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Quadratic Congurrence

In cryptography, we also need to discuss quadratic
congruence that is, equations of the form

a,X> + a,;X + a,= 0 (mod n).
We limit our discussion to quadratic equations in which
a, = 1 and a,= 0, that is equations of the form
X?=a (mod n).




Quadratic Residues and Nonresidue

In the equation x2 = a (mod ). ais called a quadratic residue (QR) if the equation has
two solutions: a is called quadratic nonresidue (QNR) if the equation has no solu-
tions. It can be proved that in Zp* ., with p — 1 elements, exactly (p — 1)/2 elements are
quadratic residues and (p — 1)/2 are quadratic nonresidues.

Example 9. 41

There are 10 clements in Z, (*. Exactly five of them are quadratic residues and five of them are
nonresidues. In other words. Z 1 * 1s divided mto two separate sets. QR and QNR. as shown m
Figure 9.4,

Eulers Criterion
How can we check to see if an integer 1s a QR modulo p? Euler’s criterion gives a very
specific condition:

a. Ifa? V2 =1 (mod ), ais a quadratic residue modulo p.

b. Ifa? 12 = _1 (mod p). a is a quadratic nonresidue modulo p.




Division of Ly, * elements into ORs and ONRs

QR set=1{1,3,4,5,9) ONRset= {2, 6,78, 10}

Each element hasa square root No element has a square oot




Example

To findout if 14 or 1615 a QR Zyy*, we caleulate:

ED2 06423 5 14" mod23 = 2mod23 = -1 mod23  nonresidue
16@E-D2 mod 23 = 16" mod 23 = 1mod 23 residue




Solving Quadratic Equation Modulo a Prime

Although the Euler crltenon tells us if an integer @ 1s a QR or QONR in Z,*_ it cannot
find the solution to x> = a (mod ). To find the solution to this quadratic equatlon we
notice that a prime can be eitherp =44 + 1 or p = 44 + 3, in which £ 1s a positive inte-
ger. The solution to a quadratic equation is very involved in the first case: it i1s easier in
the second. We will discuss only the second case. which we will use In

when we discuss Rabin cryptosystem.

Special Case: p=4k +3 If pisin the form 44 + 3 (that 1s, p = 3| mod 4) and a 1s a
QR in Z,,%, then

x = aPV3 (mod p) and x=—a? V4 (mod p)

Example 9.43

Solve the following quadrmatc equations:

a x~ = 3(mod23)

b. x»=2(modl1)

c. x= = 7(mod 19)
Solutions

a. In the first equation. 3 1sa QR m Z»3 The solutionisx= = 16 (mod 23). In other words,
V3 =+ 16 (mod 23).
. In the second equation, 2 1s a QNR m Z; . There s no solution forv2 in Z; 4.
¢. In the third equation. 7 1sa QR in Z; 3 Thesolutionisx = £ 11 (mod 19). In other
words, V7=% 11 (mod 19).




Rabin Cryptosystem

The Rabin cryptosystem can be thought of as an RSA
cryptosystem in which the value of e and d are fixed.
The encryption is C = P’ (mod n) and the decryption is
P=C" (mod n).
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Key Generation

Kev generation for Rabin cryptosysiem

Rabin_Kkey Generation

i
1

Choose two large pnimes pand g inthe form 4k + 3 and p 2 g.
n < pxg

Public_key < n

Pnvate_key < (p. g)

return Public_key and Private_key

I To be amounced publicly
! To be kept seeret




Encryption

Rabin_Encryption (n, P)

|
|

( « P2 mod n

retum C

/I s the public key: P 1s the ciphertext from Z,,*

/1 C 15 the ciphertext




Decryption

Rabin_Decryption (p. g, C) /7 C 1s the ciphertext: p and g are pnivate keys

)
1

ay — HCP DY modp

a — —(CP'VH mmoedp

by — HCTYH mod g

by «— —(CO*"V mod g

// The algorithm for the Chinese remainder theorem is called four nmes.
P, « Chinese_Remainder (aq, 5. p. q)

P, <« Chinese Remainder (ay. 55, p.g)

Py < Chinese_Remainder (a3, by, p.qg)

Py < Chinese_Remainder (as. 5. p.q)

return Py, P>, Py, and Py




The Rabin cryplosystem s not deterministic: Decryption creates four equally
probable plainfexts,




Example

Here 1s a very tnvial example to show the idea.
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Bob selects p=23 and g =7. Note that both are congruent to 3 mod 4.

Bob calculatesn =px g=161.

Bob announces n publicly; he keeps p and g private.

Alice wants to send the plaintext P = 24. Note that 161 and 24 are relatively pnme; 24 15 1n
Z\61*. She calculates C = 24% =93 mod 161, and sends the ciphertext 93 o Bob.

Bob receives 93 and caleulates four values:

4 ap=HN* M med23=1mod 23

b ay=—93%% mod 23 =22 mod 23

¢. by=HNB"" ) mod 7=4mod7

d. by=—93""*) mod 7=3mod 7

Bob takes four possible answers, (ay, by), (ay. b3), (as. by). and (a3, bs), and uses the Chinese
remainder theorem to find four possible plantexts: 116, 24, 137, and 45 (all of them rela-
tively prime to 161). Note that only the second answer 1s Ahiee’s plaintext. Bob needs to
make a decision based on the situation. Note also that all four of these answers, when
squared modulo n, gve the ciphertext 93 sent by Alice.




Ilt\2=‘J3llltuilt1l 342=U3 mod 161 137" =93 mod 16] 452=U3nuxllhl

Security of the Rabin System

The Rabin system is secure as long as p and q are large numbers.
The complexity of the Rabin system is at the same level as factoring
a large number n into its two prime factors p and g. In other words,
the Rabin system is as secure as RSA.




