CHAPTER 17

Security at the Transport Layer:
SSL and TLS

Objectives

This chapter has several objectives:

a

a
4
4

To discuss the need for security services at the transport layer of the
Internet model

To discuss the general architecture of SSL
To discuss the general architecture of TLS
To compare and contrast SSL and TLS

Transport layer security provides end-to-end security services for applica-
tions that use a reliable transport layer protocol such as TCP. The idea is to
provide security services for transactions on the Internet. For example,
when a customer shops online, the following security services are desired:

1.

The customer needs to be sure that the server belongs to the actual
vendor, not an impostor. The customer does not want to give an
impostor her credit card number (entity authentication).

. The customer and the vendor need to be sure that the contents of the

message are not modified during transmission (message integrity).

. The customer and the vendor need to be sure that an impostor does

not intercept sensitive information such as a credit card number
(confidentiality).

Two protocols are dominant today for providing security at the transport
layer: the Secure Sockets Layer (SSL) Protocol and the Transport
Layer Security (TLS) Protocol. The latter is actually an IETF version
of the former. We first discuss SSL, then TLS, and then compare and
contrast the two. Figure 17.1 shows the position of SSL and TLS in the
Internet model.

507



508 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Figure 17.1 Location of SSL and TLS in the Internet model

| Application layer |

SSL or TLS

| TCP |

L r ]

One of the goals of these protocols is to provide server and client
authentication, data confidentiality, and data integrity. Application-layer
client/server programs, such as Hypertext Transfer Protocol (HTTP),
that use the services of TCP can encapsulate their data in SSL packets.
If the server and client are capable of running SSL (or TLS) programs then
the client can use the URL https://... instead of http.//... to allow HTTP
messages to be encapsulated in SSL (or TLS) packets. For example, credit
card numbers can be safely transferred via the Internet for online shoppers.

17.1 SSL ARCHITECTURE

SSL is designed to provide security and compression services to data generated from
the application layer. Typically, SSL can receive data from any application layer protocol,
but usually the protocol is HTTP. The data received from the application is compressed
(optional), signed, and encrypted. The data is then passed to a reliable transport layer
protocol such as TCP. Netscape developed SSL in 1994. Versions 2 and 3 were released
in 1995. In this chapter, we discuss SSLv3.

Services

SSL provides several services on data received from the application layer.

Fragmentation
First, SSL divides the data into blocks of 24 bytes or less.

Compression

Each fragment of data is compressed using one of the lossless compression methods
negotiated between the client and server. This service is optional.

Message Integrity

To preserve the integrity of data, SSL uses a keyed-hash function to create a MAC.

Confidentiality

To provide confidentiality, the original data and the MAC are encrypted using symmetric-
key cryptography.



SECTION 17.1 SSL ARCHITECTURE 509

Framing

A header is added to the encrypted payload. The payload is then passed to a reliable
transport layer protocol.

Key Exchange Algorithms

As we will see later, to exchange an authenticated and confidential message, the client
and the server each need six cryptographic secrets (four keys and two initialization vec-
tors). However, to create these secrets, one pre-master secret must be established
between the two parties. SSL defines six key-exchange methods to establish this pre-
master secret: NULL, RSA, anonymous Diffie-Hellman, ephemeral Diffie-Hellman,
fixed Diffie-Hellman, and Fortezza, as shown in Figure 17.2.

Figure 17.2 Key-exchange methods

Key
Exchange
Algorithms
I
I [ [ [ [ |
Anonymous Ephemeral Fixed
NULL RSA Diffie- Diffie- Diffie- Fortezza
Hellman Hellman Hellman
Encryption RSA or DSS RSA or DSS

NULL

There is no key exchange in this method. No pre-master secret is established between
the client and the server.

Both client and server need to know the value of the pre-master secret.

RSA

In this method, the pre-master secret is a 48-byte random number created by the client,
encrypted with the server’s RSA public key, and sent to the server. The server needs to
send its RSA encryption/decryption certificate. Figure 17.3 shows the idea.

Figure 17.3 RSA key exchange; server public key

L)
S (§2) Encrypted with server’s public key
Client

jal
S (&8
| Pre-master secret




510

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Anonymous Diffie-Hellman

This is the simplest and most insecure method. The pre-master secret is established
between the client and server using the Diffie-Hellman (DH) protocol. The Diffie-
Hellman half-keys are sent in plaintext. It is called anonymous Diffie-Hellman
because neither party is known to the other. As we have discussed, the most serious dis-
advantage of this method is the man-in-the-middle attack. Figure 17.4 shows the idea.

Figure 17.4 Anonymous Diffie-Hellman key exchange

Client %a

< g

—| gD g >

| Pre-master: g mod p I

Server

Ephemeral Diffie-Hellman

To thwart the man-in-the-middle attack, the ephemeral Diffie-Hellman key exchange
can be used. Each party sends a Diffie-Hellman key signed by its private key. The receiv-
ing party needs to verify the signature using the public key of the sender. The public
keys for verification are exchanged using either RSA or DSS digital signature certifi-
cates. Figure 17.5 shows the idea.

Figure 17.5 Ephemeral Diffie-Hellman key exchange

Sig,: Signed with server public key

Client Sig,: Signed with client public key

Server

N

<

Sig,(g, p, &)

Y

Sig. (g, p, &)

Pre-master: g%

Fixed Diffie-Hellman

Another solution is the fixed Diffie-Hellman method. All entities in a group can
prepare fixed Diffie-Hellman parameters (g and p). Then each entity can create a fixed
Diffie-Hellman half-key (g*). For additional security, each individual half-key is
inserted into a certificate verified by a certification authority (CA). In other words, the



SECTION 17.1 SSL ARCHITECTURE 511

two parties do not directly exchange the half-keys; the CA sends the half-keys in an
RSA or DSS special certificate. When the client needs to calculate the pre-master, it
uses its own fixed half-key and the server half-key received in a certificate. The server
does the same, but in the reverse order. Note that no key-exchange messages are passed
in this method; only certificates are exchanged.

Fortezza

Fortezza (derived from the Italian word for fortress) is a registered trademark of the U.S.
National Security Agency (NSA). It is a family of security protocols developed for the
Defense Department. We do not discuss Fortezza in this text because of its complexity.

Encryption/Decryption Algorithms

There are several choices for the encryption/decryption algorithm. We can divide the
algorithms into 6 groups as shown in Figure 17.6. All block protocols use an 8-byte ini-
tialization vector (IV) except for Fortezza, which uses a 20-byte I'V.

Figure 17.6  Encryption/decryption algorithms

Encryption
Algorithms
| | | l | | |
NULL Stream Block Block Block Block
RC4 RC2 DES IDEA Fortezza
|: RC4_40 RC2_CBC_40 DES40_CBC IDEA_CBC FORTEZZA_CBC
RC4_128 DES_CBC
3DES_EDE_CBC
NULL

The NULL category simply defines the lack of an encryption/decryption algorithm.

Stream RC

Two RC algorithms are defined in stream mode: RC4-40 (40-bit key) and RC4-128
(128-bit key).

Block RC

One RC algorithm is defined in block mode: RC2_CBC_40 (40-bit key).

DES

All DES algorithms are defined in block mode. DES40_CBC uses a 40-bit key. Stan-
dard DES is defined as DES_CBC. 3DES_EDE_CBC uses a 168-bit key.

IDEA

The one IDEA algorithm defined in block mode is IDEA_CBC, with a 128-bit key.



512

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Fortezza
The one Fortezza algorithm defined in block mode is FORTEZZA_CBC, with a 96-bit key.

Hash Algorithms

SSL uses hash algorithms to provide message integrity (message authentication). Three
hash functions are defined, as shown in Figure 17.7.

Figure 17.7 Hash algorithms for message integrity

Hash
Algorithms

| ~u | | wmps | | sHa1 |

Null

The two parties may decline to use an algorithm. In this case, there is no hash function
and the message is not authenticated.

MD5

The two parties may choose MD5 as the hash algorithm. In this case, a 128-key MDS5
hash algorithm is used.

SHA-1

The two parties may choose SHA as the hash algorithm. In this case, a 160-bit SHA-1
hash algorithm is used.

Cipher Suite

The combination of key exchange, hash, and encryption algorithms defines a cipher
suite for each SSL session. Table 17.1 shows the suites used in the United States. We
have not included those that are used for export. Note that not all combinations of key
exchange, message integrity, and message authentication are in the list.

Each suite starts with the term “SSL” followed by the key exchange algorithm. The
word “WITH” separates the key exchange algorithm from the encryption and hash
algorithms. For example,

SSL_DHE_RSA_WITH_DES_CBC_SHA

defines DHE_RSA (ephemeral Diffie-Hellman with RSA digital signature) as the key
exchange with DES_CBC as the encryption algorithm and SHA as the hash algorithm.



SECTION 17.1 SSL ARCHITECTURE 513

Table 17.1 SSL cipher suite list

Cipher suite Key Exchange | Encryption Hash

SSL_NULL_WITH_NULL_NULL NULL NULL NULL
SSL_RSA_WITH_NULL_MDS5 RSA NULL MD5

SSL_RSA_WITH_NULL_SHA RSA NULL SHA-1
SSL_RSA_WITH_RC4_128_MDS5 RSA RC4 MD5

SSL_RSA_WITH_RC4_128_SHA RSA RC4 SHA-1
SSL_RSA_WITH_IDEA_CBC_SHA RSA IDEA SHA-1
SSL_RSA_WITH_DES_CBC_SHA RSA DES SHA-1
SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES SHA-1
SSL_DH_anon_WITH_RC4_128_MD5 DH_anon RC4 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH_anon DES SHA-1
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH_anon 3DES SHA-1
SSL_DHE_RSA_WITH_DES_CBC_SHA DHE_RSA DES SHA-1
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE_RSA 3DES SHA-1
SSL_DHE_DSS_WITH_DES_CBC_SHA DHE_DSS DES SHA-1
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE_DSS 3DES SHA-1
SSL_DH_RSA_WITH_DES_CBC_SHA DH_RSA DES SHA-1
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA DH_RSA 3DES SHA-1
SSL_DH_DSS_WITH_DES_CBC_SHA DH_DSS DES SHA-1
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA DH_DSS 3DES SHA-1
SSL_FORTEZZA_DMS_WITH_NULL_SHA Fortezza NULL SHA-1
SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA Fortezza Fortezza SHA-1
SSL_FORTEZZA_DMS_WITH_RC4_128_SHA Fortezza RC4 SHA-1

Note that DH is fixed Diffie-Hellman, DHE is ephemeral Diffie-Hellman, and DH-anon
is anonymous Diffie-Hellman.

Compression Algorithms

As we said before, compression is optional in SSLv3. No specific compression algo-
rithm is defined for SSLv3. Therefore, the default compression method is NULL. How-
ever, a system can use whatever compression algorithm it desires.

Cryptographic Parameter Generation

To achieve message integrity and confidentiality, SSL needs six cryptographic secrets,
four keys and two IVs. The client needs one key for message authentication (HMAC),
one key for encryption, and one IV for block encryption. The server needs the same.
SSL requires that the keys for one direction be different from those for the other direc-
tion. If there is an attack in one direction, the other direction is not affected. The param-
eters are generated using the following procedure:

1. The client and server exchange two random numbers; one is created by the client

and the other by the server.

2. The client and server exchange one pre-master secret using one of the key-
exchange algorithms we discussed previously.



514 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

3. A 48-byte master secret is created from the pre-master secret by applying two
hash functions (SHA-1 and MDS5), as shown in Figure 17.8.

Figure 17.8 Calculation of master secret from pre-master secret

L 1 1 1 1 |
v

v
L

| L | L
v

|t | |
PM: Pre-master Secret

| ]
Master secret SR: Server Random Number

(48 bytes) CR: Client Random Number

4. The master secret is used to create variable-length key material by applying the
same set of hash functions and prepending with different constants as shown in
Figure 17.9. The module is repeated until key material of adequate size is created.

Figure 17.9 Calculation of key material from master secret

L 1 1 | L |

hash hash hash
L | L L

MD5

vee ﬁ M: Master Secret
]

SR: Server Random Number
Key Material CR: Client Random Number

l

MD5

hash




SECTION 17.1 SSL ARCHITECTURE 515

Note that the length of the key material block depends on the cipher suite selected
and the size of keys needed for this suite.

5. Six different keys are extracted from the key material, as shown in Figure 17.10

Figure 17.10 Extractions of cryptographic secrets from key material

Auth. Key: Authentication Key
Enc. Key: Encryption Key

IV: Initialization Vector
Key Material

v
| | | | | | |

Client Server Client Server Client Server
Auth. Key Auth. Key Enc.Key  Enc. Key v v

Sessions and Connections

SSL differentiates a connection from a session. Let us elaborate on these two terms
here. A session is an association between a client and a server. After a session is
established, the two parties have common information such as the session identifier,
the certificate authenticating each of them (if necessary), the compression method (if
needed), the cipher suite, and a master secret that is used to create keys for message
authentication encryption.

For two entities to exchange data, the establishment of a session is necessary, but
not sufficient; they need to create a connection between themselves. The two entities
exchange two random numbers and create, using the master secret, the keys and param-
eters needed for exchanging messages involving authentication and privacy.

A session can consist of many connections. A connection between two parties can
be terminated and reestablished within the same session. When a connection is termi-
nated, the two parties can also terminate the session, but it is not mandatory. A session
can be suspended and resumed again.

To create a new session, the two parties need to go through a negotiation process.
To resume an old session and create only a new connection, the two parties can skip
part of the negotiation process and go through a shorter one. There is no need to create
a master secret when a session is resumed.

The separation of a session from a connection prevents the high cost of creating a
master secret. By allowing a session to be suspended and resumed, the process of the
master secret calculation can be eliminated. Figure 17.11 shows the idea of a session
and connections inside that session.

In a session, one party has the role of a client and the other the role of a server;
in a connection, both parties have equal roles, they are peers.




516 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Figure 17.11 A session and connections

. Server
Client
Session
Connection . Connection
Connection
state state
Session . Session
state . state
Connection . Connection
Connection
state state

Session State

A session is defined by a session state, a set of parameters established between the
server and the client. Table 17.2 shows the list of parameters for a session state.

Table 17.2 Session state parameters

Parameter Description
Session ID A server-chosen 8-bit number defining a session.
Peer Certificate A certificate of type X509.v3. This parameter may by empty (null).
Compression Method The compression method.
Cipher Suite The agreed-upon cipher suite.
Master Secret The 48-byte secret.
Is resumable A yes-no flag that allows new connections in an old session.

Connection State

A connection is defined by a connection state, a set of parameters established between
two peers. Table 17.3 shows the list of parameters for a connection state.

SSL uses two attributes to distinguish cryptographic secrets: write and read. The
term wrife specifies the key used for signing or encrypting outbound messages. The term
read specifies the key used for verifying or decrypting inbound messages. Note that the
write key of the client is the same as the read key of the server; the read key of the client
is the same as the write key of the server.

The client and the server have six different cryptography secrets: three read secrets
and three write secrets.
The read secrets for the client are the same as the write secrets for the server and vice versa.




SECTION 17.2 FOUR PROTOCOLS 517

Table 17.3 Connection state parameters

Parameter Description

Server and client random A sequence of bytes chosen by the server and client for

numbers each connection.

Server write MAC secret The outbound server MAC key for message integrity. The
server uses it to sign; the client uses it to verify.

Client write MAC secret The outbound client MAC key for message integrity. The
client uses it to sign; the server uses it to verify.

Server write secret The outbound server encryption key for message integrity.

Client write secret The outbound client encryption key for message integrity.

Initialization vectors The block ciphers in CBC mode use initialization vectors

(IVs). One initialization vector is defined for each cipher
key during the negotiation, which is used for the first block
exchange. The final cipher text from a block is used as the
IV for the next block.

Sequence numbers Each party has a sequence number. The sequence number
starts from 0 and increments. It must not exceed 24— 1.

17.2  FOUR PROTOCOLS

We have discussed the idea of SSL without showing how SSL accomplishes its tasks.
SSL defines four protocols in two layers, as shown in Figure 17.12. The Record Protocol
is the carrier. It carries messages from three other protocols as well as the data coming
from the application layer. Messages from the Record Protocol are payloads to the
transport layer, normally TCP. The Handshake Protocol provides security parameters
for the Record Protocol. It establishes a cipher set and provides keys and security

Figure 17.12  Four SSL protocols

1
. . I
i Application layer !
Handshake ChangeCipherSpec Alert
Protocol Protocol Protocol
SSL
Y Y Y
Record Protocol




518

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

parameters. It also authenticates the server to the client and the client to the server if
needed. The ChangeCipherSpec Protocol is used for signalling the readiness of crypto-
graphic secrets. The Alert Protocol is used to report abnormal conditions. We will
briefly discuss these protocols in this section.

Handshake Protocol

The Handshake Protocol uses messages to negotiate the cipher suite, to authenticate
the server to the client and the client to the server if needed, and to exchange informa-
tion for building the cryptographic secrets. The handshaking is done in four phases, as
shown in Figure 17.13.

Figure 17.13 Handshake Protocol

E
Client %ﬁ Server
Phase | Establishing Security Capabilities
Server authentication and key exchange Phase 11
Phase 111 Client authentication and key exchange
Finalizing the Handshake Protocol Phase IV

Phase I: Establishing Security Capability

In Phase 1, the client and the server announce their security capabilities and choose those
that are convenient for both. In this phase, a session ID is established and the cipher suite
is chosen. The parties agree upon a particular compression method. Finally, two random
numbers are selected, one by the client and one by the server, to be used for creating a
master secret as we saw before. Two messages are exchanged in this phase: ClientHello
and ServerHello messages. Figure 17.14 gives additional details about Phase 1.

ClientHello The client sends the ClientHello message. It contains the following:
a. The highest SSL version number the client can support.

b. A 32-byte random number (from the client) that will be used for master secret
generation.

c. A session ID that defines the session.
d. A cipher suite that defines the list of algorithms that the client can support.
e. A list of compression methods that the client can support.



SECTION 17.2 FOUR PROTOCOLS 519

Figure 17.14 Phase I of Handshake Protocol

. Phase I
Client
ClientHello
Version
Client random number
Session ID >

Cipher suite
Compression methods

ServerHello
Version
Server random number
< Session ID

Selected cipher set
Selected compression method

ServerHello The server responds to the client with a ServerHello message. It con-
tains the following:

a. An SSL version number. This number is the lower of two version numbers: the
highest supported by the client and the highest supported by the server.

b. A 32-byte random number (from the server) that will be used for master secret
generation.

c. A session ID that defines the session.
The selected cipher set from the client list.
e. The selected compression method from the client list.

After Phase I, the client and server know the following:
The version of SSL
The algorithms for key exchange, message authentication, and encryption

The compression method

(M

The two random numbers for key generation

Phase II: Server Key Exchange and Authentication

In phase II, the server authenticates itself if needed. The sender may send its certificate,
its public key, and may also request certificates from the client. At the end, the server
announces that the serverHello process is done. Figure 17.15 gives additional details
about Phase II.



520

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Figure 17.15 Phase II of Handshake Protocol

: =
. Server
Client ) Phase II —
Certificate
<—| A chain of certificates I—
ServerKeyExchange
<—| Server public key I—
CertificateRequest

List of acceptable certificates
List of acceptable authorities

ServerHelloDone

<—| No contents I—

Certificate If it is required, the server sends a Certificate message to authenticate
itself. The message includes a list of certificates of type X.509. The certificate is not
needed if the key-exchange algorithm is anonymous Diffie-Hellman.

ServerKeyExchange After the Certificate message, the server sends a ServerKey-
Exchange message that includes its contribution to the pre-master secret. This message
is not required if the key-exchange method is RSA or fixed Diffie-Hellman.

CertificateRequest The server may require the client to authenticate itself. In this
case, the server sends a CertificateRequest message in Phase II that asks for certifica-
tion in Phase III from the client. The server cannot request a certificate from the client if
it is using anonymous Diffie-Hellman.

ServerHelloDone The last message in Phase II is the ServerHelloDone message,
which is a signal to the client that Phase II is over and that the client needs to start
Phase II1.

After Phase 11,
(1 The server is authenticated to the client.

(1 The client knows the public key of the server if required.

Let us elaborate on the server authentication and the key exchange in this phase. The
first two messages in this phase are based on the key-exchange method. Figure 17.16
shows four of six methods we discussed before. We have not included the NULL
method because there is no exchange. We have not included the Fortezza method
because we do not discuss it in depth in this book.



SECTION 17.2 FOUR PROTOCOLS 521

Figure 17.16 Four cases in Phase Il

i Certificate

No certificate

<—| RSA Enc-cert
ServerKeyExchange

i Certificate

No ServerKeyExchange
Db iy <—| g8

a.RSA b. Anonymous DH

Certificate

<« RSAorDSS Sig-cert — DH cert

ServerKeyExchange

; No ServerKeyExchange
—  Sig@nre) S I e i

c. Ephemeral DH d. Fixed DH

4

RSA. In this method, the server sends its RSA encryption/decryption public-key
certificate in the first message. The second message, however, is empty because the
pre-master secret is generated and sent by the client in the next phase. Note that
the public-key certificate authenticates the server to the client. When the server
receives the pre-master secret, it decrypts it with its private key. The possession of
the private key by the server is proof that the server is the entity that it claims to be
in the public-key certificate sent in the first message.

Anonymous DH. In this method, there is no Certificate message. An anonymous
entity does not have a certificate. In the ServerKeyExchange message, the server
sends the Diffie-Hellman parameters and its half-key. Note that the server is not
authenticated in this method.

Ephemeral DH. In this method, the server sends either an RSA or a DSS digital
signature certificate. The private key associated with the certificate allows the
server to sign a message; the public key allows the recipient to verify the signature.
In the second message, the server sends the Diffie-Hellman parameters and the
half-key signed by its private key. Other text is also sent. The server is authenti-
cated to the client in this method, not because it sends the certificate, but because it
signs the parameters and keys with its private key. The possession of the private
key is proof that the server is the entity that it claims to be in the certificate. If an
impostor copies and sends the certificate to the client, pretending that it is the
server claimed in the certificate, it cannot sign the second message because it does
not have the private key.

Fixed DH. In this method, the server sends an RSA or DSS digital signature certifi-
cate that includes its registered DH half-key. The second message is empty. The



522

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

certificate is signed by the CA’s private key and can be verified by the client using
the CA’s public key. In other words, the CA is authenticated to the client and the
CA claims that the half-key belongs to the server.

Phase I11: Client Key Exchange and Authentication

Phase I1I is designed to authenticate the client. Up to three messages can be sent from
the client to the server, as shown in Figure 17.17.

Figure 17.17  Phase Il of Handshake Protocol

Client % Phase IIT

Certificate

—| Chain of certificates I—>

ClientKeyExchange

— Client Public Key ——

Certificate Verify

—| Hash code to prove certificate I—>

Server

Certificate To certify itself to the server, the client sends a Certificate message. Note
that the format is the same as the Certificate message sent by the server in Phase II, but
the contents are different. It includes the chain of certificates that certify the client.This
message is sent only if the server has requested a certificate in Phase II. If there is a
request and the client has no certificate to send, it sends an Alert message (part of the
Alert Protocol to be discussed later) with a warning that there is no certificate. The
server may continue with the session or may decide to abort.

ClientKeyExchange After sending the Certificate message, the client sends a Client-
KeyExchange message, which includes its contribution to the pre-master secret. The
contents of this message are based on the key-exchange algorithm used. If the method
is RSA, the client creates the entire pre-master secret and encrypts it with the RSA
public key of the server. If the method is anonymous or ephemeral Diffie-Hellman, the
client sends its Diffie-Hellman half-key. If the method is Fortezza, the client sends the
Fortezza parameters. The contents of this message are empty if the method is fixed
Diffie-Hellman.

CertificateVerify If the client has sent a certificate declaring that it owns the public
key in the certificate, it needs to prove that it knows the corresponding private key. This
is needed to thwart an impostor who sends the certificate and claims that it comes from
the client. The proof of private-key possession is done by creating a message and sign-
ing it with the private key. The server can verify the message with the public key



SECTION 17.2 FOUR PROTOCOLS 523

already sent to ensure that the certificate actually belongs to the client. Note that this is
possible if the certificate has a signing capability; a pair of keys, public and private, is
involved. The certificate for fixed Diffie-Hellman cannot be verified this way.

After Phase III,
[ The client is authenticated for the server.

[ Both the client and the server know the pre-master secret.

Let us elaborate on the client authentication and the key exchange in this phase.
The three messages in this phase are based on the key-exchange method. Figure 17.18
shows four of the six methods we discussed before. Again, we have not included the
NULL method or the Fortezza method.

Figure 17.18 Four cases in Phase III

S ﬁh Encrypted with server’s public key
Sig,: Signed with client’s public key

- -
__Nogerificate J __Nocertificate J
Clie[r\l’tKeyExchange ClientKeyExchange
a. RSA b. Anonymous DH

=

2 =
Certificate = Certificate

—| RSA or DSS Certificate |—> DH Certificate

ClientKeyExchange

- X No ClientKeyExchange
—| Sig, (g, P, &°) |—> --------------------------

c. Ephemeral DH d. Fixed DH

[d RSA. In this case, there is no Certificate message unless the server has explicitly
requested one in Phase II. The ClientKeyExchange method includes the pre-master
key encrypted with the RSA public key received in Phase II.

(1 Anonymous DH. In this method, there is no Certificate message. The server does
not have the right to ask for the certificate (in Phase II) because both the client and
the server are anonymous. In the ClientKeyExchange message, the server sends the
Diffie-Hellman parameters and its half-key. Note that the client is not authenticated
to the server in this method.



524

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

(1 Ephemeral DH. In this method, the client usually has a certificate. The server
needs to send its RSA or DSS certificate (based on the agreed-upon cipher set). In
the ClientKeyExchange message, the client signs the DH parameters and its half-
key and sends them. The client is authenticated to the server by signing the second
message. If the client does not have the certificate, and the server asks for it, the
client sends an Alert message to warn the client. If this is acceptable to the server,
the client sends the DH parameters and key in plaintext. Of course, the client is not
authenticated to the server in this situation.

(1 Fixed DH. In this method, the client usually sends a DH certificate in the first
message. Note that the second message is empty in this method. The client is
authenticated to the server by sending the DH certificate.

Phase 1V: Finalizing and Finishing

In Phase IV, the client and server send messages to change cipher specification and to
finish the handshaking protocol. Four messages are exchanged in this phase, as shown
in Figure 17.19.

Figure 17.19 Phase IV of Handshake Protocol

E
Phase IV Server
ChangeCipherSpec
—| ChangeCipherSpec value I >
Finished

—| MDS5 Hash + SHA Hash

b
A

ChangeCipherSpec

ChangeCipherSpec value

A

Finished

< [
< | MDS5 Hash + SHA Hash |—

ChangeCipherSpec The client sends a ChangeCipherSpec message to show that it
has moved all of the cipher suite set and the parameters from the pending state to the
active state. This message is actually part of the ChangeCipherSpec Protocol that we
will discuss later.

Finished The next message is also sent by the client. It is a Finished message that
announces the end of the handshaking protocol by the client.

ChangeCipherSpec The server sends a ChangeCipherSpec message to show that it has
also moved all of the cipher suite set and parameters from the pending state to the active
state. This message is part of the ChangeCipherSpec Protocol, which will be discussed later.



SECTION 17.2 FOUR PROTOCOLS 525

After Phase IV, the client and server are ready to exchange data.

Finished Finally, the server sends a Finished message to show that handshaking is
totally completed.

ChangeCipherSpec Protocol

We have seen that the negotiation of the cipher suite and the generation of cryptographic
secrets are formed gradually during the Handshake Protocol. The question now is: When
can the two parties use these parameter secrets? SSL mandates that the parties cannot
use these parameters or secrets until they have sent or received a special message, the
ChangeCipherSpec message, which is exchanged during the Handshake protocol and
defined in the ChangeCipherSpec Protocol. The reason is that the issue is not just send-
ing or receiving a message. The sender and the receiver need two states, not one. One
state, the pending state, keeps track of the parameters and secrets. The other state, the
active state, holds parameters and secrets used by the Record Protocol to sign/verify or
encrypt/decrypt messages. In addition, each state holds two sets of values: read
(inbound) and wrife (outbound).

The ChangeCipherSpec Protocol defines the process of moving values between the
pending and active states. Figure 17.20 shows a hypothetical situation, with hypothetical

Figure 17.20 Movement of parameters from pending state to active state

Server
Client
W: Write (sending)
R: Reading (receiving)
W | R W | R W | R W | R
Cipher aaa | aaa aaa | aaa | Cipher
MAC bbb | bbb B bbb | bbb [ MAC
Cipher key XXX | yyy yyy | xxx | Cipher key
MAC key xx | yy ¥y | xx | MAC key
I\Y X y y X [ IV
Active Pending Active Pending
ChangeCipherSpec
WIR|[W][R - — WIR|[W]R
Cipher | aaa aaa The client Finished message aaa | | aaa Cipher
MAC bbb bbb can be signed and encrypted bbb | [ bbb MAC
Cipher key | xxx yyy by the client and verified and XXX | | yyy Cipher key
MACkey | xx 21 decrypted by the server. XX Y MAC key
IV | x y X y v
Active Pending Active Pending
ChangeCipherSpec
W | R W | R W | R W | R
Cipher | aaa | aaa The server Finished message aaa | aaa Cipher
MAC | bbb | bbb can be signed and encrypted bbb | bbb MAC
Cipher key | xxx | yyy by the server and verified and yyy | xxx Cipher key
MACkey | xx | yy . yy | xx MAC key
W =T decrypted by the client. v T v
Active Pending Active Pending




526

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

values, to show the concept. Only a few parameters are shown. Before the exchange of
any ChangeCipherSpec messages, only the pending columns have values.

First the client sends a ChangeCipherSpec message. After the client sends this
message, it moves the write (outbound) parameters from pending to active. The client
can now use these parameters to sign or encrypt outbound messages. After the receiver
receives this message, it moves the read (inbound) parameters from the pending to the
active state. Now the server can verify and decrypt messages. This means that the
Finished message sent by the client can be signed and encrypted by the client and veri-
fied and decrypted by the server.

The server sends the ChangeCipherSpec message after receiving the Finish message
from the client. After sending this message it moves the write (outbound) parameters from
pending to active. The server can now use these parameters to sign or encrypt outbound
messages. After the client receives this message, it moves the read (inbound) parameters
from the pending to the active state. Now the client can verify and decrypt messages.

Of course, after the exchanged Finished messages, both parties can communicate
in both directions using the read/write active parameters.

Alert Protocol

SSL uses the Alert Protocol for reporting errors and abnormal conditions. It has only
one message type, the Alert message, that describes the problem and its level (warning
or fatal). Table 17.4 shows the types of Alert messages defined for SSL.

Table 17.4  Alerts defined for SSL

Value Description Meaning
0 CloseNotify Sender will not send any more messages.
10 UnexpectedMessage An inappropriate message received.
20 BadRecordMAC An incorrect MAC received.
30 DecompressionFailure Unable to decompress appropriately.
40 HandshakeFailure Sender unable to finalize the handshake.
41 NoCertificate Client has no certificate to send.
42 BadCertificate Received certificate corrupted.
43 UnsupportedCertificate Type of received certificate is not supported.
44 CertificateRevoked Signer has revoked the certificate.
45 CertificateExpired Certificate expired.
46 CertificateUnknown Certificate unknown.
47 lllegalParameter An out-of-range or inconsistent field.

Record Protocol

The Record Protocol carries messages from the upper layer (Handshake Protocol,
ChangeCipherSpec Protocol, Alert Protocol, or application layer). The message is frag-
mented and optionally compressed; a MAC is added to the compressed message using



SECTION 17.2 FOUR PROTOCOLS 527

the negotiated hash algorithm. The compressed fragment and the MAC are encrypted
using the negotiated encryption algorithm. Finally, the SSL header is added to the
encrypted message. Figure 17.21 shows this process at the sender. The process at the
receiver is reversed.

Figure 17.21 Processing done by the Record Protocol

Payload from upper layer protocol

Fragment | vee
Other values
| Compressed |—>| Hash |<— M A\é}rslg‘cret RPH: Record Protocol header
0 8 16 24 31
MAC Protocol Version Length ... ~
N - ... Length
. Write LR
Encryption f«— .. o)
JI.k Cipher secret Compressed fragment -
P . g2
N 2%
| Encrypted fragment | 23 %
E ! MAC <&
| SSLpayload m (0, 16, or 20 bytes)
a. Process b. Encapsulation

Note, however, that this process can only be done when the cryptographic
parameters are in the active state. Messages sent before the movement from pending
to active are neither signed nor encrypted. However, in the next sections, we will see
some messages in the Handshake Protocol that use some defined hash values for

message integrity.

Fragmentation/Combination

At the sender, a message from the application layer is fragmented into blocks of
bytes, with the last block possibly less than this size. At the receiver, the fragments are
combined together to make a replica of the original message.

214

Compression/Decompression

At the sender, all application layer fragments are compressed by the compression
method negotiated during the handshaking. The compression method needs to be loss-
less (the decompressed fragment must be an exact replica of the original fragment). The
size of the fragment must not exceed 1024 bytes. Some compression methods work



528 CHAPTER 17

SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

only on a predefined block size and if the size of the block is less than this, some pad-
ding is added. Therefore, the size of the compressed fragment may be greater than the
size of the original fragment. At the receiver, the compressed fragment is decompressed
to create a replica of the original. If the size of the decompressed fragment exceeds 2!,
a fatal decompression Alert message is issued. Note that compression/decompression is
optional in SSL.

Signing/Verifying

At

the sender, the authentication method defined during the handshake (NULL, MDS5,

or SHA-1) creates a signature (MAC), as shown in Figure 17.22.

Figure 17.22  Calculation of MAC

Pad-1: Byte 0x36 (00110110) repeated 48 times for MD5 and 40 times for SHA-1
Pad-2: Byte 0x5C (01011100) repeated 48 times for MDS5 and 40 times for SHA-1

MAC Sequence | Compressed | Compressed
. Pad-1
write secret number type length

!

Negotiated hash algorithm
(MDS5 or SHA-1)

|

_MAC Pad-2 Hash
write secret

Negotiated hash algorithm
(MDS5 or SHA-1)

|

MAC

Compressed fragment

The hash algorithm is applied twice. First, a hash is created from the concatena-

tions of the following values:

a.

e.
f.

The MAC write secret (authentication key for the outbound message)

b. Pad-1, which is the byte 0x36 repeated 48 times for MDS5 and 40 times for SHA-1
c.
d

The sequence number for this message

. The compressed type, which defines the upper-layer protocol that provided the

compressed fragment
The compressed length, which is the length of the compressed fragment
The compressed fragment itself

Second, the final hash (MAC) is created from the concatenation of the following values:

a.

The MAC write secret



SECTION 17.3 SSL MESSAGE FORMATS 529

b. Pad-2, which is the byte 0x5C repeated 48 times for MD5 and 40 times for SHA-1
c. The hash created from the first step

At the receiver, the verifying is done by calculating a new hash and comparing it to the
received hash.

Encryption/Decryption

At the sender, the compressed fragment and the hash are encrypted using the cipher
write secret. At the receiver, the received message is decrypted using the cipher read
secret. For block encryption, padding is added to make the size of the encryptable mes-
sage a multiple of the block size.

Framing/Deframing

After the encryption, the Record Protocol header is added at the sender. The header is
removed at the receiver before decryption.

17.3 SSL MESSAGE FORMATS

As we have discussed, messages from three protocols and data from the application
layer are encapsulated in the Record Protocol messages. In other words, the Record
Protocol message encapsulates messages from four different sources at the sender site.
At the receiver site, the Record Protocol decapsulates the messages and delivers them
to different destinations. The Record Protocol has a general header that is added to each
message coming from the sources, as shown in Figure 17.23.

Figure 17.23 Record Protocol general header

0 8 16 24 31

Protocol Version Length ...

... Length

The fields in this header are listed below.

(1 Protocol. This 1-byte field defines the source or destination of the encapsulated
message. It is used for multiplexing and demultiplexing. The values are 20
(ChangeCipherSpec Protocol), 21 (Alert Protocol), 22 (Handshake Protocol), and
23 (data from the application layer).

1 Version. This 2-byte field defines the version of the SSL; one byte is the major
version and the other is the minor. The current version of SSL is 3.0 (major 3 and
minor 0).

(1 Length. This 2-byte field defines the size of the message (without the header)
in bytes.



530 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

ChangeCipherSpec Protocol

As we said before, the ChangeCipherSpec Protocol has one message, the Change-
CipherSpec message. The message is only one byte, encapsulated in the Record Protocol
message with protocol value 20, as shown in Figure 17.24.

Figure 17.24 ChangeCipherSpec message

0 8 16 24 31
Protocol: 20 Version Length: 0
... Length: 1 CCS: 1

The one-byte field in the message is called the CCS and its value is currently 1.

Alert Protocol

The Alert Protocol, as we discussed before, has one message that reports errors in the
process. Figure 17.25 shows the encapsulation of this single message in the Record
Protocol with protocol value 21.

Figure 17.25 Alert message

0 8 16 24 31
Protocol: 21 Version Length: 0

... Length: 2 Level Description

The two fields of the Alert message are listed below.

(1 Level. This one-byte field defines the level of the error. Two levels have been
defined so far: warning and fatal.

(1 Description. The one-byte description defines the type of error.

Handshake Protocol

Several messages have been defined for the Handshake Protocol. All of these messages

have the four-byte generic header shown in Figure 17.26. The figure shows the Record

Protocol header and the generic header for the Handshake Protocol. Note that the value

of the protocol field is 22.

(1 Type. This one-byte field defines the type of message. So far ten types have been
defined as listed in Table 17.5.



SECTION 17.3 SSL MESSAGE FORMATS

531

Figure 17.26 Generic header for Handshake Protocol

0 8 16 24 31
Protocol: 22 Version Length: ...
... Length: Type: Len
... Len:
Table 17.5 Dypes of Handshake messages
Type Message

0 HelloRequest
1 ClientHello
2 ServerHello

11 Certificate

12 ServerKeyExchange

13 CertificateRequest

14 ServerHelloDone

15 Certificate Verify

16 ClientKeyExchange

20 Finished

(1 Length (Len). This three-byte field defines the length of the message (exclud-
ing the length of the type and length field). The reader may wonder why we
need two length fields, one in the general Record header and one in the generic
header for the Handshake messages. The answer is that a Record message may
carry two Handshake messages at the same time if there is no need for another
message in between.

HelloRequest Message

The HelloRequest message, which is rarely used, is a request from the server to the cli-
ent to restart a session. This may be needed if the server feels that something is wrong
with the session and a fresh session is needed. For example, if the session becomes so
long that it threatens the security of the session, the server may send this message. The
client then needs to send a ClientHello message and negotiate the security parameters.
Figure 17.27 shows the format of this message. It is four bytes with a type value of 0.

The message has no body, so the value of the length field is also 0.

ClientHello Message

The ClientHello message is the first message exchanged during handshaking. Figure 17.28
shows the format of the message.



532 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Figure 17.27 HelloRequest message

0 8 16 24 31
Protocol: 22 Version Length ...
... Length: 4 Type: 0 Len ...
... Len: 0

Figure 17.28 ClientHello message

0 8 16 24 31
Protocol: 22 Version | Length ...
... Length Type: 1 Len ...
... Len Proposed version |

Client random number
(32 bytes)

| ID length

Session ID
(variable length)

Cipher suite length |

Cipher suites
(variable numbers, each of 2 bytes)

Com. methods length |

Compression methods
(variable number, each of 1 byte)

The type and length fields are as discussed previously. The following is a brief
description of the other fields.

(1 Version. This 2-byte field shows the version of the SSL used. The version is 3.0 for
SSL and 3.1 for TLS. Note that the version value, for example, 3.0, is stored in two
bytes: 3 in the first byte and 0 in the second.

(1 Client Random Number. This 32-byte field is used by the client to send the client
random number, which creates security parameters.

Session ID Length. This 1-byte field defines the length of the session ID (next
field). If there is no session ID, the value of this field is 0.

(1 Session ID. The value of this variable-length field is 0 when the client starts a new
session. The session ID is initiated by the server. However, if a client wants to
resume a previously stopped session, it can include the previously-defined session
ID in this field. The protocol defines a maximum of 32 bytes for the session ID.



SECTION 17.3 SSL MESSAGE FORMATS 533

Cipher Suite Length. This 2-byte field defines the length of the client-proposed
cipher suite list (next field).

[ Cipher Suite List. This variable-length field gives the list of cipher suites that the
client supports. The field lists the cipher suites from the most preferred to the least
preferred. Each cipher suite is encoded as a two-byte number.

Compression Methods Length. This 1-byte field defines the length of client-
proposed compression methods (next field).

Compression Method List. This variable-length field gives the list of com-
pression methods that the client supports. The field lists the methods from the
most preferred to the least preferred. Each method is encoded as a one-byte
number. So far, the only method is the NULL method (no compression). In this
case, the value of the compression method length is 1 and the compression
method list has only one element with the value of 0.

ServerHello Message

The ServerHello message is the server response to the ClientHello message. The format
is similar to the ClientHello message, but with fewer fields. Figure 17.29 shows the for-
mat of the message.

Figure 17.29 ServerHello message

0 8 16 24 31
Protocol: 22 Version | Length ...
... Length Type: 2 Len...
... Len Proposed version |

Server random number
(32 bytes)

| ID length

Session ID
(variable length)

Selected cipher suite Selected com. |

The version field is the same. The server random number field defines a value
selected by the server. The session ID length and the session ID field are the same as
those in the ClientHello message. However, the session ID is usually blank (and the
length is usually set to 0) unless the server is resuming an old session. In other words, if
the server allows a session to resume, it inserts a value in the session ID field to be used
by the client (in the ClientHello message) if the client wishes to reopen an old session.

The selected cipher suite field defines the single cipher suite selected by the server
from the list sent by the client. The compression method field defines the method
selected by the server from the list sent by the client.



534

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Certificate Message

The Certificate message can be sent by the client or the server to list the chain of public-
key certificates. Figure 17.30 shows the format.

Figure 17.30 Certificate message

0 8 16 24 31
Protocol: 22 Version | Length ...
... Length Type: 11 Len ...
... Len Certificate chain length

Certificate 1 len |

Certificate 1
(variable length)

Certificate N len

Certificate N
(variable length)

The value of the type field is 11. The body of the message includes the following
fields:

(1 Certificate Chain Length. This three-byte field shows the length of the certificate
chain. This field is redundant because its value is always 3 less than the value of
the length field.

(1 Certificate Chain. This variable-length field lists the chain of public-key certifi-
cates that the client or the server carries. For each certificate, there are two sub-fields:

a. A three-byte length field
b. The variable-size certificate itself

ServerKeyExchange Message

The ServerKeyExchange message is sent from the server to the client. Figure 17.31
shows the general format.

The message contains the keys generated by the server. The format of the message is
dependent on the cipher suite selected in the previous message. The client that receives
the message needs to interpret the message according to the previous information. If the
server has sent a certificate message, then the message also contains a signed parameter.

CertificateRequest Message

The CertificateRequest message is sent from the server to the client. The message asks the
client to authenticate itself to the server using one of the acceptable certificates and one of
the certificate authorities named in the message. Figure 17.32 shows the format.



SECTION 17.3 SSL MESSAGE FORMATS 535

Figure 17.31 ServerKeyExchange message

0 8 16 24 31
Protocol: 22 Version Length ...
... Length Type: 12 Len ...
... Len

Key lengths and elements

Hash if needed

Figure 17.32 CertificateRequest message

0 8 16 24 31
Protocol: 22 Version Length ...
... Length Type: 13 Len ...
... Len Len of cert types
Certificate types
(variable number, each of one byte)
Length of CAs

Length of CA 1 Name

CA 1 Name
Length of CA N Name

CA N Name

The value of the type field is 13. The body of the message includes the following
fields:
Len of Cert Types. This one-byte field shows the length of the certificate types.
Certificates Types. This variable-length field gives the list of the public-key certifi-
cate types that the server accepts. Each type is one byte.
Length of CAs. This two-byte field gives the length of the certificate authorities
(the rest of the packet).
Length of CA x Name. This two-byte field defines the length of the xth certificate
authority name. The value of x can be between 1 to N.
CA x Name. This variable-length field defines the name of the xth certificate
authority. The value of x can be between 1 to N.

O U o oud



536 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

ServerHelloDone Message

The ServerHelloDone message is the last message sent in the second phase of handshak-
ing. The message signals that phase II does not carry any extra information. Figure 17.33
shows the format.

Figure 17.33  ServerHelloDone message

0 8 16 24 31
Protocol: 22 Version Length ...
... Length: 4 Type: 14 Len ...
...Len: 0

CertificateVerify Message

The Certificate Verify message is the last message of Phase III. In this message, the client
proves that it actually owns the private key related to its public-key certificate. To do so,
the client creates a hash of all handshake messages sent before this message, and signs
them using the MDS5 or SHA-1 algorithm based on the certificate type of the client.
Figure 17.34 shows the format.

Figure 17.34  CertificateVerify message

0 8 16 24 31
Protocol: 22 Version Length ...
... Length Type: 15 Len ...
... Len
Hash
(variable length)

If the client private key is related to a DSS certificate, then the hash is based only
on the SHA-1 algorithm and the length of the hash is 20 bytes. If the client private key
is related to an RSA certificate, then there are two hashes (concatenated), one based on
MDS5 and the other based on SHA-1. The total length is 16 + 20 = 36 bytes. Figure 17.35
shows the hash calculation.

ClientKeyExchange Message

The ClientKeyExchange is the second message sent during the third phase of hand-
shaking. In this message, the client provides the keys. The format of the message
depends on the specific key exchange algorithms selected by two parties. Figure 17.36
shows the general idea.



SECTION 17.3 SSL MESSAGE FORMATS 537

Figure 17.35 Hash calculation for CertificateVerify message

Handshake messages |Master secret| Pad-1 |
1

|

MDS5 or SHA-1

Pad-1: Byte 0x36 (repeated 48 times for

Master secret Hash MD5 and 40 times for SHA-1)
I Pad-2: Byte 0x5C, repeated 48 times for
l MDS5 and 40 times for SHA-1

MDS5 or SHA-1

———

Figure 17.36  ClientKeyExchange message

0 8 16 24 31
Protocol: 22 Version Length ...
... Length Type: 16 Len ...
... Len
Key
(variable size)

Finished Message

The Finished message shows that the negotiation is over. It contains all of the messages
exchanged during handshaking, followed by the sender role, the master secret, and the
padding. The exact format depends on the type of cipher suite used. The general format
is shown in Figure 17.37.

Figure 17.37 shows that there is a concatenation of two hashes in the message.
Figure 17.38 shows how each is calculated.

Note that when the client or server sends the Finished message, it has already sent the
ChangeCipherSpec message. In other words, the write cryptographic secrets are in the
active state. The client or the server can treat the Finished message like a data fragment
coming from the application layer. The Finished message can be authenticated (using the
MAC in the cipher suite) and encrypted (using the encryption algorithm in the cipher suite).

Application Data

The Record Protocol adds a signature (MAC) at the end of the (possibly compressed)
fragment coming from the application layer and then encrypts the fragment and the



538 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Figure 17.37 Finished message

0 8 16 24 31
Protocol: 22 Version Length ...

... Length Type: 20 Len ...
... Len: 36

MDS5 hash
(16 bytes)

Encrypted

SHA-1 hash
(20 bytes)

MAC

Figure 17.38 Hash calculation for Finished message

Handshake messages | Sender Master secret | Pad-1 |
1

l

MDS5 or SHA-1

Master secret Hash

l Pad-1: Byte 0x36 (repeated 48 times for
MDS5 or SHA-1 MD5 and 40 times for SHA-1)

Pad-2: Byte 0x5C, repeated 48 times for
MDS5 and 40 times for SHA-1
Sender: 0x434C4E54 for client;
0x53525652 for server

MAC. After adding the general header with protocol value 23, the Record message is

transmitted. Note that the general header is not encrypted. Figure 17.39 shows the
format.

17.4 TRANSPORT LAYER SECURITY

The Transport Layer Security (TLS) protocol is the IETF standard version of the SSL
protocol. The two are very similar, with slight differences. Instead of describing TLS in
full, we highlight the differences between TLS and SSL protocols in this section.



SECTION 17.4 TRANSPORT LAYER SECURITY 539

Figure 17.39 Record Protocol message for application data

0 8 16 24 31
Protocol: 23 Version Length ...

... Length

Compressed fragment

Encrypted

MD5 or SHA-1 MAC

Version

The first difference is the version number (major and minor). The current version of
SSL is 3.0; the current version of TLS is 1.0. In other words, SSLv3.0 is compatible
with TLSv1.0.

Cipher Suite

Another minor difference between SSL and TLS is the lack of support for the Fortezza
method. TLS does not support Fortezza for key exchange or for encryption/decryption.
Table 17.6 shows the cipher suite list for TLS (without export entries).

Generation of Cryptographic Secrets

The generation of cryptographic secrets is more complex in TLS than in SSL. TLS first
defines two functions: the data-expansion function and the pseudorandom function. Let
us discuss these two functions.

Data-Expansion Function

The data-expansion function uses a predefined HMAC (either MDS5 or SHA-1) to
expand a secret into a longer one. This function can be considered a multiple-
section function, where each section creates one hash value. The extended secret is the
concatenation of the hash values. Each section uses two HMAC S, a secret and a seed.
The data-expansion function is the chaining of as many sections as required. However,
to make the next section dependent on the previous, the second seed is actually the out-
put of the first HMAC of the previous section as shown in Figure 17.40.

Pseudorandom Function (PRF)

TLS defines a pseudorandom function (PRF) to be the combination of two data-expan-
sion functions, one using MD5 and the other SHA-1. PRF takes three inputs, a secret, a



540

CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Table 17.6  Cipher Suite for TLS

Key

Cipher suite Exchange Encryption Hash
TLS_NULL_WITH_NULL_NULL NULL NULL NULL
TLS_RSA_WITH_NULL_MDS5 RSA NULL MDS5
TLS_RSA_WITH_NULL_SHA RSA NULL SHA-1
TLS_RSA_WITH_RC4_128_MDS5 RSA RC4 MD5
TLS_RSA_WITH_RC4_128_SHA RSA RC4 SHA-1
TLS_RSA_WITH_IDEA_CBC_SHA RSA IDEA SHA-1
TLS_RSA_WITH_DES_CBC_SHA RSA DES SHA-1
TLS_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES SHA-1
TLS_DH_anon_WITH_RC4_128_MD5 DH_anon RC4 MD5
TLS_DH_anon_WITH_DES_CBC_SHA DH_anon DES SHA-1
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA DH_anon 3DES SHA-1
TLS_DHE_RSA_WITH_DES_CBC_SHA DHE_RSA DES SHA-1
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE_RSA 3DES SHA-1
TLS_DHE_DSS_WITH_DES_CBC_SHA DHE_DSS DES SHA-1
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE_DSS 3DES SHA-1
TLS_DH_RSA_WITH_DES_CBC_SHA DH_RSA DES SHA-1
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA DH_RSA 3DES SHA-1
TLS_DH_DSS_WITH_DES_CBC_SHA DH_DSS DES SHA-1
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA DH_DSS 3DES SHA-1

Figure 17.40 Data-expansion function

Secret - - -» HMAC Secret - - —:| HMAC I Secret - - - »f

£

Hash m

Secret - --» HMAC

Expanded secret

label, and a seed. The label and seed are concatenated and serve as the seed for each data-
expansion function. The secret is divided into two halves; each half is used as the secret for
each data-expansion function. The output of two data-expansion functions is exclusive-
ored together to create the final expanded secret. Note that because the hashes created from



SECTION 17.4 TRANSPORT LAYER SECURITY 541

MDS5 and SHA-1 are of different sizes, extra sections of MD5-based functions must be
created to make the two outputs the same size. Figure 17.41 shows the idea of PRF.

Figure 17.41 PRF

PRF |—|—'
l seed - seed l
Half secret - 1- - - > MD5 SHA-1 [<- - - - Half secret
v v
| Expanded secret | | Expanded secret |
o
v
| New secret |

Pre-master Secret

The generation of the pre-master secret in TLS is exactly the same as in SSL.

Master Secret

TLS uses the PRF function to create the master secret from the pre-master secret. This
is achieved by using the pre-master secret as the secret, the string “master secret” as the
label, and concatenation of the client random number and server random number as the
seed. Note that the label is actually the ASCII code of the string “master secret”. In other
words, the label defines the output we want to create, the master secret. Figure 17.42
shows the idea.

Figure 17.42 Master secret generation

PM ”“Master secret”” CR|SR |
Secret Label Seed
Y A, Y
PM: Pre-master Secret
Pseudorandom Function CR: Client Random Number
(PRF) SR: Server Random Number
|: Concatenation

Y

Master secret |




CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Key Material

TLS uses the PRF function to create the key material from the master secret. This time
the secret is the master secret, the label is the string “key expansion”, and the seed is the
concatenation of the server random number and the client random number, as shown in
Figure 17.43.

Figure 17.43 Key material generation

Master secret ” “Key expansion”” SR|CR |

Secret Label Seed

4 4 Y

CR: Client Random Number

Pseudorandom Function SR: Server Random Number

(PRF) .
|: Concatenation

Y

| Key material |

Alert Protocol

TLS supports all of the alerts defined in SSL except for NoCertificate. TLS also adds
some new ones to the list. Table 17.7 shows the full list of alerts supported by TLS.

Table 17.7 Alerts defined for TLS

Value Description Meaning
0 CloseNotify Sender will not send any more messages.
10 UnexpectedMessage An inappropriate message received.
20 BadRecordMAC An incorrect MAC received.
21 DecryptionFailed Decrypted message is invalid.
22 RecordOverflow Message size is more than 214+ 2048.
30 DecompressionFailure Unable to decompress appropriately.
40 HandshakeFailure Sender unable to finalize the handshake.
42 BadCertificate Received certificate corrupted.
43 UnsupportedCertificate Type of received certificate is not supported.
44 CertificateRevoked Signer has revoked the certificate.
45 CertificateExpired Certificate has expired.
46 CertificateUnknown Certificate unknown.
47 1llegalParameter A field out of range or inconsistent with others.
48 UnknownCA CA could not be identified.




SECTION 17.4 TRANSPORT LAYER SECURITY 543

Table 17.7 Alerts defined for TLS (continued)

Value Description Meaning

49 AccessDenied No desire to continue with negotiation.

50 DecodeError Received message could not be decoded.

51 DecryptError Decrypted ciphertext is invalid.

60 ExportRestriction Problem with U.S. restriction compliance.

70 ProtocolVersion The protocol version is not supported.

71 InsufficientSecurity More secure cipher suite needed.

80 InternalError Local error.

90 UserCanceled The party wishes to cancel the negotiation.

100 NoRenegotiation The server cannot renegotiate the handshake.
Handshake Protocol

TLS has made some changes in the Handshake Protocol. Specifically, the details of the
Certificate Verify message and the Finished message have been changed.

CertificateVerify Message

In SSL, the hash used in the Certificate Verify message is the two-step hash of the hand-
shake messages plus a pad and the master secret. TLS has simplified the process. The
hash in the TLS is only over the handshake messages, as shown in Figure 17.44.

Figure 17.44 Hash for CertificateVerify message in TLS

‘ Handshake Messages ‘

|

MDS5 or SHA-1

i

The calculation of the hash for the Finished message has also been changed. TLS
uses the PRF to calculate two hashes used for the Finished message, as shown in
Figure 17.45.

Finished Message

Record Protocol

The only change in the Record Protocol is the use of HMAC for signing the message.
TLS uses the MAC, as defined in Chapter 11, to create the HMAC. TLS also adds the
protocol version (called Compressed version) to the text to be signed. Figure 17.46
shows how the HMAC is formed.



544 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Figure 17.45 Hash for Finished message in TLS

’ Handshake Messages ‘

Finished label:

“Client finished” for client - SHA-1

“Server finished” for server

Master secret | Finished label‘ Hash m

Secret Label Seed

A Y

Pseudorandom Function
(PRF)

r

Figure 17.46 HMAC for TLS

T MAC secret
left-padded to 512 bits
ipad e ipad: Byte 0x36 repeated 64 t?mes
opad: Byte 0x5C repeated 64 times
. Sequence | Compressed | Compressed | Compressed
512 bits number type version length Compressed fragment
L 1
MAC secret v
left-padded to 512 bits | MDS5 or SHA-1

opad —»%—)
512 bits

Y

| MD5 or SHA-1




SECTION 17.7 SUMMARY 545

17.5 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this
chapter. The items enclosed in brackets refer to the reference list at the end of the
book.

Books
[Res01], [Tho00], [Sta06], [Rhe03], and [PHS03] discuss SSL and TLS.

WebSites

The following website give more information about topics discussed in this chapter.

http://www.ietf.org/rfc/rfc2246.txt

17.6 KEY TERMS

Alert Protocol Hypertext Transfer Protocol (HTTP)
anonymous Diffie-Hellman key material

ChangeCipherSpec Protocol master secret

cipher suite pre-master secret

connection pseudorandom function (PRF)
data-expansion function Record Protocol

ephemeral Diffie-Hellman Secure Sockets Layer (SSL) Protocol
fixed Diffie-Hellman session

Fortezza Transport Layer Security (TLS) Protocol

Handshake Protocol

17.7 SUMMARY

[ A transport layer security protocol provides end-to-end security services for appli-
cations that use the services of a reliable transport layer protocol such as TCP. Two
protocols are dominant today for providing security at the transport layer: Secure
Sockets Layer (SSL) and Transport Layer Security (TLS).

[d SSL (or TLS) provides services such as fragmentation, compression, message
integrity, confidentiality, and framing on data received from the application layer.
Typically, SSL (or TLS) can receive application data from any application layer
protocol, but the protocol is normally HTTP.

(1 The combination of key exchange, hash, and encryption algorithm defines a cipher
suite for each session. The name of each suite is descriptive of the combination.



546

CHAPTER 17

SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

To exchange authenticated and confidential messages, the client and the server
each need six cryptographic secrets (four keys and two initialization vectors).

SSL (or TLS) makes a distinction between a connection and a session. In a session,
one party has the role of a client and the other the role of a server; in a connection,
both parties have equal roles, they are peers.

SSL (or TLS) defines four protocols in two layers: the Handshake Protocol,
the ChangeCipherSpec Protocol, the Alert Protocol, and the Record Protocol. The
Handshake Protocol uses several messages to negotiate cipher suite, to authenti-
cate the server for the client and the client for the server if needed, and to exchange
information for building the cryptographic secrets. The ChangeCipherSpec proto-
col defines the process of moving values between the pending and active states.
The Alert Protocol reports errors and abnormal conditions. The Record Protocol
carries messages from the upper layer (Handshake Protocol, Alert Protocol,
ChangeCipherSpec Protocol, or application layer).

17.8 PRACTICE SET

Review Questions

A A o e

,_.
e

List services provided by SSL or TLS.

Describe how master secret is created from pre-master secret in SSL.
Describe how master secret is created from pre-master secret in TLS.
Describe how key materials are created from master secret in SSL.
Describe how key materials are created from master secret in TLS.
Distinguish between a session and a connection.

List and give the purpose of four protocols defined in SSL or TLS.
Define the goal of each phase in the Handshake protocol.

Compare and contrast the Handshake protocols in SSL and TLS.
Compare and contrast the Record protocols in SSL and TLS.

Exercises

11.

What is the length of the key material if the cipher suite is one of the following:
a. SSL_RSA_WITH_NULL_MDS5

b. SSL_RSA_WITH_NULL_SHA

c. TLS_RSA_WITH_DES_CBC_SHA

d. TLS_RSA_WITH_3DES_EDE_CBC_SHA

. TLS_DHE_RSA_WITH_DES_CBC_SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA

= O



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

SECTION 17.8 PRACTICE SET 547

Show the number of repeated modules needed for each case in Exercise 11
(see Figure 17.9).

Compare the calculation of the master secret in SSL with that in TLS. In SSL, the
pre-master is included three times in the calculation, in TLS only once. Which
calculation is more efficient in terms of space and time?

Compare the calculation of the key material in SSL and TLS. Answer the following
questions:

a. Which calculation provides more security?

b. Which calculation is more efficient in terms of space and time?

The calculation of key material in SSL requires several iterations, the one for TLS
does not. How can TLS calculate key material of variable length?

When a session is resumed with a new connection, SSL does not require the full
handshaking process. Show the messages that need to be exchanged in a partial
handshaking.

When a session is resumed, which of the following cryptographic secrets need to be
recalculated?

a. Pre-master secret
b. Master secret

c. Authentication keys
d. Encryption keys

e. IVs

In Figure 17.20, what happens if the server sends the ChangeCipherSpec message,
but the client does not? Which messages in the Handshake Protocol can follow?
Which cannot?

Compare the calculation of MAC in SSL and TLS (see Figure 17.22 and Figure 17.46).
Which one is more efficient?

Compare the calculation of the hash for CertificateVerify messages in SSL and TLS
(see Figure 17.35 and Figure 17.44). Which one is more efficient?

Compare the calculation of the hash for Finished messages in SSL and TLS (see —
Figure 17.38 and Figure 17.45). Answer the following questions:

a. Which one is more secure?
b. Which one is more efficient?

TLS uses PRF for all hash calculations except for CertificateVerify message. Give a
reason for this exception.

Most protocols have a formula to show the calculations of cryptographic secrets and
hashes. For example, in SSL, the calculation of the master secret (see Figure 17.8) is
as follows (concatenation is designated by a bar):

Master Secret = MDS5 (pre-master | SHA-1 (“A” / pre-master / CR / SR)) |
MD5 (pre-master | SHA-1 (“A” | pre-master | CR | SR)) |
MDS5 (pre-master /| SHA-1 (“A” / pre-master | CR | SR))



548 CHAPTER 17 SECURITY AT THE TRANSPORT LAYER: SSL AND TLS

Show the formula for the following:
. Key material in SSL (Figure 17.9)
. MAC in SSL (Figure 17.22)
. Hash calculation for CertificateVerify message in SSL (Figure 17.35)
. Hash calculation for Finished message in SSL (Figure 17.38)
. Data expansion in TLS (Figure 17.40)
PRF in TLS (Figure 17.41)
. Master secret in TLS (Figure 17.42)
. Key material in TLS (Figure 17.43)
Hash calculation for CertificateVerify message in TLS (Figure 17.44)

50 o o 0 o P

—

. Hash calculation for Finished message in TLS (Figure 17.45)
k. MAC in TLS (Figure 17.46)

24. Show how SSL or TLS reacts to a replay attack. That is, show how SSL or TLS
responds to an attacker that tries to replay one or more handshake messages.

—.

25. Show how SSL or TLS reacts to a brute-force attack. Can an intruder use an exhaus-
tive computer search to find the encryption key in SSL or TLS? Which protocol is
more secure in this respect, SSL or TLS?

26. What is the risk of using short-length keys in SSL or TLS? What type of attack can
an intruder try if the keys are short?

27. Is SSL or TLS more secure to a man-in-the-middle attack? Can an intruder create
key material between the client and herself and between the server and herself?



