Chapter 13
Key Establishment

With the cryptographic mechanisms that we have learned so far, in particular sym-
metric and asymmetric encryption, digital signatures and message authentication
codes (MACs), one can relatively easily achieve the basic security services (cf.
Sect. 10.1.3):

m Confidentiality (with encryption algorithms)

m Integrity (with MACs or digital signatures)

m Message authentication (with MACs or digital signatures)

m Non-repudiation (with digital signatures)

Similarly, identification can be accomplished through protocols which make use of
standard cryptographic primitives.

However, all cryptographic mechanisms that we have introduced so far assume
that keys are properly distributed between the parties involved, e.g., between Alice
and Bob. The task of key establishment is in practice one of the most important and
often also most difficult parts of a security system. We already learned some ways
of distributing keys, in particular Diffie-Hellman key exchange. In this chapter we
will learn many more methods for establishing keys between remote parties. You
will learn about the following important issues:

How keys can be established using symmetric cryptosystems

How keys can be established using public-key cryptosystems

Why public-key techniques still have shortcomings for key distribution
What certificates are and how they are used

The role that public-key infrastructures play

C. Paar, J. Pelzl, Understanding Cryptography, 331
DOI 10.1007/978-3-642-04101-3_13, (© Springer-Verlag Berlin Heidelberg 2010

332 13 Key Establishment

13.1 Introduction

In this section we introduce some terminology, some thoughts on key freshness and
a very basic key distribution scheme. The latter is helpful for motivating the more
advanced methods which will follow in this chapter.

13.1.1 Some Terminology

Roughly speaking, key establishment deals with establishing a shared secret be-
tween two or more parties. Methods for this can be classified into key transport and
key agreement methods, as shown in Fig. 13.1. A key transport protocol is a tech-
nique where one party securely transfers a secret value to others. In a key agreement
protocol two (or more) parties derive the shared secret where all parties contribute
to the secret. Ideally, none of the parties can control what the final joint value will
be.

[Key Establishment }

|
! !

[Key Transport J [Key Agreement }
One party generates and Parties jointly generate
distributes a secret key a secret key

Fig. 13.1 Classification of key establishment schemes

Key establishment itself is strongly related to identification. For instance, you
may think of attacks by unauthorized users who join the key establishment protocol
with the aim of masquerading as either Alice or Bob with the goal of establishing a
secret key with the other party. To prevent such attacks, each party must be assured
of the identity of the other entity. All of these issues are addressed in this chapter.

13.1.2 Key Freshness and Key Derivation

In many (but not all) security systems it is desirable to use cryptographic keys which
are only valid for a limited time, e.g., for one Internet connection. Such keys are
called session keys or ephemeral keys. Limiting the period in which a cryptographic
key is used has several advantages. A major one is that there is less damage if the

13.1 Introduction 333

key is exposed. Also, an attacker has less ciphertext available that was generated un-
der one key, which can make cryptographic attacks much more difficult. Moreover,
an attacker is forced to recover several keys if he is interested in decrypting larger
parts of plaintext. Real-world examples where session keys are frequently gener-
ated include voice encryption in GSM cell phones and video encryption in pay-TV
satellite systems; in both cases new keys are generated within a matter of minutes
or sometimes even seconds.

The security advantages of key freshness are fairly obvious. However, the ques-
tion now is, how can key updates be realized? The first approach is to simply execute
the key establishment protocols shown in this chapter over and over again. However,
as we see later, there are always certain costs associated with key establishment, typ-
ically with respect to additional communication connections and computations. The
latter holds especially in the case of public-key algorithms which are very compu-
tationally intensive.

The second approach to key update uses an already established joint secret key
to derive fresh session keys. The principal idea is to use a key derivation function
(KDF) as shown in Fig. 13.2. Typically, a non-secret parameter r is processed to-
gether with the joint secret k4p between the users Alice and Bob.

[

l

key derivation
function

kA B .

Fig. 13.2 Principle of key derivation

An important characteristic of the key derivation function is that it should be a
one-way function. The one-way property prevents an attacker from deducing kap
should any of the session keys become compromised, which in turn would allow the
attacker to compute all other session keys.

One possible way of realizing the key derivation function is that one party sends
anonce, i.e., a numerical value that is used only once, to the other party. Both users
encrypt the nonce using the shared secret key k4p by means of a symmetric cipher
such as AES. The corresponding protocol is shown below.

334 13 Key Establishment

Key Derivation with Nonces

Alice Bob
generate nonce r
,
- r
derive key derive key
kses = €kap (l") kses = €kap (I‘)

An alternative to encrypting the nonce is hashing it together with k4p. One way
of achieving this is that both parties perform a HMAC computation with the nonce
serving as the “message’”:

kses = HMACkAB (7‘)

Rather than sending a nonce, Alice and Bob can also simply encrypt a counter
cnt periodically, where the ciphertext again forms the session key:

kses = ey, (cnt)
or compute the HMAC of the counter:
kses = HMAC, , (cnt)

Using a counter can save Alice and Bob one communication session because, unlike
the case of the nonce-based key derivation, no value needs to be transmitted. How-
ever, this holds only if both parties know exactly when the next key derivation needs
to take place. Otherwise, a counter synchronization message might be required.

13.1.3 The n* Key Distribution Problem

Until now we mainly assumed that the necessary keys for symmetric algorithms
are distributed via a “secure channel”, as depicted in the beginning of this book in
Fig. 1.5. Distributing keys this way is sometimes referred to as key predistribution
or out-of-band transmission since it typically involves a different mode (or band)
of communication, e.g., the key is transmitted via a phone line or in a letter. Even
though this seems somewhat clumsy, it can be a useful approach in certain practical
situations, especially if the number of communicating parties is not too large. How-
ever, key predistribution quickly reaches its limits even if the number of entities in a
network is only moderately large. This leads to the well-known n? key distribution
problem.

We assume a network with n users, where every party is capable of communi-
cating with every other one in a secure fashion, i.e., if Alice wants to communicate
with Bob, these two share a secret key k4p which is only known to them but not to

13.1 Introduction 335

any of the other n — 2 parties. This situation is shown for the case of a network with
n = 4 participants in Fig. 13.3.

Chris Dana
kac kap
kpc kgp
kep kep

Fig. 13.3 Keys in a network with n = 4 users

We can extrapolate several features of this simple scheme for the case of n users:

Each user must store n — 1 keys.

There is a total of n(n — 1) ~ n® keys in the network.

A total of n(n—1)/2 = (}}) symmetric key pairs are in the network.

If a new user joins the network, a secure channel must be established with every
other user in order to upload new keys.

The consequences of these observations are not very favorable if the number
of users increases. The first drawback is that the number of keys in the system is
roughly n?. Even for moderately sized networks, this number becomes quite large.
All these keys must be generated securely at one location, which is typically some
type of trusted authority. The other drawback, which is often more serious in prac-
tice, is that adding one new user to the system requires updating the keys at all
existing users. Since each update requires a secure channel, this is very burdensome.

Example 13.1. A mid-size company with 750 employees wants to set up secure e-
mail communication with symmetric keys. For this purpose, 750 x 749 /2 = 280, 875
symmetric key pairs must be generated, and 750 x 749 = 561,750 keys must be dis-
tributed via secure channels. Moreover, if employee number 751 joins the company,
all 750 other users must receive a key update. This means that 751 secure channels
(to the 750 existing employees and to the new one) must be established.

o

Obviously, this approach does not work for large networks. However, there are
many cases in practice where the number of users is (i) small and (ii) does not
change frequently. An example could be a company with a small number of branches
which all need to communicate with each other securely. Adding a new branch does
not happen too often, and if this happens it can be tolerated that one new key is
uploaded to any of the existing branches.

336 13 Key Establishment

13.2 Key Establishment Using Symmetric-Key Techniques

Symmetric ciphers can be used to establish secret (session) keys. This is somewhat
surprising because we assumed for most of the book that symmetric ciphers them-
selves need a secure channel for establishing their keys. However, it turns out that it
is in many cases sufficient to have a secure channel only when a new user joins the
network. This is in practice often achievable for computer networks because at set-
up time a (trusted) system administrator might be needed in person anyway who can
install a secret key manually. In the case of embedded devices, such as cell phones,
a secure channel is often given during manufacture, i.e., a secret key can be loaded
into the device “in the factory”.

The protocols introduced in the following all perform key transport and not key
agreement.

13.2.1 Key Establishment with a Key Distribution Center

The protocols developed in the following rely on a Key Distribution Center (KDC).
This is a server that is fully trusted by all users and that shares a secret key with each
user. This key, which is named the Key Encryption Key (KEK), is used to securely
transmit session keys to users.

Basic Protocol

A necessary prerequisite is that each user U shares a unique secret key KEK ki
with the key distribution center which predistributed through a secure channel. Let’s
look what happens if one party requests a secure session from the KDC, e.g., Alice
wants to communicate with Bob. The interesting part of this approach is that the
KDC encrypts the session key that will eventually be used by Alice and Bob. In
a basic protocol, the KDC generates two messages, y4 and yg, for Alice and Bob,
respectively:

YA = €k, (kses)
YB = €y (kses)

Each message contains the session key encrypted with one of the two KEKs. The
protocol looks like this:

13.2 Key Establishment Using Symmetric-Key Techniques 337

Basic Key Establishment Using a Key Distribution Center

Alice KDC Bob
KEK: k4 KEK: k4, kg KEK: kg

RQST(ID4.IDg)
e

generate random K
ya = exy (Kses)
YB = €y (kxes)

YA YB
B -

Kses = e/;] (YA) kses = e/:BI (yB)

Y = €k, () R x=e ()

ses

The protocol begins with a request message RQST(IDy4,IDg), where ID4 and
IDg simply indicate the users involved in the session. The actual key establishment
protocol is executed subsequently in the upper part of the drawing. Below the solid
line is, as an example, shown how Alice and Bob can now communicate with each
other securely using the session key.

It is important to note that two types of keys are involved in the protocol. The
KEKSs k4 and kp are long-term keys that do not change. The session key ks is an
ephemeral key that changes frequently, ideally for every communication session.
In order to understand this protocol more intuitively, one can view the predis-
tributed KEKs as forming a secret channel between the KDC and each user.
With this interpretation, the protocol is straightforward: The KDC simply sends a
session key to Alice and Bob via the two respective secret channels.

Since the KEKs are long-term keys, whereas the session keys have typically a
much shorter lifetime, in practice sometimes different encryption algorithms are
used with both. Let’s consider the following example. In a pay-TV system AES
might be used with the long-term KEKSs k;; for distributing session keys kg.5. The
session keys might only have a lifetime of, say, one minute. The session keys are
used to encrypt the actual plaintext (the digital TV signal in this example) with a fast
stream cipher. A stream cipher might be required to assure real-time decryption. The
advantage of this arrangement is that even if a session key becomes compromised,
only one minute’s worth of multimedia data can be decrypted by an adversary. Thus,
the cipher that is used with the session key does not necessarily need to have the
same cryptographic strength as the algorithm which is used for distributing the ses-
sion keys. On the other hand, if one of the KEKs becomes compromised, all prior
and future traffic can be decrypted by an eavesdropper.

It is easy to modify the above protocol such that we save one communication
session. This is shown in the following:

338 13 Key Establishment

Key Establishment Using a Key Distribution Center

Alice KDC Bob
KEK: k4 KEK: k4, kg KEK: kg

RQST(ID4.IDg)
e

generate random kg,
YA = €k, (kses)

YB = €ky (kxes)
YA:YB

kses = e/;] (YA)

Y= € (%)

Kses = ek;l ()}B)
x=el ()

Alice receives the session key encrypted with both KEKSs, k4 and kp. She is able
to compute the session key kg from y4 and can use it subsequently to encrypt the
actual message she wants to send to Bob. The interesting part of the protocol is that
Bob receives both the encrypted message y as well as yp. He needs to decrypt the
latter one in order to recover the session key which is needed for computing x.

Both of the KDC-based protocols have the advantage that there are only n long-
term symmetric key pairs in the system, unlike the first naive scheme that we en-
countered, where about 1% /2 key pairs were required. The n long-term KEKS only
need to be stored by the KDC, while each user only stores his or her own KEK. Most
importantly, if a new user Noah joins the network, a secure channel only needs to
be established once between the KDC and Noah to distribute the KEK ky.

Security

Even though the two protocols protect against a passive attacker, i.e, an adversary
that can only eavesdrop, there are attacks if an adversary can actively manipulate
messages and create faked ones.

Replay Attack One weakness is that a replay attack is possible. This attack makes
use of the fact that neither Alice nor Bob know whether the encrypted session key
they receive is actually a new one. If an old one is reused, key freshness is violated.
This can be a particularly serious issue if an old session key has become compro-
mised. This could happen if an old key is leaked, e.g., through a hacker, or if the
encryption algorithm used with an old key has become insecure due to cryptanalyt-
ical advances.

If Oscar gets hold of a previous session key, he can impersonate the KDC and
resend old messages y4 and yp to Alice and Bob. Since Oscar knows the session
key, he can decipher the plaintext that will be encrypted by Alice or Bob.

13.2 Key Establishment Using Symmetric-Key Techniques 339

Key Confirmation Attack Another weakness of the above protocol is that Alice
is not assured that the key material she receives from the KDC is actually for a
session between her and Bob. This attack assumes that Oscar is also a legitimate
(but malicious) user. By changing the session-request message Oscar can trick the
KDC and Alice to set up session between him and Alice as opposed to between
Alice and Bob. Here is the attack:

Key Confirmation Attack
Alice Oscar KDC Bob
KEK: k4 KEK: ko KEK: k4, kg, ko KEK: kg

RQST(p,.1Dp)
_—

4 substitute
RQST(p,.1Dg)
e Ao,

random Ky
YA = €ky (Kses)
Yo = exg (Kses)
YAYO
kses = ¢! (va)
Y= Chges (X)

».y0
-0
4 intercept
Kies :j;()] (vo)
= €y (V)

The gist of the attack is that the KDC believes Alice requests a key for a session
between Alice and Oscar, whereas she really wants to communicate with Bob. Alice
assumes that the encrypted key “yp” is “yp”, i.e., the session key encrypted under
Bob’s KEK kg. (Note that if the KDC puts a header /Dy in front of yp which asso-
ciates it with Oscar, Oscar might simply change the header to /Dg.) In other words,
Alice has no way of knowing that the KDC prepared a session with her and Oscar;
instead she still thinks she is setting up a session with Bob. Alice continues with the
protocol and encrypts her actual message as y. If Oscar intercepts y, he can decrypt
it.

The underlying problem for this attack is that there is no key confirmation. If key
confirmation were given, Alice would be assured that Bob and no other user knows
the session key.

13.2.2 Kerberos

A more advanced protocol that protects against both replay and key confirmation
attacks is Kerberos. It is, in fact, more than a mere key distribution protocol; its
main purpose is to provide user authentication in computer networks. Kerberos was
standardized as an RFC 1510 in 1993 and is in widespread use. It is also based on

340 13 Key Establishment

a KDC, which is named the “authentication sever” in Kerberos terminology. Let’s
first look at a simplified version of the protocol.

Key Establishment Using a Simplified Version of Kerberos

Alice KDC Bob
KEK: k4 KEK: k4, kp KEK: kg
generate nonce 74

RQST (D, 1Dg 1)

—_——

generate random Ky,

generate lifetime 7

ya = ex, (kyes; 4, T,1Dp)

¥B = eig (kyes; IDa, T)
YAYB

Ksess 7, T,IDg = ek’Al (ya)
verify rjy =ry

verify IDg

verify lifetime T
generate time stamp T

YAB = €kge5 (IDa, Ts)
YAB:YB

kses, IDa. T = e} (v)
1D, Ts = e} (van)
verify IDy“ = 1Dy
verify lifetime 7'
verify time stamp T

¥ = Ches (¥) E— x=e,)

Kerberos assures the timeliness of the protocol through two measures. First, the
KDC specifies a lifetime T for the session key. The lifetime is encrypted with both
session keys, i.e., it is included in y4 and yp. Hence, both Alice and Bob are aware
of the period during which they can use the session key. Second, Alice uses a time
stamp T, through which Bob can be assured that Alice’s messages are recent and
are not the result of a replay attack. For this, Alice’s and Bob’s system clocks must
be synchronized, but not with a very high accuracy. Typical values are in the range
of a few minutes. The usage of the lifetime parameter 7 and the time stamp Tg
prevent replay attacks by Oscar.

Equally important is that Kerberos provides key confirmation and user authenti-
cation. In the beginning, Alice sends a random nonce r4 to the KDC. This can be
considered as a challenge because she challenges the KDC to encrypt it with their
joint KEK ky4. If the returned challenge r; matches the sent one, Alice is assured that
the message y4 was actually sent by the KDC. This method to authenticate users is
known as challenge-response protocol and is widely used, e.g., for authentication of
smart cards.

Through the inclusion of Bob’s identity /Dp in y4 Alice is assured that the session
key is actually meant for a session between herself and Bob. With the inclusion of
Alice’s identity /D, in both yp and y4p, Bob can verify that (i) the KDC included
a session key for a connection between him and Alice and (ii) that he is currently
actually talking to Alice.

13.2 Key Establishment Using Symmetric-Key Techniques 341

13.2.3 Remaining Problems with Symmetric-Key Distribution

Even though Kerberos provides strong assurance that the correct keys are being
used and that users are authenticated, there are still drawbacks to the protocols dis-
cussed so far. We now describe remaining general problems that exist for KDC-
based schemes.

Communication requirements One problem in practice is that the KDC needs to
be contacted if a new secure session is to be initiated between any two parties in the
network. Even though this is a performance rather than a security problem, it can be
a serious hindrance in a system with very many users. In Kerberos, one can alleviate
this potential problem by increasing the lifetime 7" of the key. In practice, Kerberos
can run with tens of thousands of users. However, it would be a problem to scale
such an approach to “all” Internet users.

Secure channel during initialization As discussed earlier, all KDC-based proto-
cols require a secure channel at the time a new user joins the network for transmit-
ting that user’s key encryption key.

Single point of failure All KDC-based protocols, including Kerberos, have the
security drawback that they have a single point of failure, namely the database that
contains the key encryption keys, the KEKs. If the KDC becomes compromised,
all KEKSs in the entire system become invalid and have to be re-established using
secure channels between the KDC and each user.

No perfect forward secrecy If any of the KEKs becomes compromised, e.g.,
through a hacker or Trojan software running on a user’s computer, the consequences
are serious. First, all future communication can be decrypted by the attacker who
eavesdrops. For instance, if Oscar got a hold of Alice’s KEK k4, he can recover the
session key from all messages y4 that the KDC sends out. Even more dramatic
is the fact that Oscar can also decrypt past communications if he stored old
messages y4 and y. Even if Alice immediately realizes that her KEK has been com-
promised and she stops using it right away, there is nothing she can do to prevent
Oscar from decrypting her past communication. Whether a system is vulnerable if
long-term keys are compromised is an important feature of a security system and
there is a special terminology used:

Definition 13.1. A cryptographic protocol has perfect forward secrecy (PFS) if the
compromise of long-term keys does not allow an attacker to obtain past session
keys.

Neither Kerberos nor the simpler protocols shown earlier offer PFS. The main
mechanism to assure PFS is to employ public-key techniques, which we study in
the following sections.

342 13 Key Establishment

13.3 Key Establishment Using Asymmetric Techniques

Public-key algorithms are especially suited for key establishment protocols since
they don’t share most of the drawbacks that symmetric key approaches have. In fact,
next to digital signatures, key establishment is the other major application domain
of public-key schemes. They can be used for both key transport and key agreement.
For the former, Diffie—-Hellman key exchange, elliptic curve Diffie—-Hellman or re-
lated protocols are often used. For key transport, any of the public-key encryption
schemes, e.g., RSA or Elgamal, is often used. We recall at this point that public-key
primitives are quite slow, and that for this reason actual data encryption is usually
done with symmetric primitives like AES or 3DES, after a key has been established
using asymmetric techniques.

At this moment it looks as though public-key schemes solve all key establishment
problems. It turns out, however, that they all require what is termed an authenticated
channel to distribute the public keys. The remainder of this chapter is chiefly devoted
to solving the problem of authenticated public key distribution.

13.3.1 Man-in-the-Middle Attack

The man-in-the-middle attack' is a serious attack against public-key algorithms.
The basic idea of the attack is that the adversary, Oscar, replaces the public keys
sent out by the participants with his own keys. This is possible whenever public
keys are not authenticated. The man-in-the-middle (MIM) attack has far-reaching
consequences for asymmetric cryptography. For didactical reasons we will study
the MIM attack against the Diffie-Hellman key exchange (DHKE). However, it is
extremely important to bear in mind that the attack is applicable against any asym-
metric scheme unless the public-keys are protected, e.g., through certificates, a topic
that is discussed in Sect. 13.3.2.

We recall that the DHKE allows two parties who never met before to agree on a
shared secret by exchanging messages over an insecure channel. For convenience,
we restate the DHKE protocol here:

! The “man-in-the-middle attack” should not be confused with the similarly sounding but in
fact entirely different “meet-in-the-middle attack” against block ciphers which was introduced in
Sect. 5.3.1.

13.3 Key Establishment Using Asymmetric Techniques 343

Diffie—Hellman Key Exchange

Alice Bob
choose random a = k.4 choose random b = k.
compute A = kp, 4 = 0 mod compute B = kp,pp = o’ mod
p p
A

kap = B* mod p kap = AP mod p

As we discussed in Sect. 8.4, if the parameters are chosen carefully, which in-
cludes especially a prime p with a length of 1024 or more bit, the DHKE is secure
against eavesdropping, i.e., passive attacks. We consider now the case that an adver-
sary is not restricted to only listening to the channel. Rather, Oscar can also actively
take part in the message exchange by intercepting, changing and generating mes-
sages. The underlying idea of the MIM attack is that Oscar replaces both Alice’s
and Bob’s public key by his own. The attack is shown here:

Man-in-the-Middle Attack Against the DHKE

Alice Oscar Bob

choose a = kpa choose b = kp.p

A = kpupa = 0 mod B = kpyp = 0¥ mod
p p

A . e A
———4 substitute A = o ———
B . ~ B
«————/ substitute B= a° -

kao = (B)* mod p kao = A° mod p kpo = (A)” mod p
kgo = B° mod p

Let’s look at the keys that are being computed by the three players, Alice, Bob
and Oscar. The key Alice computes is:

kao = (B)* = (0’) = 0’ mod p

which is identical to the key that Oscar computes as kap =A? = (a*)? = a*° mod p.
At the same time Bob computes:

kzo = (A)? = (a°)? = a®® mod p

which is identical to Oscar’s key kzgo = B® = (a”)° = a”? mod p. Note that the two
malicious keys that Oscar sends out, A and B, are in fact the same values. With use
different names here merely to stress the fact that Alice and Bob assume that they
have received each other*s public keys.

344 13 Key Establishment

What happens in this attack is that two DHKEs are being performed simultane-
ously, one between Alice and Oscar and another one between Bob and Oscar. As
a result, Oscar has established a joined key with Alice, which we termed k40, and
another one with Bob, which we named kgo. However, neither Alice nor Bob is
aware of the fact that they share a key with Oscar and not with each other!
Both assume that they have computed a joint key k4p.

From here on, Oscar has much control over encrypted traffic between Alice and
Bob. As an example, here is how he can read encrypted messages in a way that goes
unnoticed by Alice and Bob:

Message Manipulation After a Man-in-the-Middle Attack

Alice Oscar Bob
message X
¥ = AESy,, (%)
— .y intercept
decrypt x = AES;AIO (x)
re-encrypt ¥ =
AESg,, (x)

decrypt x = AES;BIO)

For illustrative purposes, we assumed that AES is used for the encryption. Of course,
any other symmetric cipher can be used as well. Please note that Oscar can not only
read the plaintext x but can also alter it prior to re-encrypting it with kgp. This can
have serious consequences, e.g., if the message x describes a financial transaction.

13.3.2 Certificates

The underlying problem of the man-in-the-middle attack is that public keys are not
authenticated. We recall from Sect. 10.1.3 that message authentication ensures that
the sender of a message is authentic. However, in the scenario at hand Bob receives
a public key which is supposedly Alice’s, but he has no way of knowing whether
that is in fact the case. To make this point clear, let’s examine how a key of a user
Alice would look in practice:

ka = (kpup.a,IDa),

where ID, is identifying information, e.g., Alice’s IP address or her name together
with date of birth. The actual public key kp,; 4, however, is a mere binary string,
e.g., 2048 bit. If Oscar performs a MIM attack, he would change the key to:

ka = (kpup,0,1D4).

13.3 Key Establishment Using Asymmetric Techniques 345

Since everything is unchanged except the anonymous actual bit string, the receiver
will not be able to detect that it is in fact Oscar’s. This observation has far-reaching
consequences which can be summarized in the following statement:

Even though public-key schemes do not require a secure channel, they require authen-
ticated channels for the distribution of the public keys.

We would like to stress here again that the MIM attack is not restricted to the DHKE,
but is in fact applicable to any asymmetric crypto scheme. The attack always pro-
ceeds the same way: Oscar intercepts the public key that is being sent and replaces
it with his own.

The problem of trusted distribution of private keys is central in modern public-
key cryptography. There are several ways to address the problem of key authentica-
tion. The main mechanism is the use of certificates. The idea behind certificates is
quite easy: Since the authenticity of the message (kpup4,/D4) is violated by an ac-
tive attack, we apply a cryptographic mechanism that provides authentication. More
specifically, we use digital signatures.? Thus, a certificate for a user Alice in its most
basic form is the following structure:

Certy = [(kpub,A DA) ’ Sigkpr (kpub,A ,IDy)]

The idea is that the receiver of a certificate verifies the signature prior to using the
public key. We recall from Chap. 10 that the signature protects the signed message
— which is the structure (k,,;4,ID4) in this case — against manipulation. If Oscar
attempts to replace kpup 4 by kpup o it will be detected. Thus, it is said that certifi-
cates bind the identity of a user to their public key.

Certificates require that the receiver has the correct verification key, which is a
public key. If we were to use Alice’s public key for this, we would have the same
problem that we are actually trying to solve. Instead, the signatures for certificates
are provided by a mutually trusted third party. This party is called the Certification
Authority commonly abbreviated as CA. It is the task of the CA to generate and issue
certificates for all users in the system. For certificate generation, we can distinguish
between two main cases. In the first case, the user computes her own asymmetric
key pair and merely requests the CA to sign the public key, as shown in the following
simple protocol for a user named Alice:

2 MAGs also provide authentication and could, in principle, also be used for authenticating pub-
lic keys. However, because MACs themselves are symmetric algorithms, we would again need a
secure channel for distributing the MAC keys with all the associated drawbacks.

346 13 Key Establishment

Certificate Generation with User-Provided Keys

Alice CA

generate kpa, kpup 4
RQST(kpubAA Dy)
- 7

verify 1Dy

SA = Sigk,,,uCA (kpub.a>1D2)

Certp = [(kpup,a,1D4),54]
Cel'tA

From a security point of view, the first transaction is crucial. It must be assured
that Alice’s message (kpub,A, ID,) is sent via an authenticated channel. Otherwise,
Oscar could request a certificate in Alice’s name.

In practice it is often advantageous that the CA not only signs the public keys
but also generates the public—private key pairs for each user. In this case, a basic
protocol looks like this:

Certificate Generation with CA-Generated Keys

Alice CA
. RQST(/D,
request certificate QSTUD)
verify IDy
generate kp.A,Kpub.A
SA = SlgkphCA (kpub,AleA)
Certy = [(kpub,AleA)vsA]
Certy kpa

For the first transmission, an authenticated channel is needed. In other words:
The CA must be assured that it is really Alice who is requesting a certificate, and
not Oscar who is requesting a certificate in Alice’s name. Even more sensitive is the
second transmission consisting of (Certa, kp.4). Because the private key is being
sent here, not only an authenticated but a secure channel is required. In practice,
this could be a certificate delivered by mail on a CD-ROM.

Before we discuss CAs in more detail, let’s have a look at the DHKE which is
protected with certificates:

13.3 Key Establishment Using Asymmetric Techniques 347

Diffie-Hellman Key Exchange with Certificates
Alice Bob
a=kpra b=kprp
A =kpupa = 0 mod p B =kpupp =0 mod p
Certy = [(A7IDA),SA] Certg = [(B,]DB),SB]
Cert,
Cel'tB
verify certificate: verify certificate:
Verk, ., ca (Certp) VeIk cx (Certy)
compute session key: compute session key:
kap = B* mod p kap = AP mod)4

One very crucial point here is the verification of the certificates. Obviously, with-
out verification, the signatures within the certificates would be of no use. As can be
seen in the protocol, verification requires the public key of the CA. This key must
be transmitted via an authenticated channel, otherwise Oscar could perform MIM
attacks again. It looks like we haven’t gained much from the introduction of cer-
tificates since we again require an authenticated channel! However, the difference
from the former situation is that we need the authenticated channel only once,
at set-up time. For instance, public verification keys are nowadays often included
in PC software such as Web browsers or Microsoft software products. The authen-
ticated channel is here assumed to be given through the installation of original soft-
ware which has not been manipulated. What’s happening here from a more abstract
point of view is extremely interesting, namely a transfer of trust. We saw in the
earlier example of DHKE without certificates, that Alice and Bob have to trust each
other’s public keys directly. With the introduction of certificates, they only have to
trust the CA’s public key k,.ca- If the CA signs other public keys, Alice and Bob
know that they can also trust those. This is called a chain of trust.

13.3.3 Public-Key Infrastructures (PKI) and CAs

The entire system that is formed by CAs together with the necessary support mecha-
nisms is called a public-key infrastructure, usually referred to as PKI. As the reader
can perhaps start to imagine, setting up and running a PKI in the real world is a
complex task. Issues such as identifying users for certificate issuing and trusted dis-
tribution of CA keys have to be solved. There are also many other real-world issues;
among the most complex are the existence of many different CAs and revocation of
certificates. We discuss some aspects of using certificate systems in practice in the
following.

348

13 Key Establishment

X.509 Certificates

In practice, certificates not only include the ID and the public key of a user, they
tend to be quite complex structures with many additional fields. As an example,
we look at the a X.509 certificate in Fig. 13.4. X.509 is an important standard for
network authentication services, and the corresponding certificates are widely used
for Internet communication, i.e., in S/MIME, IPsec and SSL/TLS.

Serial Number

Certificate Algorithm:
- Algorithm
- Parameters

Issuer

Period of Validity:
- Not Before Date
- Not After Date

Subject

Subject’s Public Key:
- Algorithm
- Parameters
- Public Key

Signature

Fig. 13.4 Detailed structure of an X.509 certificate

Discussing the fields defined in a X.509 certificate gives us some insight into

many aspects of PKIs in the real world. We discuss the most relevant ones in the
following:

1.

Certificate Algorithm: Here it is specified which signature algorithm is being
used, e.g., RSA with SHA-1 or ECDSA with SHA-2, and with which parameters,
e.g., the bit lengths.

. Issuer: There are many companies and organizations that issue certificates. This

field specifies who generated the one at hand.

. Period of Validity: In most cases, a public key is not certified indefinitely but

rather for a limited time, e.g., for one or two years. One reason for doing this
is that private keys which belong to the certificate may become compromised.
By limiting the validity period, there is only a certain time span during which
an attacker can maliciously use the private key. Another reason for a restricted
lifetime is that, especially for certificates for companies, it can happen that the

13.3 Key Establishment Using Asymmetric Techniques 349

user ceases to exist. If the certificates, and thus the public keys, are only valid for
limited time, the damage can be controlled.

4. Subject: This field contains what was called /D4 or IDjp in our earlier examples. It
contains identifying information such as names of people or organizations. Note
that not only actual people but also entities like companies can obtain certificates.

5. Subject’s Public Key: The public key that is to be protected by the certificate
is here. In addition to the binary string which is the public key, the algorithm
(e.g., Diffie-Hellman) and the algorithm parameters, e.g., the modulus p and the
primitive element ¢, are stored.

6. Signature: The signature over all other fields of the certificate.

We note that for every signature two public key algorithms are involved: the one
whose public key is protected by the certificate and the algorithm with which the
certificate is signed. These can be entirely different algorithms and parameter sets.
For instance, the certificate might be signed with an RSA 2048-bit algorithm, while
the public key within the certificate could belong to a 160-bit elliptic curve scheme.

Chain of Certificate Authorities (CAs)

In an ideal world, there would be one CA which issues certificates for, say, all In-
ternet users on planet Earth. Unfortunately, that is not the case. There are many dif-
ferent entities that act as CAs. First of all, many countries have their own “official”
CA, often for certificates that are used for applications that involve government busi-
ness. Second, certificates for websites are currently issued by more than 50 mostly
commercial entities. (Most Web browsers have the public key of those CAs pre-
installed.) Third, many corporations issue certificate for their own employees and
external entities who do business with them. It would be virtually impossible for a
user to have the private keys of all these different CAs at hand. What is done instead
is that CAs certify each other.

Let’s look at an example where Alice’s certificate is issued by CA1 and Bob’s by
CA2. At the moment, Alice is only in possession of the public key of “her” CAl,
and Bob has only &, ca2. If Bob sends his certificate to Alice, she cannot verify
Bob’s public key. This situation looks like this:

Two Users with Different Certificate Authorities

Alice Bob

kpub,cal Kpu.ca2
Certp = [(kpup 8, 1Dp), sig;

P

rCA2 (kpub,B) IDB)]
Certg

Alice can now request CA2’s public key, which is itself contained in a certificate
that was signed by Alice’s CA1:

