏ Sequence number. The 32-bit sequence number field is similar to that defined for

the AH protocol. 

❏ Padding. This variable-length field (0 to 255 bytes) of 0s serves as padding. 

❏ Pad length. The 8-bit pad-length field defines the number of padding bytes. The

value is between 0 and 255; the maximum value is rare.

❏ Next header. The 8-bit next-header field is similar to that defined in the AH protocol.

It serves the same purpose as the protocol field in the IP header before encapsulation.

❏ Authentication data. Finally, the authentication data field is the result of applying

an authentication scheme to parts of the datagram. Note the difference between the

authentication data in AH and ESP. In AH, part of the IP header is included in the

calculation of the authentication data; in ESP, it is not. 

IPv4 and IPv6

IPSec supports both IPv4 and IPv6. In IPv6, however, AH and ESP are part of the

extension header. 

AH versus ESP

The ESP protocol was designed after the AH protocol was already in use. ESP does

whatever AH does with additional functionality (privacy). The question is, Why do we

need AH? The answer is that we don’t. However, the implementation of AH is already

included in some commercial products, which means that AH will remain part of the

Internet until these products are phased out.

Services Provided by IPSec

The two protocols, AH and ESP, can provide several security services for packets at the

network layer. Table 18.1 shows the list of services available for each protocol. 

ESP provides source authentication, data integrity, and privacy. 

Table 18.1 IPSec services

Services AH ESP

Access control yes yes

Message authentication (message integrity) yes yes

Entity authentication (data source authentication) yes yes

Confidentiality no yes

Replay attack protection yes yes
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Access Control

IPSec provides access control indirectly using a Security Association Database (SAD),

as we will see in the next section. When a packet arrives at a destination, and there is no

Security Association already established for this packet, the packet is discarded. 

Message Integrity

Message integrity is preserved in both AH and ESP. A digest of data is created and sent

by the sender to be checked by the receiver.

Entity Authentication

The Security Association and the keyed-hash digest of the data sent by the sender

authenticate the sender of the data in both AH and ESP. 

Confidentiality

The encryption of the message in ESP provides confidentiality. AH, however, does

not provide confidentiality. If confidentiality is needed, one should use ESP instead

of AH. 

Replay Attack Protection

In both protocols, the replay attack is prevented by using sequence numbers and a

sliding receiver window. Each IPSec header contains a unique sequence number when

the Security Association is established. The number starts from 0 and increases until

the value reaches 232 − 1 (the size of the sequence number field is 32 bits). When the

sequence number reaches the maximum, it is reset to 0 and, at the same time, the

old Security Association (see the next section) is deleted and a new one is established.

To prevent processing duplicate packets, IPSec mandates the use of a fixed-size win-

dow at the receiver. The size of the window is determined by the receiver with a

default value of 64. Figure 18.9 shows a replay window. The window is of a fixed

size, W. The shaded packets signify received packets that have been checked and

authenticated. 

Figure 18.9 Replay window
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When a packet arrives at the receiver, one of three things can happen, depending

on the value of the sequence number.

1. The sequence number of the packet is less than N. This puts the packet to the left of

the window. In this case, the packet is discarded. It is either a duplicate or its

arrival time has expired. 

2. The sequence number of the packet is between N and (N + W − 1), inclusive. This

puts the packet inside the window. In this case, if the packet is new (not marked)

and it passes the authentication test, the sequence number is marked and the packet

is accepted. Otherwise, it is discarded.

3. The sequence number of the packet is greater than (N + W − 1). This puts the

packet to the right of the window. In this case, if the packet is authenticated, the

corresponding sequence number is marked and the window slides to the right to

cover the newly marked sequence number. Otherwise, the packet is discarded.

Note that it may happen that a packet arrives with a sequence number much larger

than (N + W) (very far from the right edge of the window). In this case, the sliding

of the window may cause many unmarked numbers to fall to the left of the win-

dow. These packets, when they arrive, will never be accepted; their time has

expired. For example, in Figure 18.9, if a packet arrives with sequence number

(N + W + 3), the window slides and the left edge will be at the beginning of (N + 3).

This means the sequence number (N + 2) is now out of the window. If a packet

arrives with this sequence number, it will be discarded. 

18.3 SECURITY ASSOCIATION

Security Association is a very important aspect of IPSec. IPSec requires a logical rela-

tionship, called a Security Association (SA), between two hosts. This section first

discusses the idea and then shows how it is used in IPSec.

Idea of Security Association

A Security Association is a contract between two parties; it creates a secure channel

between them. Let us assume that Alice needs to unidirectionally communicate with

Bob. If Alice and Bob are interested only in the confidentiality aspect of security, they

can get a shared secret key between themselves. We can say that there are two Security

Associations (SAs) between Alice and Bob; one outbound SA and one inbound SA.

Each of them stores the value of the key in a variable and the name of the encryption/

decryption algorithm in another. Alice uses the algorithm and the key to encrypt a mes-

sage to Bob; Bob uses the algorithm and the key when he needs to decrypt the message

received from Alice. Figure 18.10 shows a simple SA. 

The Security Associations can be more involved if the two parties need message

integrity and authentication. Each association needs other data such as the algorithm

for message integrity, the key, and other parameters. It can be much more complex if

the parties need to use specific algorithms and specific parameters for different proto-

cols, such as IPSec AH or IPSec ESP. 
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Security Association Database (SAD)

A Security Association can be very complex. This is particularly true if Alice wants to

send messages to many people and Bob needs to receive messages from many people.

In addition, each site needs to have both inbound and outbound SAs to allow bidirec-

tional communication. In other words, we need a set of SAs that can be collected into a

database. This database is called the Security Association Database (SAD). The data-

base can be thought of as a two-dimensional table with each row defining a single SA.

Normally, there are two SADs, one inbound and one outbound. Figure 18.11 shows the

concept of outbound and inbound SADs for one entity.  

When a host needs to send a packet that must carry an IPSec header, the host

needs to find the corresponding entry in the outbound SAD to find the information

for applying security to the packet. Similarly, when a host receives a packet that

Figure 18.10 Simple SA

Figure 18.11 SAD
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carries an IPSec header, the host needs to find the corresponding entry in the

inbound SAD to find the information for checking the security of the packet. This

searching must be specific in the sense that the receiving host needs to be sure that

correct information is used for processing the packet. Each entry in an inbound SAD

is selected using a triple index: security parameter index, destination address, and

protocol. 

❏ Security Parameter Index. The security parameter index (SPI) is a 32-bit num-

ber that defines the SA at the destination. As we will see later, the SPI is deter-

mined during the SA negotiation. The same SPI is included in all IPSec packets

belonging to the same inbound SA. 

❏ Destination Address. The second index is the destination address of the host. We

need to remember that a host in the Internet normally has one unicast destination

address, but it may have several multicast addresses. IPSec requires that the SAs be

unique for each destination address.

❏ Protocol. IPSec has two different security protocols: AH and ESP. To separate the

parameters and information used for each protocol, IPSec requires that a destina-

tion define a different SA for each protocol. 

The entries for each row are called the SA parameters. Typical parameters are shown in

Table 18.2. 

Table 18.2 Typical SA Parameters

Parameters Descriptions

Sequence Number Counter This is a 32-bit value that is used to generate sequence num-

bers for the AH or ESP header. 

Sequence Number Overflow This is a flag that defines a station’s options in the event of a 

sequence number overflow.

Anti-Replay Window This detects an inbound replayed AH or ESP packet.

AH Information This section contains information for the AH protocol:

1. Authentication algorithm

2. Keys

3. Key lifetime

4. Other related parameters

ESP Information This section contains information for the ESP protocol:

1. Encryption algorithm

2. Authentication algorithm

3. Keys

4. Key lifetime

5. Initiator vectors

6. Other related parameters

SA Lifetime This defines the lifetime for the SA.

IPSec Mode This defines the mode, transport or tunnel.

Path MTU This defines the path MTU (fragmentation).
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18.4 SECURITY POLICY

Another import aspect of IPSec is the Security Policy (SP), which defines the type of

security applied to a packet when it is to be sent or when it has arrived. Before using the

SAD, discussed in the previous section, a host must determine the predefined policy for

the packet.

Security Policy Database

Each host that is using the IPSec protocol needs to keep a Security Policy Database

(SPD). Again, there is a need for an inbound SPD and an outbound SPD. Each entry in

the SPD can be accessed using a sextuple index: source address, destination address,

name, protocol, source port, and destination port, as shown in Figure 18.12. 

Source and destination addresses can be unicast, multicast, or wildcard addresses.

The name usually defines a DNS entity. The protocol is either AH or ESP. The source

and destination ports are the port addresses for the process running at the source and

destination hosts.

Outbound SPD

When a packet is to be sent out, the outbound SPD is consulted. Figure 18.13 shows the

processing of a packet by a sender. 

The input to the outbound SPD is the sextuple index; the output is one of the three

following cases: 

1. Drop. This means that the packet defined by the index cannot be sent; it is

dropped.

2. Bypass. This means that there is no policy for the packet with this policy index;

the packet is sent, bypassing the security header application.

Figure 18.12 SPD
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3. Apply. In this case, the security header is applied. Two situations may occur.

a. If an outbound SA is already established, the triple SA index is 

returned that selects the corresponding SA from the outbound SAD. 

The AH or ESP header is formed; encryption, authentication, or both 

are applied based on the SA selected. The packet is transmitted.

b. If an outbound SA is not established yet, the Internet Key Exchange 

(IKE) protocol (see the next section) is called to create an outbound 

and inbound SA for this traffic. The outbound SA is added to the out-

bound SAD by the source; the inbound SA is added to the inbound 

SAD by the destination. 

Inbound SPD

When a packet arrives, the inbound SPD is consulted. Each entry in the inbound SPD is

also accessed using the same sextuple index. Figure 18.14 shows the processing of a

packet by a receiver. 

Figure 18.13 Outbound processing 
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The input to the inbound SPD is the sextuple index; the output is one of the three

following cases:

1. Discard. This means that the packet defined by that policy must be dropped.

2. Bypass. This means that there is no policy for a packet with this policy index; the

packet is processed, ignoring the information from AH or ESP header. The packet

is delivered to the transport layer. 

3. Apply. In this case, the security header must be processed. Two situations may occur:

a. If an inbound SA is already established, the triple SA index is returned that 

selects the corresponding inbound SA from the inbound SAD. Decryp-

tion, authentication, or both are applied. If the packet passes the security 

criteria, the AH or ESP header is discarded and the packet is delivered to 

the transport layer. 

b. If an SA is not yet established, the packet must be discarded.   

Figure 18.14 Inbound processing
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18.5 INTERNET KEY EXCHANGE (IKE)

The Internet Key Exchange (IKE) is a protocol designed to create both inbound and

outbound Security Associations. As we discussed in the previous section, when a peer

needs to send an IP packet, it consults the Security Policy Database (SPDB) to see if

there is an SA for that type of traffic. If there is no SA, IKE is called to establish one. 

IKE is a complex protocol based on three other protocols: Oakley, SKEME, and

ISAKMP, as shown in Figure 18.15.  

The Oakley protocol was developed by Hilarie Orman. It is a key creation protocol

based on the Diffie-Hellman key-exchange method, but with some improvements as we

shall see shortly. Oakley is a free-formatted protocol in the sense that it does not define

the format of the message to be exchanged. We do not discuss the Oakley protocol

directly in this chapter, but we show how IKE uses its ideas. 

SKEME, designed by Hugo Krawcyzk, is another protocol for key exchange. It

uses public-key encryption for entity authentication in a key-exchange protocol. We

will see shortly that one of the methods used by IKE is based on SKEME.

The Internet Security Association and Key Management Protocol (ISAKMP) is

a protocol designed by the National Security Agency (NSA) that actually implements the

exchanges defined in IKE. It defines several packets, protocols, and parameters that allow

the IKE exchanges to take place in standardized, formatted messages to create SAs. We

will discuss ISAKMP in the next section as the carrier protocol that implements IKE. 

In this section, we discuss IKE itself; the mechanism for creating SAs for IPSec. 

Improved Diffie-Hellman Key Exchange

The key-exchange idea in IKE is based on the Diffie-Hellman protocol. This protocol

provides a session key between two peers without the need for the existence of any

IKE creates SAs for IPSec. 

Figure 18.15 IKE components
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previous secret. We have discussed Diffie-Hellman in Chapter 15; The concept is sum-

marized in Figure 18.16. 

In the original Diffie-Hellman key exchange, two parties create a symmetric ses-

sion key to exchange data without having to remember or store the key for future use.

Before establishing a symmetric key, the two parties need to choose two numbers p and g.

The first number, p, is a large prime on the order of 300 decimal digits (1024 bits).

The second number, g, is a generator in the group <Zp∗, × >. Alice chooses a large ran-

dom number i and calculates KE-I = gi mod p. She sends KE-I to Bob. Bob chooses

another large random number r and calculates KE-R = gr mod p. He sends KE-R to

Alice. We refer to KE-I and KE-R as Diffie-Hellman half-keys because each is a half-

key generated by a peer. They need to be combined together to create the full key,

which is K = g ir mod p. K is the symmetric key for the session.

The Diffie-Hellman protocol has some weaknesses that need to be eliminated

before it is suitable as an Internet key exchange. 

Clogging Attack

The first issue with the Diffie-Hellman protocol is the clogging attack or denial-of-

service attack. A malicious intruder can send many half-key (gx mod q) messages to

Bob, pretending that they are from different sources. Bob then needs to calculate differ-

ent responses (gy mod q) and at the same time calculate the full-key (gxy mod q). This

keeps Bob so busy that he may stop responding to any other messages. He denies ser-

vices to clients. This can happen because the Diffie-Hellman protocol is computation-

ally intensive. 

To prevent this clogging attack, we can add two extra messages to the protocol to

force the two parties to send cookies. Figure 18.17 shows the refinement that can pre-

vent a clogging attack. The cookie is the result of hashing a unique identifier of the peer

(such as IP address, port number, and protocol), a secret random number known to the

party that generates the cookie, and a timestamp.  

Figure 18.16 Diffie-Hellman key exchange
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The initiator sends its own cookie; the responder its own. Both cookies are repeated,

unchanged, in every following message. The calculations of half-keys and the session key

are postponed until the cookies are returned. If any of the peers is a hacker attempting a

clogging attack, the cookies are not returned; the corresponding party does not spend the

time and effort to calculate the half-key or the session key. For example, if the initiator is

a hacker using a bogus IP address, the initiator does not receive the second message and

cannot send the third message. The process is aborted. 

Replay Attack

Like other protocols we have seen so far, Diffie-Hellman is vulnerable to a replay

attack; the information from one session can be replayed in a future session by a mali-

cious intruder. To prevent this, we can add nonces to the third and fourth messages to

preserve the freshness of the message. 

Man-In-The-Middle Attack

The third, and the most dangerous, attack on the Diffie-Hellman protocol is the man-in-

the-middle attack, previously discussed in Chapter 15. Eve can come in the middle and

create one key between Alice and herself and another key between Bob and herself.

Thwarting this attack is not as simple as the other two. We need to authenticate each

Figure 18.17 Diffie-Hellman with cookies

To protect against a clogging attack, IKE uses cookies. 

To protect against a replay attack, IKE uses nonces. 
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Cookie-I, Cookie-R, KE-I
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party. Alice and Bob need to be sure that the integrity of the messages is preserved and

that both are authenticated to each other. 

Authentication of the messages exchanged (message integrity) and the authentica-

tion of the parties involved (entity authentication) require that each party proves his/her

claimed identity. To do this, each must prove that it possesses a secret.  

In IKE, the secret can be one of the following:

a. A preshared secret key

b. A preknown encryption/decryption public-key pair. An entity must show that a

message encrypted with the announced public key can be decrypted with the corre-

sponding private key.

c. A preknown digital signature public-key pair. An entity must show that it can sign

a message with its private key which can be verified with its announced public key.

IKE Phases

IKE creates SAs for a message-exchange protocol such as IPSec. IKE, however, needs to

exchange confidential and authenticated messages. What protocol provides SAs for IKE

itself? The reader may realize that this requires a never-ending chain of SAs: IKE must

create SAs for IPSec, protocol X must create SAs for IKE, protocol Y needs to create SAs

for protocol X, and so on. To solve this dilemma and, at the same time, make IKE inde-

pendent of the IPSec protocol, the designers of IKE divided IKE into two phases. In

phase I, IKE creates SAs for phase II. In phase II, IKE creates SAs for IPSec or some

other protocol. Phase I is generic; phase II is specific for the protocol. 

Still, the question remains: How is phase I protected? In the next sections we show

how phase I uses an SA that is formed in a gradual manner. Earlier messages are

exchanged in plaintext; later messages are authenticated and encrypted with the keys

created from the earlier messages. 

Phases and Modes

To allow for a variety of exchange methods, IKE has defined modes for the phases. So

far, there are two modes for phase I: the main mode and the aggressive mode. The only

mode for phase II is the quick mode. Figure 18.18 shows the relationship between

phases and modes.  

To protect against man-in-the-middle attack, IKE requires that each party shows 

that it possesses a secret. 

IKE is divided into two phases: phase I and phase II. Phase I creates SAs for phase II;  

phase II creates SAs for a data exchange protocol such as IPSec.
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Based on the nature of the pre-secret between the two parties, the phase I modes

can use one of four different authentication methods: the preshared secret key method,

the original public-key method, the revised public-key method, or the digital signature

method, as shown in Figure 18.19. 

Phase I: Main Mode

In the main mode, the initiator and the responder exchange six messages. In the first two

messages, they exchange cookies (to protect against a clogging attack) and negotiate the

SA parameters. The initiator sends a series of proposals; the responder selects one of them.

When the first two messages are exchanged, the initiator and the responder know the SA

parameters and are confident that the other party exists (no clogging attack occurs).

In the third and fourth messages, the initiator and responder usually exchange their

half-keys (gi and gr of the Diffie-Hellman method) and their nonces (for replay protec-

tion). In some methods other information is exchanged; that will be discussed later.

Note that the half-keys and nonces are not sent with the first two messages because the

two parties must first ensure that a clogging attack is not possible. 

Figure 18.18 IKE Phases

Figure 18.19 Main-mode or aggressive-mode methods
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After exchanging the third and fourth messages, each party can calculate the com-

mon secret between them in addition to its individual hash digest. The common secret

SKEYID (secret key ID) is dependent on the calculation method as shown below. In the

equations, prf (pseudorandom function) is a keyed-hash function defined during the

negotiation phase. 

 Other common secrets are calculated as follows:

SKEYID_d (derived key) is a key to create other keys. SKEYID_a is the authenti-

cation key and SKEYID_e is used for the encryption key; both are used during the

negotiation phase. The first parameter (SKEYID) is calculated for each key-exchange

method separately. The second parameter is a concatenation of various data. Note that

the key for prf is always SKEYID. 

The two parties also calculate two hash digests, HASH-I and HASH-R, which are

used in three of the four methods in the main mode. The calculation is shown below: 

Note that the first digest uses ID-I, while the second uses ID-R. Both use SA-I, the

entire SA data sent by the initiator. None of them include the proposal selected by the

responder. The idea is to protect the proposal sent by the initiator by preventing an

intruder from making changes. For example, an intruder might try to send a list of pro-

posals more vulnerable to attack. Similarly, if the SA is not included, an intruder might

change the selected proposal to one more favorable to himself. Note also a party does

not need to know the ID of the other party in the calculation of the HASHs.

After calculating the keys and hashes, each party sends the hash to the other party to

authenticate itself. The initiator sends HASH-I to the responder as proof that she is Alice.

Only Alice knows the authentication secret and only she can calculate HASH-I. If the

HASH-I then calculated by Bob matches the HASH-I sent by Alice, she is authenticated.

In the same way, Bob can authenticate himself to Alice by sending HASH-R. 

SKEYID = prf (preshared-key, N-I |  N-R)                            (preshared-key method)

SKEYID = prf (N-I |  N-R, gir )                                                   (public-key method)

SKEYID = prf (hash (N-I |  N-R), Cookie-I |  Cookie-R)                     (digital signature) 

SKEYID_d = prf (SKEYID, gir  | Cookie-I |  Cookie-R |  0)

SKEYID_a = prf (SKEYID, SKEYID_d |  gir |  Cookie-I |  Cookie-R |  1)

SKEYID_e = prf (SKEYID, SKEYID_a |  gir |  Cookie-I |  Cookie-R |  2)

HASH-I = prf (SKEYID, KE-I |  KE-R |  Cookie-I | Cookie-R |  SA-I |  ID-I)

HASH-R = prf (SKEYID, KE-I |  KE-R |  Cookie-I | Cookie-R |  SA-I |  ID-R)
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Note that there is a subtle point here. When Bob calculates HASH-I, he needs Alice’s

ID and vice versa. In some methods, the ID is sent by previous messages; in others it is

sent with the hash, with both the hash and the ID encrypted by SKEYID_e.

Preshared Secret-Key Method

In the preshared secret-key method, a symmetric key is used for authentication of the

peers to each other. Figure 18.20 shows shared-key authentication in the main mode. 

In the first two messages, the initiator and responder exchange cookies (inside the

general header) and SA parameters. In the next two messages, they exchange the half-

keys and the nonces (see Chapter 15). Now the two parties can create SKEYID and the

two keyed hashes (HASH-I and HASH-R). In the fifth and sixth messages, the two

parties exchange the created hashes and their IDs. To protect the IDs and hashes, the

last two messages are encrypted with SKEYID_e.  

Note that the pre-shared key is the secret between Alice (initiator) and Bob

(responder). Eve (intruder) does not have access to this key. Eve cannot create SKEYID

and therefore cannot create either HASH-I or HASH-R. Note that the IDs need to be

exchanged in messages 5 and 6 to allow the calculation of the hash.

There is one problem with this method. Bob cannot decrypt the message unless he

knows the preshared key, which means he must know who Alice is (know her ID). But

Alice’s ID is encrypted in message 5. The designer of this method has argued that the

Figure 18.20 Main mode, preshared secret-key method

Initiator Responder 

HDR, ID-R, HASH-R

HDR, ID-I, HASH-I

KE-I (KE-R): Initiator’s (responder’s) half-key

N-I (N-R): Initiator’s (responder’s) nonce

ID-I (ID-R): Initiator’s (responder’s) ID

HASH-I (HASH-R): Initiator’s (responder’s) hash  

HDR: General header including cookies  

Encrypted with SKEYID_e 

Preshared key

Result: SA for Phase II

HDR, SA-selected 

HDR, KE-R, N-R

HDR, KE-I, N-I

HDR, SA-offered

2

3

1

5

4

6



570 CHAPTER 18 SECURITY AT THE NETWORK LAYER: IPSEC

ID in this case must be the IP address of each party. This is not an issue if Alice is on a

stationary host (the IP address is fixed). However, if Alice is moving from one network

to another, this is a problem.

Original Public-Key Method

In the original public-key method, the initiator and the responder prove their identities by

showing that they possess a private key related to their announced public key. Figure 18.21

shows the exchange of messages using the original public-key method.  

The first two messages are the same as in the previous method. In the third mes-

sage, the initiator sends its half-key, the nonce, and the ID. In the fourth message, the

responder does likewise. However, the nonces and IDs are encrypted by the public key

of the receiver and decrypted by the private key of the receiver. As can be seen from

Figure 18.21, the nonces and IDs are encrypted separately, because, as we will see later,

they are encoded separately from separate payloads.

One difference between this method and the previous one is that the IDs are

exchanged with the third and fourth messages instead of the fifth and sixth messages.

The fifth and sixth messages just carry the HASHs.

Figure 18.21 Main mode, original public-key method

HDR: General header including cookies
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N-I (N-R): Initiator’s (responder’s) nonce
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The calculation of SKEYID in this method is based on a hash of the nonces and the

symmetric key. The hash of the nonces is used as the key for the keyed-HMAC function.

Note that here we use a double hash. Although SKEYID, and consequently, the hashes

are not directly dependent on the secret that each party possesses, they are related indi-

rectly. SKEYID depends on the nonces and the nonces can only be decrypted by the

private key (secret) of the receiver. So if the calculated hashes match those received, it

is proof that each party is who it claims to be.   

Revised Public-Key Method

The original public-key method has some drawbacks. First, two instances of public-key

encryption/decryption place a heavy load on the initiator and responder. Second, the

initiator cannot send its certificate encrypted by the public key of the responder, since

anyone could do this with a false certificate. The method was revised so that the public

key is used only to create a temporary secret key, as shown in Figure 18.22.   

Note that two temporary secret keys are created from a hash of nonces and cook-

ies. The initiator uses the public key of the responder to send its nonce. The responder

Figure 18.22 Main mode, revised public-key method 
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decrypts the nonce and calculates the initiator’s temporary secret key. After that the

half-key, the ID, and the optional certificate can be decrypted. The two temporary

secret keys, K-I and K-R, are calculated as     

Digital Signature Method

In this method, each party shows that it possesses the certified private key related to a

digital signature. Figure 18.23 shows the exchanges in this method. It is similar to the

preshared-key method except for the SKEYID calculation.

Note that in this method the sending of the certificates is optional. The certificate

can be sent here because it can be encrypted with SKEYID_e, which does not depend

on the signature key. In message 5, the initiator signs all the information exchanged in

messages 1 to 4 with its signature key. The responder verifies the signature using the

public key of the initiator, which authenticates the initiator. Likewise, in message 6, the

responder signs all the information exchanged with its signature key. The initiator veri-

fies the signature.    

K-I  = prf (N-I, Cookie-I)                   K-R = prf (N-R, Cookie-R)

Figure 18.23 Main mode, digital signature method

HDR: General header including cookies

Sig-I: Initiator’s signature on messages 1−4

Sig-R: Initiator’s signature on messages 1−5
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Phase I: Aggressive Mode

Each aggressive mode is a compressed version of the corresponding main mode. Instead

of six messages, only three are exchanged. Messages 1 and 3 are combined to make the

first message. Messages 2, 4, and 6 are combined to make the second message. Message 5

is sent as the third message. The idea is the same.

Preshared-Key Method

Figure 18.24 shows the preshared-key method in the aggressive mode. Note that after

receiving the first message, the responder can calculate SKEYID and consequently,

HASH-R. But the initiator cannot calculate SKEYID until it receives the second mes-

sage. HASH-I in the third message can be encrypted.  

Original Public-Key Method

Figure 18.25 shows the exchange of messages using the original public-key method in the

aggressive mode. Note that the responder can calculate the SKEYID and HASH-R after

receiving the first message, but the initiator must wait until it receives the second message. 

Revised Public-Key Method

Figure 18.26 shows the revised public-key method in the aggressive mode. The idea is

the same as for the main mode, except that some messages are combined.

Digital Signature Method

Figure 18.27 shows the digital signature method in the aggressive mode. The idea is the

same as for the main mode, except that some messages are combined. 

Figure 18.24 Aggressive mode, preshared-key method
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Figure 18.25 Aggressive mode, original public-key method

Figure 18.26 Aggressive mode, revised public-key method
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Phase II: Quick Mode

After SAs have been created in either the main mode or the aggressive mode, phase II

can be started. There is only one mode defined for phase II so far, the quick mode. This

mode is under the supervision of the IKE SAs created by phase I. However, each quick-

mode method can follow any main or aggressive mode. 

The quick mode uses IKE SAs to create IPSec SAs (or SAs for any other protocol).

 Figure 18.28 shows the messages exchanged during the quick mode. 

Figure 18.27 Aggressive mode, digital signature method

Figure 18.28 Quick mode
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In phase II, either party can be the initiator. That is, the initiator of phase II can be

the initiator of phase I or the responder of phase I. 

The initiator sends the first message, which includes the keyed-HMAC HASH1

(explained later), the entire SA created in phase I, a new nonce (N-I), an optional new

Diffie-Hellman half-key (KE-I), and the optional IDs of both parties. The second mes-

sage is similar, but carries the keyed-HMAC HASH2, the responder nonce (N-R), and,

if present, the Diffie-Hellman half-key created by the responder. The third message

contains only the keyed-HMAC HASH3. 

The messages are authenticated using three keyed-HMACs: HASH1, HASH2, and

HASH3. These are calculated as follows: 

Each HMAC includes the message ID (MsgID) used in the header of ISAKMP

headers. This allows multiplexing in phase II. The inclusion of MsgID prevents simul-

taneous creations of phase II from bumping into each other. 

All three messages are encrypted for confidentiality using the SKEYID_e created

during phase I. 

Perfect Forward Security (PFS)

After establishing an IKE SA and calculating SKEYID_d in phase I, all keys for the

quick mode are derived from SKEYID_d. Since multiple phase IIs can be derived from

a single phase I, phase II security is at risk if the intruder has access to SKEYID_d. To

prevent this from happening, IKE allows Perfect Forward Security (PFS) as an

option. In this option, an additional Diffie-Hellman half-key is exchanged and the

resulting shared key (gir) is used in the calculation of key material (see the next section)

for IPSec. PFS is effective if the Diffie-Hellman key is immediately deleted after the

calculation of the key material for each quick mode. 

Key Materials

After the exchanges in phase II, an SA for IPSec is created including the key material,

K, that can be used in IPSec. The value is derived as:

If the length of K is too short for the particular cipher selected, a sequence of keys

is created, each key is derived from the previous one, and the keys are concatenated to

HASH1 = prf (SKEYID_d, MsgID | SA | N-I)

HASH2 = prf (SKEYID_d, MsgID | SA | N-R)

HASH3 = prf (SKEYID_d, 0 | MsgID | SA | N-I | N-R)

K = prf (SKEYID_d, protocol | SPI | N-I | N-R)                                           (without PFS)

K = prf (SKEYID_d, gir | protocol | SPI | N-I | N-R)                                    (with PFS)
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make a longer key. We show the case without PFS; we need to add gir for the case

with PFS. 

The key material created is unidirectional; each party creates different key material

because the SPI used in each direction is different.  

SA Algorithms

Before leaving this section, let us give the algorithms that are negotiated during the first

two IKE exchanges. 

Diffie-Hellman Groups

The first negotiation involves the Diffie-Hellman group used for exchanging half-keys.

Five groups have been defined, as shown in Table 18.3. 

Hash Algorithms

The hash algorithms that are used for authentication are shown in Table 18.4. 

K1 = prf (SKEYID_d, protocol | SPI | N-I | N-R) 

K2 = prf (SKEYID_d, K1 | protocol | SPI | N-I | N-R)

K3 = prf (SKEYID_d, K2 | protocol | SPI | N-I | N-R) 

… 

K = K1 | K2 | K3 | …                  

The key material created after phase II is unidirectional; there is one key for each direction.

Table 18.3 Diffie-Hellman groups

Value Description

1 Modular exponentiation group with a 768-bit modulus

2 Modular exponentiation group with a 1024-bit modulus

3 Elliptic curve group with a 155-bit field size

4 Elliptic curve group with a 185-bit field size

5 Modular exponentiation group with a 1680-bit modulus

Table 18.4 Hash algorithms

Value Description

1 MD5

2 SHA

3 Tiger

4 SHA2-256

5 SHA2-384

6 SHA2-512
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Encryption Algorithms

The encryption algorithms that are used for confidentiality are shown in Table 18.5. All

of these are normally used in CBC mode. 

18.6 ISAKMP

The ISAKMP protocol is designed to carry messages for the IKE exchange. 

General Header

The format of the general header is shown in Figure 18.29. 

❏ Initiator cookie. This 32-bit field defines the cookie of the entity that initiates the

SA establishment, SA notification, or SA deletion. 

❏ Responder cookie. This 32-bit field defines the cookie of the responding entity.

The value of this field is 0 when the initiator sends the first message. 

❏ Next payload. This 8-bit field defines the type of payload that immediately

follows the header. We discuss the different types of payload in the next section. 

Table 18.5 Encryption algorithms

Value Description

1 DES

2 IDEA

3 Blowfish

4 RC5

5 3DES

6 CAST

7 AES

Figure 18.29 ISAKMP general header
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❏ Major version. This 4-bit version defines the major version of the protocol.

Currently, the value of this field is 1.

❏ Minor version. This 4-bit version defines the minor version of the protocol.

Currently, the value of this field is 0.

❏ Exchange type. This 8-bit field defines the type of exchange that is being carried

by the ISAKMP packets. We have discussed the different exchange types in the

previous section. 

❏ Flags. This is an 8-bit field in which each bit defines an option for the exchange.

So far only the three least significant bits are defined. The encryption bit, when set

to 1, specifies that the rest of the payload will be encrypted using the encryption

key and the algorithm defined by SA. The commitment bit, when set to 1, specifies

that encryption material is not received before the establishment of the SA. The

authentication bit, when set to 1, specifies that the rest of the payload, though not

encrypted, is authenticated for integrity. 

❏ Message ID. This 32-bit field is the unique message identity that defines the pro-

tocol state. This field is used only during the second phase of negotiation and is set

to 0 during the first phase. 

❏ Message length. Because different payloads can be added to each packet, the

length of a message can be different for each packet. This 32-bit field defines the

length of the total message, including the header and all payloads. 

Payloads

The payloads are actually designed to carry messages. Table 18.6 shows the types of

payloads. 

Table 18.6 Payloads

Types Name Brief Description

  0 None Used to show the end of the payloads

  1 SA Used for starting the negotiation

  2 Proposal Contains information used during SA negotiation

  3 Transform Defines a security transform to create a secure channel 

  4 Key Exchange Carries data used for generating keys 

  5 Identification Carries the identification of communication peers

  6 Certification Carries a public-key certificate

  7 Certification Request Used to request a certificate from the other party 

  8 Hash Carries data generated by a hash function

  9 Signature Carries data generated by a signature function

10 Nonce Carries randomly generated data as a nonce 

11 Notification Carries error message or status associated with an SA

12 Delete Carries one more SA that the sender has deleted 

13 Vendor Defines vendor-specification extensions
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Each payload has a generic header and some specific fields. The format of the

generic header is shown in Figure 18.30. 

❏ Next payload. This 8-bit field identifies the type of the next payload. When there

is no next payload, the value of this field is 0. Note that there is no type field for the

current payload. The type of the current payload is determined by the previous

payload or the general header (if the payload is the first one).

❏ Payload length. This 16-bit field defines the length of the total payload (including

the generic header) in bytes.     

SA Payload

The SA payload is used to negotiate security parameters. However, these parameters

are not included in the SA payload; they are included in two other payloads (proposal

and transform) that we will discuss later. An SA payload is followed by one or more

proposal payloads, and each proposal payload is followed by one or more transform

payloads. The SA payload just defines the domain of interpretation field and the situa-

tion field. Figure 18.31 shows the format of the SA payload. 

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Domain of interpretation (DOI). This is a 32-bit field. For phase I, a value of 0

for this field defines a generic SA; a value of 1 defines IPSec. 

❏ Situation. This is a variable-length field that defines the situation under which the

negotiation takes place.   

Figure 18.30 Generic payload header

Figure 18.31 SA payload

Payload lengthNext payload

0 8 16 31

Reserved

DOI

Situation
(variable length)

0 8 16 31

Payload lengthNext payload Reserved
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Proposal Payload

The proposal payload initiates the mechanism of negotiation. Although by itself it does

not propose any parameters, it does define the protocol identification and the SPI. The

parameters for negotiation are sent in the transform payload that follows. Each proposal

payload is followed by one or more transform payloads that give alternative sets of

parameters. Figure 18.32 shows the format of the proposal payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Proposal #. The initiator defines a number for the proposal so that the responder can

refer to it. Note that an SA payload can include several proposal payloads. If all of the

proposals belong to the same set of protocols, the proposal number must be the same

for each protocol in the set. Otherwise, the proposals must have different numbers.

❏ Protocol ID. This 8-bit field defines the protocol for the negotiation. For example,

IKE phase1 = 0, ESP = 1, AH = 2, etc. 

❏ SPI size. This 8-bit field defines the size of the SPI in bytes. 

❏ Number of Transforms. This 8-bit field defines the number of transform pay-

loads that will follow this proposal payload.

❏ SPI. This variable-length field is the actual SPI. Note that if the SPI does not fill

the 32-bit space, no padding is added. 

Transform Payload

The transform payload actually carries attributes of the SA negotiation. Figure 18.33

shows the format of the transform payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Transform #. This 8-bit field defines the transform number. If there is more than

one transform payload in a proposal payload, then each must have its own number. 

❏ Transform ID. This 8-bit field defines the identity of the payload. 

❏ Attributes. Each transform payload can carry several attributes. Each attribute

itself can have three or two subfields (see Figure 18.33). The attribute type subfield

defines the type of attribute as defined in the DOI. The attribute length subfield, if

present, defines the length of the attribute value. The attribute value field is two

bytes in the short form or of variable-length in the long form. 

Figure 18.32 Proposal payload

Proposal # Protocol ID SPI size No. of transforms

SPI
(variable length)

Payload lengthNext payload

0 8 16 24 31

Reserved
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Key-Exchange Payload

The key exchange payload is used in those exchanges that need to send preliminary

keys that are used for creating session keys. For example, it can be used to send a

Diffie-Hellman half-key. Figure 18.34 shows the format of the key-exchange

payload.

The fields in the generic header have been discussed. The description of the KE

field follows:

❏ KE. This variable-length field carries the data needed for creating the session key. 

Identification Payload

The identification payload allows entities to send their identifications to each other.

Figure 18.35 shows the format of the identification payload.

Figure 18.33 Transform payload

Figure 18.34 Key-exchange payload

Attribute valueAttribute type

0 16 31

Attribute lengthAttribute type

0 16 31

Transform # Transform ID

Attributes
(variable length)

Attribute value
(variable length)

Reserved

Payload lengthNext payload

0 8 16 31

Reserved

0

1

Transform payload

Attribute (long form)

Attribute (short form)

KE
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved
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The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ ID type. This 8-bit field is DOI specific and defines the type of ID being used. 

❏ ID data. This 24-bit field is usually set to 0. 

❏ Identification data. The actual identity of each entity is carried in this variable-

length field. 

Certification Payload

Anytime during the exchange, an entity can send its certification (for public-encryption/

decryption keys or signature keys). Although the inclusion of the certification payload

in an exchange is normally optional, it needs to be included if there is no secure direc-

tory available to distribute the certificates. Figure 18.36 shows the format of the certifi-

cation payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Certificate encoding. This 8-bit field defines the encoding (type) of the certificate.

Table 18.7 shows the types defined so far.

❏ Certificate data. This variable-length field carries the actual value of the certifi-

cate. Note that the previous field implicitly defines the size of this field. 

Figure 18.35 Identification payload

Figure 18.36 Certification payload

ID type ID data

Identification data
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved

Certificate encoding

Certificate data
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved
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Certificate Request Payload

Each entity can explicitly request a certificate from the other entity using the certificate

request payload. Figure 18.37 shows the format of this payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Certificate type. This 8-bit field defines the type of certificate as previously defined

in the certificate payload.

❏ Certificate authority. This is a variable-length field that defines the authority for

the type of certificate issued. 

Hash Payload

The hash payload contains data generated by the hash function as described in the IKE

exchanges. The hash data guarantee the integrity of the message or part of the ISAKMP

states. Figure 18.38 shows the format of the hash payload.

Table 18.7 Certification types

Value Type

  0 None

  1 Wrapped X.509 Certificate

  2 PGP Certificate

  3 DNS Signed Key

  4 X.509 Certificate Signature

  5 X.509 CertificateKey Exchange

  6 Kerberos Tokens

  7 Certification Revocation List

  8 Authority Revocation List

  9 SPKI Certificate

10 X.509 CertificateAttribute

Figure 18.37 Certification request payload

Certificate type

Certificate authority
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved
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The fields in the generic header have been discussed. The description of the last

field follows:

❏ Hash data. This variable-length field carries the hash data generated by applying

the hash function to the message or part of the ISAKMP states. 

Signature Payload

The signature payload contains data generated by applying the digital signature proce-

dure over some part of the message or ISAKMP state. Figure 18.39 shows the format of

the signature payload.

The fields in the generic header have been discussed. The description of the last

field follows:

❏ Signature. This variable-length field carries the digest resulting from applying the

signature over part of the message or ISAKMP state.

Nonce Payload

The nonce payload contains random data used as a nonce to assure liveliness of the mes-

sage and to prevent a replay attack. Figure 18.40 shows the format of the nonce payload.

Figure 18.38 Hash payload

Figure 18.39 Signature payload

Figure 18.40 Nonce payload

Hash data
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved

Signature data
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved

Nonce
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved
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The fields in the generic header have been discussed. The description of the last

field follows:

❏ Nonce. This is a variable-length field carrying the value of the nonce.

Notification Payload

During the negotiation process, sometimes a party needs to inform the other party of the

status or errors. The notification payload is designed for these two purposes. Figure 18.41

shows the format of the notification payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ DOI. This 32-bit field is the same as that defined for the Security Association payload. 

❏ Protocol ID. This 8-bit field is the same as that defined for the proposal payload. 

❏ SPI size. This 8-bit field is the same as that defined for the proposal payload. 

❏ Notification message type. This 16-bit field specifies the status or the type of

error that is to be reported. Table 18.8 gives a brief description of these types.

❏ SPI. This variable-length field is the same as that defined for the proposal payload.   

❏ Notification data. This variable-length field can carry extra textual information

about the status or errors. The types of errors are listed in Table 18.8. The values 31

to 8191 are for future use and the values 8192 to 16383 are for private use. 

Figure 18.41 Notification payload

Table 18.8 Notification types 

Value Description Value Description

  1 INVALID-PAYLOAD-TYPE   8 INVALID-FLAGS

  2 DOI-NOT-SUPPORTED   9 INVALID-MESSAGE-ID

  3 SITUATION-NOT-SUPPORTED 10 INVALID-PROTOCOL-ID

  4 INVALID-COOKIE 11 INVALID-SPI

  5 INVALID-MAJOR-VERSION 12 INVALID-TRANSFORM-ID

  6 INVALID-MINOR-VERSION 13 ATTRIBUTE-NOT-SUPPORTED

  7 INVALID-EXCHANGE-TYPE 14 NO-PROPOSAL-CHOSEN

Reserved

Notification message typeProtocol ID SPI size

Notification data
(variable length)

SPI
(variable length)

DOI (32 bits)

Payload lengthNext payload

0 8 16 31
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Table 18.9 is a list of status notifications. Values from 16385 to 24575 and 40960 to

65535 are reserved for future use. Values from 32768 to 40959 are for private use. 

Delete Payload

The delete payload is used by an entity that has deleted one or more SAs and needs to

inform the peer that these SAs are no longer supported. Figure 18.42 shows the format

of the delete payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ DOI. This 32-bit field is the same as that defined for the Security Association payload. 

❏ Protocol ID. This 8-bit field is the same as that defined for the proposal payload. 

❏ SPI size. This 8-bit field is the same as that defined for the proposal payload. 

❏ Number of SPIs. This 16-bit field defines the number of SPIs. One delete payload

can report the deletion of several SAs. 

❏ SPIs. This variable-length field defines the SPIs of the deleted SAs. 

15 BAD-PROPOSAL-SYNTAX 23 INVALID-HASH-INFORMATION

16 PAYLOAD-MALFORMED 24 AUTHENTICATION-FAILED

17 INVALID-KEY-INFORMATION 25 INVALID-SIGNATURE

18 INVALID-ID-INFORMATION 26 ADDRESS-NOTIFICATION

19 INVALID-CERT-ENCODING 27 NOTIFY-SA-LIFETIME

20 INVALID-CERTIFICATE 28 CERTIFICATE-UNAVAILABLE

21 CERT-TYPE-UNSUPPORTED 29 UNSUPPORTED EXCHANGE-TYPE

22 INVALID-CERT-AUTHORITY 30 UNEQUAL-PAYLOAD-LENGTHS

Table 18.9 Status notification values

Value Description

16384 CONNECTED

24576-32767 DOI-specific codes

Figure 18.42 Delete payload

Table 18.8 Notification types (continued)

Value Description Value Description

Reserved

Number of SPIsProtocol ID SPI size

SPIs
(variable length)

DOI
(variable length)

Payload lengthNext payload

0 8 16 31
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Vendor Payload

ISAKMP allows the exchange of information particular to a specific vendor. Figure 18.43

shows the format of the vendor payload.

The fields in the generic header have been discussed. The description of the last

field follows:

❏ Vendor ID. This variable-length field defines the constant used by the vendor. 

18.7 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. The items enclosed in brackets refer to the reference list at the end of the book.

Books

[DH03], [Fra01], [KPS02], [Res01], [Sta06], and [Rhe03] discuss IPSec thoroughly.

WebSites

The following websites give more information about topics discussed in this chapter.

18.8 KEY TERMS

Figure 18.43 Vendor payload

http://www.ietf.org/rfc/rfc2401.txt

http://www.unixwiz.net/techtips/iguide-ipsec.html

http://rfc.net/rfc2411.html

aggressive mode Internet Security Association and Key

Authentication Header (AH) Protocol Management Protocol (ISAKMP)

clogging attack IP Security (IPSec)

cookie main mode

Encapsulating Security Payload (ESP) Oakley

Internet Key Exchange (IKE) Perfect Forward Security (PFS)

Reserved

Vendor ID
(variable length)

Payload lengthNext payload

0 8 16 31
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18.9 SUMMARY

❏ IP Security (IPSec) is a collection of protocols designed by the IETF (Internet

Engineering Task Force) to provide security for a packet at the network level. 

❏ IPSec operates in transport or tunnel mode. In transport mode, IPSec protects

information delivered from the transport layer to the network layer, but does not

protect the IP header. In tunnel mode, IPSec protects the whole IP packet, including

the original IP header.   

❏ IPSec defines two protocols: Authentication Header (AH) Protocol and Encapsu-

lating Security Payload (ESP) Protocol to provide authentication and encryption

or both for packets at the IP level. The Authentication Header (AH) Protocol

authenticates the source host and ensures the integrity of the payload carried by the

IP packet. Encapsulating Security Payload (ESP) provides source authentication,

integrity, and privacy. ESP adds a header and trailer. 

❏ IPSec indirectly provides access control using a Security Association Database

(SAD).

❏ In IPSec, Security Policy (SP) defines what type of security must be applied to a

packet at the sender or at the receiver. IPSec uses a set of SPs called Security Policy

Database (SPD). 

❏ The Internet Key Exchange (IKE) is the protocol designed to create Security

Associations, both inbound and outbound. IKE creates SAs for IPSec. IKE is

a complex protocol based on three other protocols: Oakley, SKEME, and

ISAKMP.

❏ IKE is designed in two phases: phase I and phase II. Phase I creates SAs for phase II;

phase II creates SAs for a data exchange protocol such as IPSec.

❏ The ISAKMP protocol is designed to carry the message for IKE exchange.

18.10 PRACTICE SET

Review Questions

1. Distinguish between two modes of IPSec.

2. Define AH and the security services it provides.

3. Define ESP and the security services it provides.

4. Define Security Association (SA) and explain its purpose.

5. Define SAD and explain its relation to Security Association. 

replay attack Security Policy Database (SPD)

Security Association Database (SAD) SKEME

Security Association (SA) transport mode

Security Policy (SP) tunnel mode
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6. Define Security Policy and explain its purpose with relation to IPSec.

7. Define IKE and explain why it is needed in IPSec. 

8. List phases of IKE and the goal of each phase.

9. Define ISAKMP and its relation to IKE.

10. List ISAKMP payload types and the purpose of each type. 

Exercises

11. A host receives an authenticated packet with the sequence number 181. The replay

window spans from 200 to 263. What will the host do with the packet? What is the

window span after this event?

12. A host receives an authenticated packet with the sequence number 208. The replay

window spans from 200 to 263. What will the host do with the packet? What is the

window span after this event?

13. A host receives an authenticated packet with the sequence number 331. The replay

window spans from 200 to 263. What will the host do with the packet? What is the

window span after this event?

14. The diagram for calculation of SKEYID for the preshared-key method is shown in

Figure 18.44. Note that the key to the prf function in this case is a preshared key. 

a. Draw a similar diagram of SKEYID for the public-key method.

b. Draw a similar diagram of SKEYID for the digital signature method.

15. Draw a diagram similar to Figure 18.44 for the following; the key in each case is

SKEYID.

a. SKEYID_a

b. SKEYID_d

c. SKEYID_e

16. Draw a diagram similar to Figure 18.44 for the following, the key in each case is

SKEYID.

a. HASH-I

b. HASH-R

Figure 18.44 Exercise 14

Preshared key

Key

SKEYID

prf

N-I N-R
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17. Draw a diagram similar to Figure 18.44 for the following; the key in each case is

SKEYID_d:

a. HASH1

b. HASH2

c. HASH3

18. Draw a diagram similar to Figure 18.44 for the following; the key in each case is

SKEYID_d:

a. K for the case without PFS

b. K for the case with PFS

19. Repeat Exercise 18 for the case in which the length of K is too short. 

20. Draw a diagram and show actual ISAKMP packets that are exchanged between

an initiator and a responder using the preshared-key method in the main mode

(see Figure 18.20). Use at least two proposal packets with at least two transform

packets for each proposal. 

21. Repeat Exercise 20 using the original public-key method in the main mode (see

Figure 18.21).

22. Repeat Exercise 20 using the revised public-key method in the main mode (see

Figure 18.22).

23. Repeat Exercise 20 using the digital signature method in the main mode (see

Figure 18.23).

24. Repeat Exercise 20 in the aggressive mode (see Figure 18.24).

25. Repeat Exercise 21 in the aggressive mode (see Figure 18.25).

26. Repeat Exercise 22 in the aggressive mode (see Figure 18.26).

27. Repeat Exercise 23 in the aggressive mode (see Figure 18.27).

28. Draw a diagram and show the actual ISAKMP packets that are exchanged between

an initiator and a responder in the quick mode (see Figure 18.28).

29. Compare the preshared-key methods in the main mode and aggressive modes. How

much compromise is made in the aggressive mode with respect to security? What is

the gain with respect to efficiency? 

30. Compare the original public-key methods in the main and aggressive modes. How

much compromise is made in the aggressive mode with respect to security? What is

the gain with respect to efficiency?

31. Compare the revised public-key methods in the main and aggressive modes. How

much compromise is made in the aggressive mode with respect to security? What is

the gain with respect to efficiency? 

32. Compare the digital signature method in the main and aggressive modes. How much

compromise is made in aggressive mode with respect to security? What is the gain

with respect to efficiency? 

33. In the main and aggressive mode, we assume that an intruder cannot calculate the

SKEYID. Give the reasoning behind this assumption.
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34. In IKE phase I, the identity is usually defined as the IP address. In the preshared key

method, the preshared key is also a function of the IP address. Show how this may

create a vicious circle. 

35. Compare methods for the main mode and show which method exchanges pro-

tected IDs.

36. Repeat Exercise 35 for aggressive methods. 

37. Show how IKE reacts to the replay attack in the main mode. That is, show how IKE

responds to an attacker that tries to replay one or more messages in the main mode. 

38. Show how IKE reacts to the replay attack in the aggressive mode. That is, show how

IKE responds to an attacker that tries to replay one or more messages in the aggres-

sive mode.

39. Show how IKE reacts to the replay attack in the quick mode. That is, show how IKE

responds to an attacker that tries to replay one or more messages in the quick mode.

40. Show how IPSec reacts to a brute-force attack. That is, can an intruder do an exhaus-

tive computer search to find the encryption key for IPSec? 


