Public Key Cryptosystem -II

Sachin Tripathi

IIT(ISM), Dhanbad

Quadratic Congurrence

In cryptography, we also need to discuss quadratic congruence that is, equations of the form $a_2x^2 + a_1x + a_0 \equiv 0 \pmod{n}$.

We limit our discussion to quadratic equations in which $a_2 = 1$ and $a_1 = 0$, that is equations of the form $X^2 \equiv a \pmod{n}$.

Quadratic Residues and Nonresidue

In the equation $x^2 \equiv a \pmod{p}$, a is called a **quadratic residue (QR)** if the equation has two solutions; a is called **quadratic nonresidue (QNR)** if the equation has no solutions. It can be proved that in \mathbb{Z}_p^* , with p-1 elements, exactly (p-1)/2 elements are quadratic residues and (p-1)/2 are quadratic nonresidues.

Example 9.41

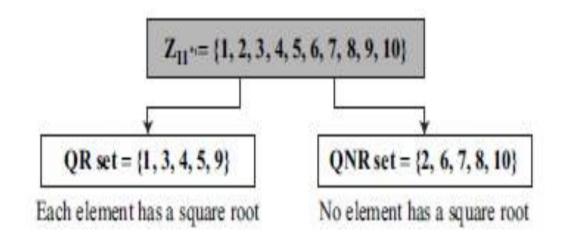
There are 10 elements in \mathbb{Z}_{11}^* . Exactly five of them are quadratic residues and five of them are nonresidues. In other words, \mathbb{Z}_{11}^* is divided into two separate sets, QR and QNR, as shown in Figure 9.4.

Euler's Criterion

How can we check to see if an integer is a QR modulo p? Euler's criterion gives a very specific condition:

- a. If $a^{(p-1)/2} \equiv 1 \pmod{p}$, a is a quadratic residue modulo p.
- b. If $a^{(p-1)/2} \equiv -1 \pmod{p}$, a is a quadratic nonresidue modulo p.

Division of Z₁₁* elements into QRs and QNRs



Example

To find out if 14 or 16 is a QR in Z23*, we calculate:

$$14^{(23-1)/2} \bmod{23} \to 14^{11} \bmod{23} \to 22 \bmod{23} \to -1 \bmod{23} \qquad \textbf{nonresidue} \\ 16^{(23-1)/2} \bmod{23} \to 16^{11} \bmod{23} \to 1 \bmod{23} \qquad \textbf{residue}$$

Solving Quadratic Equation Modulo a Prime

Although the Euler criterion tells us if an integer a is a QR or QNR in \mathbb{Z}_p^* , it cannot find the solution to $x^2 \equiv a \pmod{p}$. To find the solution to this quadratic equation, we notice that a prime can be either p = 4k + 1 or p = 4k + 3, in which k is a positive integer. The solution to a quadratic equation is very involved in the first case; it is easier in the second. We will discuss only the second case, which we will use in when we discuss Rabin cryptosystem.

Special Case: p = 4k + 3 If p is in the form 4k + 3 (that is, $p \equiv 3 \mod 4$) and a is a QR in \mathbb{Z}_p^* , then

$$x \equiv a^{(p+1)/4} \pmod{p}$$
 and $x \equiv -a^{(p+1)/4} \pmod{p}$

Example 9.43

Solve the following quadratic equations:

- a. $x^2 \equiv 3 \pmod{23}$
- b. $x^2 \equiv 2 \pmod{11}$
- c. $x^2 \equiv 7 \pmod{19}$

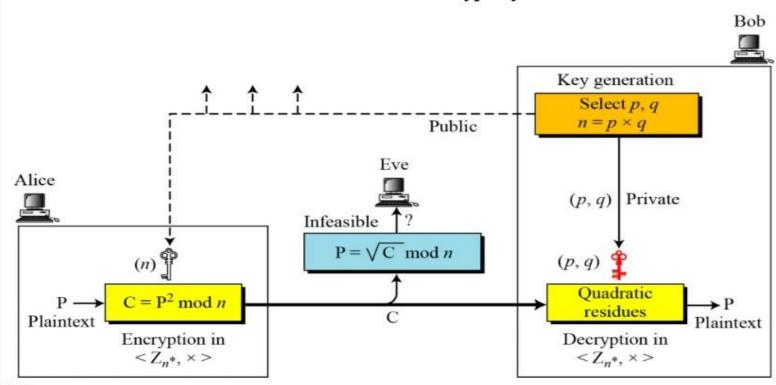
Solutions

- a. In the first equation, 3 is a QR in Z₂₃. The solution is x ≡ ± 16 (mod 23). In other words, √3 ≡ ± 16 (mod 23).
- In the second equation, 2 is a QNR in Z₁₁. There is no solution for √2 in Z₁₁.
- c. In the third equation, 7 is a QR in Z₁₉. The solution is x ≡ ± 11 (mod 19). In other words, √7 ≡ ± 11 (mod 19).

Rabin Cryptosystem

The Rabin cryptosystem can be thought of as an RSA cryptosystem in which the value of e and d are fixed. The encryption is $C \equiv P^2 \pmod{n}$ and the decryption is $P \equiv C^{1/2} \pmod{n}$.

Rabin cryptosystem



Key Generation

Key generation for Rabin cryptosystem

Encryption

```
Rabin_Encryption (n, P)  // n is the public key; P is the ciphertext from \mathbb{Z}_n^*

C \leftarrow P^2 \mod n  // C is the ciphertext return C
```

Decryption

```
Rabin_Decryption (p, q, C)  // C is the ciphertext; p and q are private keys {  a_1 \leftarrow +(C^{(p+1)/4}) \bmod p \\ a_2 \leftarrow -(C^{(p+1)/4}) \bmod p \\ b_1 \leftarrow +(C^{(q+1)/4}) \bmod q \\ b_2 \leftarrow -(C^{(q+1)/4}) \bmod q   // The algorithm for the Chinese remainder theorem is called four times.  P_1 \leftarrow \text{Chinese}\_\text{Remainder } (a_1, b_1, p, q) \\ P_2 \leftarrow \text{Chinese}\_\text{Remainder } (a_1, b_2, p, q) \\ P_3 \leftarrow \text{Chinese}\_\text{Remainder } (a_2, b_1, p, q) \\ P_4 \leftarrow \text{Chinese}\_\text{Remainder } (a_2, b_1, p, q) \\ \text{return } P_1, P_2, P_3, \text{ and } P_4  }
```

The Rabin cryptosystem is not deterministic: Decryption creates four equally probable plaintexts.

Example

Here is a very trivial example to show the idea.

- 1. Bob selects p = 23 and q = 7. Note that both are congruent to 3 mod 4.
- 2. Bob calculates $n = p \times q = 161$.
- Bob announces n publicly; he keeps p and q private.
- Alice wants to send the plaintext P = 24. Note that 161 and 24 are relatively prime; 24 is in Z₁₆₁*. She calculates C = 24² = 93 mod 161, and sends the ciphertext 93 to Bob.
- Bob receives 93 and calculates four values:
 - a. $a_1 = +(93^{(23+1)/4}) \mod 23 = 1 \mod 23$
 - b. $a_2 = -(93^{(23+1)/4}) \mod 23 = 22 \mod 23$
 - c. $b_1 = \pm (93^{(7+1)/4}) \mod 7 = 4 \mod 7$
 - d. $b_2 = -(93^{(7+1)/4}) \mod 7 = 3 \mod 7$
- 6. Bob takes four possible answers, (a₁, b₁), (a₁, b₂), (a₂, b₁), and (a₂, b₂), and uses the Chinese remainder theorem to find four possible plaintexts: 116, 24, 137, and 45 (all of them relatively prime to 161). Note that only the second answer is Alice's plaintext. Bob needs to make a decision based on the situation. Note also that all four of these answers, when squared modulo n, give the ciphertext 93 sent by Alice.

 $116^2 = 93 \mod 161$ $24^2 = 93 \mod 161$ $137^2 = 93 \mod 161$ $45^2 = 93 \mod 161$

Security of the Rabin System

The Rabin system is secure as long as p and q are large numbers. The complexity of the Rabin system is at the same level as factoring a large number n into its two prime factors p and q. In other words, the Rabin system is as secure as RSA.