# **Message Authentication Codes**

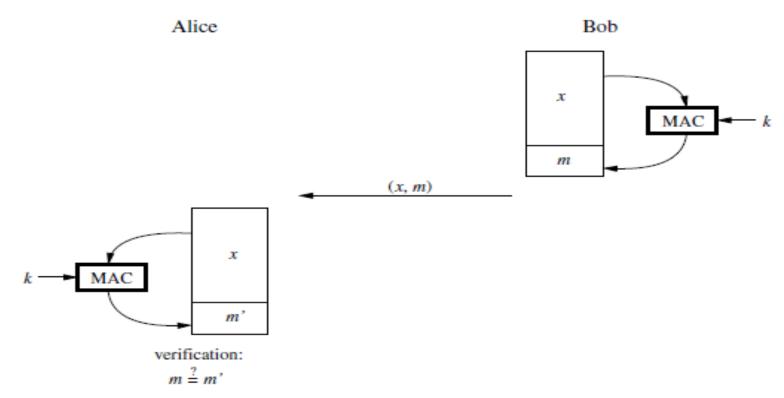
#### Sachin Tripathi

IIT(ISM), Dhanbad

#### **Outline**

- ☐ Principle behind MACs
- ☐ The security properties that can be achieved with MACs
- ☐ How MACs can be realized with hash functions and with block ciphers

#### Introduction


- A Message Authentication Code (MAC), also known as a cryptographic checksum or a keyed hash function, is widely used in practice.
- In terms of security functionality, MACs share some properties with digital signatures, since they also provide message integrity and message authentication.
- Unlike digital signatures, MACs are symmetric-key schemes and they do not provide nonrepudiation.
- One advantage of MACs is that they are much faster than digital signatures since they are based on either block ciphers or hash functions.

# **Principles of MAC**

- ☐ Similar to digital signatures, MACs append an authentication tag to a message.
- ☐ The crucial difference between MACs and digital signatures is that MACs use a symmetric key k for both generating the authentication tag and verifying it.
- ☐ A MAC is a function of the symmetric key k and the message x.

 $m=mac_k(x)$ 

# **Working Procedure**



Principle of message authentication codes (MACs)

## **Properties of MAC**

**Cryptographic checksum:** A MAC generates a cryptographically secure authentication tag for a given message.

**Symmetric:** MACs are based on secret symmetric keys. The signing and verifying parties must share a secret key.

Arbitrary message size: MACs accept messages of arbitrary length.

Fixed output length: MACs generate fixed-size authentication tags.

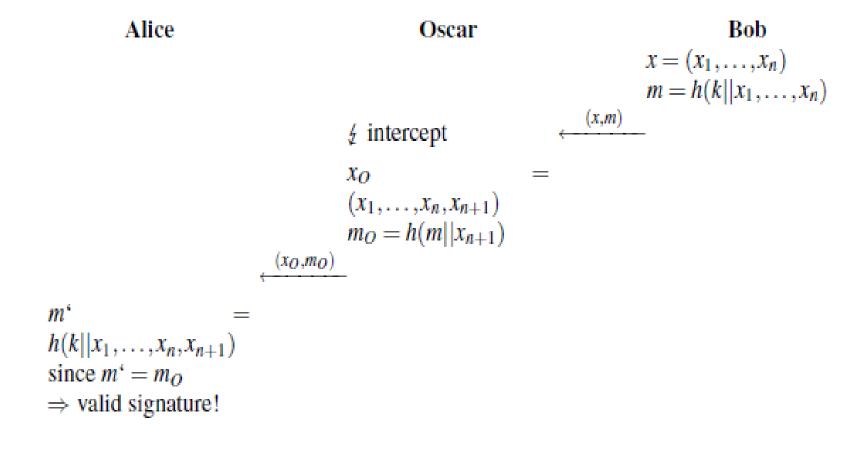
**Message integrity:** MACs provide message integrity.

**Message authentication:** The receiving party is assured of the origin of the message.

**No nonrepudiation:** Since MACs are based on symmetric principles, they do not provide nonrepudiation.

#### **Formation of MAC**

In practice, message authentication codes are constructed in essentially two different ways from **block ciphers** or from **hash functions**. We will introduce both options for realizing MACs.


#### **MACs from Hash Functions: HMAC**

- ☐ HMAC is used in both the Transport Layer Security (TLS) protocol and in the IPSec protocol
- ☐ The basic idea behind all hash-based message authentication codes is that the key is hashed together with the message
- ☐ Two obvious constructions are possible

Secret prefix MAC:  $m = MAC_k(x) = h(k||x)$ 

Secret suffix MAC:  $m = MAC_k(x) = h(x | |k)$ 

#### Attack Against Secret Prefix MACs

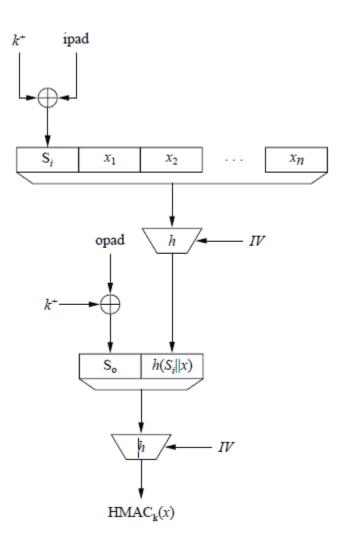


# **Attacks Against Secret Suffix MACs**

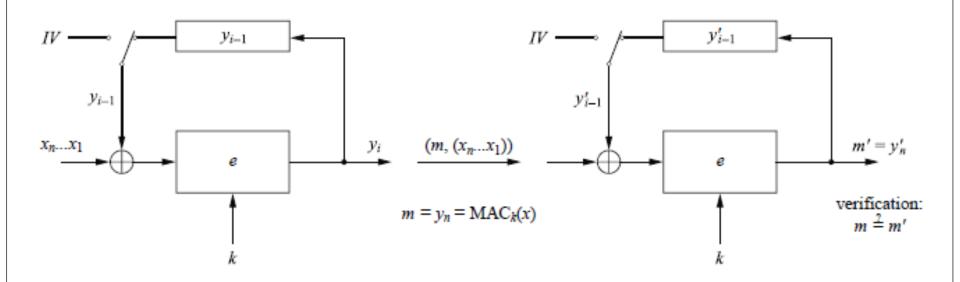
Assume Oscar is capable of constructing a collision in the hash function, i.e., he can find x and  $x_O$  such that:

$$h(x) = h(x_O)$$
.

The two messages x and  $x_O$  can be, for instance, two versions of a contract which are different in some crucial aspect, e.g., the agreed upon payment. If Bob signs x with a message authentication code


$$m = h(x||k)$$

m is also a valid checksum for  $x_0$ , i.e.,


$$m = h(x||k) = h(x_O||k)$$

The reason for this is again given by the iterative nature of the MAC computation.

### **HMAC**



# MACs from Block Ciphers: CBC-MAC



#### Conclusion

- MACs provide two security services, *message integrity and message authentication*, using symmetric techniques.
- Both of these services are also provided by digital signatures, but MACs are much faster.
- MACs do not provide nonrepudiation.
- ☐ In practice, MACs are either based on block ciphers or on hash functions.

HMAC is a popular MAC used in many practical protocols such as TLS.

# Thank You