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What is a Multivariate Random Variable?

A random variable is a measurable function from a sample space to the
real numbers.

A multivariate random variable (or random vector) consists of more
than one random variable considered together.
Examples:

— Bivariate: (X,Y)

— Multivariate: (X1, Xs,...,Xp)
Studying multiple random variables jointly allows us to capture their
dependence or independence.
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Joint PMF/PDF

Discrete Case: Joint PMF
pX,Y(Xay) = Pr(X = X, Y = y)

Continuous Case: Joint PDF

2

B ox oy

xy(X,y) PriX<x, Y<y).
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Marginal Probability (Distribution)

« For discrete random variables X and Y with a joint PMF px y(x, y):

— pry(x,y), py(y) = ZPX,Y(X,Y)'
y X

 For continuous random variables X and Y with a joint PDF fx y(x, y):

/fxyXY)dy, frly /fXYXy

« Interpretation: The marginal distribution of one variable is obtained by
"summing out” or "integrating out” the other variable(s).
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Conditional Probability (Distribution)

Conditional Probability (Discrete case):

Px.y(X,Y)

pY|X(y|X) - pX(X)

e Thisis read as: "The probability that Y = y given X = x."

Conditional Density (Continuous case):
fX Y(X7 y)
X) = 2227
fyix(y [ %) Fx(X)

e The conditional PDF describes how Y is distributed once we know the
value of X.
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Interpretation and Usage

» Marginal distribution:

— Describes the distribution of a single variable independently of the others.
— Example: If you're only interested in X (regardless of Y), you use px(x) or
fx(x).
« Conditional distribution:

— Describes the distribution of one variable given information about another.
— Example: If you know X = X, it updates your understanding of how Y
behaves.

e These two ideas are linked by:

Px,y(X,¥) = px(X) pyix(y | X) or fxy(X,y) = fx(X) fyix(y | X).
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Discrete Bivariate Random Variable

Consider two discrete random variables X and Y, each taking values O or 1,
with the joint PMF:

Y=0|Y=
X=0] 0.2 0.3
X=1]| 01 0.4

Marginal PMFs:
P(X=0)=02403=05, PX=1)=0.1404=0.5
1 0

P(Y=0)=02+01=03, P(Y=1)=03+0.4=0.7
Conditional PMF:
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Discrete Bivariate Random Variable

Covariance:
E[XY]=0-0-02+0-1-03+1-0-0.1+1-1-04=0.4

EX]=0-05+1-05=0.5, E[Y]=0-03+4+1-0.7=0.7
Cov(X,Y) = E[XY] — E[X]E[Y] = 0.4 — 0.5 - 0.7 = 0.05
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Continuous Bivariate Random Variable

Let X and Y be continuous random variables with joint PDF:
fx,y)=x+y for 0<x<1, 0<y<1

and O otherwise. This is a valid PDF since:

1 1
/ /(x+y)dxdy:1
0 0

1
fx(X)z/(X+y)dy:x+; for 0<x<1
0

Marginal PDFs:

1
1
fy(y)—/(X+y)dX—y+2 for 0<y<1
0

Prof. Pranay Kumar Saha | Multivariate Random Variable & Estimation



Continuous Bivariate Random Variable

Since f(x,y) # fx(X)fy(y), e.g., f(0,0) = 0 # (3) () = 1, the variables are
dependent. Example Probability:

0.5 0.5
P(X <0.5,Y<0.5) —/ / (X +y)dxdy =0.125
0 J0

Compare: P(X < 0.5) = [ (x + &) dx = 0.375, and similarly
P(Y <0.5) = 0.375, so:

P(X < 0.5)P(Y < 0.5) = 0.375% = 0.140625 # 0.125

This confirms dependence.
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Example: A Discrete Bivariate Random Variable

Setup: Suppose we have two discrete random variables X and Y, each
taking values in {0, 1}. Their joint PMF is given by:

0.1, (x=0,y=0),
03, x=0,y=1),

X f—
pX,Y( 7y) 027 (X — 17 y: 0)’
04, (x=1y=1).

e Notethat0.1+0.3+0.2+0.4=1, soitis a valid probability distribution.

» We will use this table to illustrate how to compute marginal and
conditional probabilities.
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Compute Marginals

Marginal of X:
Px(0) = px,y(0,0) + px,y(0,1) = 0.1 + 0.3 = 0.4,
px(1) = pxy(1,0) + pxy(1,1) = 0.2+ 0.4 = 0.6.

Px(X) = 04, x=0,
X7 Vo6, x=1.

So,
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Compute Marginals

Marginal of Y:
Py(0) = px,y(0,0) + px,y(1,0) = 0.1 +0.2 = 0.3,
py(1) = px,y(0,1) + px,y(1,1) =03 + 0.4 = 0.7.
So,
_f03, y=o,
py(y) = {0_77 y=1.
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Compute Conditional Probabilities

Conditionals of Y given X:

Px.y(X,Y)
X) = =
Pyix(y | X) X (%)
e For X =0: 0.0) 01
Px,y(U, .
010)=-—= = — =0.25,
pPx,y(0,1) 0.3
110)=—-—= = — =0.75.
Pyix(110) px(0) 1
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Compute Conditional Probabilities

e ForX=1: (1.0)
Px,y(1, 0.2
0l1) =% = 2 % 0.33,
pxy(L,1) 04
111) =" = — ~0.67
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Interpretation of the Conditional Distributions

« If you know X = 0, then the probability that Y = 0is 0.25, and Y = 1 is 0.75.

o If you know X = 1, then the probability that Y = 0 is about 0.33, and Y =1
is about 0.67.

» This shows how knowledge of X changes the distribution of Y.

Are X and Y independent?
* Independence requires px y(X,y) = px(x) py(y) for all (x,y).
 Forinstance, pxy(0,0) = 0.1, but px(0)py(0) = 0.4 x 0.3 = 0.12 # 0.1.
o Therefore, X and Y are not independent.
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A Continuous Example

Bivariate Uniform on [0, 1]°:
fxy(xy)=1, 0<x<1,0<y<1,

and 0 otherwise.
e The marginal PDFs are:

1
fx<x>—/0 ldy=1, (0<x<1),

1
fy(y)—/o ldx=1, (0<y<1).
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A Continuous Example

e The conditionals are:

fY|X(Y|X>:JW:i:1> 0<y<l.

e Here, X and Y are independent since fx y(X,y) = fx(X) fy(y).
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Independence

Two random variables X and Y are independent if:

Discrete: pxy(X,y) = px(X)py(y),

Continuous:  fx v(X,¥) = fx(X) fy(y).
« Interpretation: Knowing one does not change the distribution of the
other.

e For {Xy,Xs,...,Xn} to be jointly independent, every subset must also be
independent.

* Independence = Zero Covariance, but zero covariance does not
necessarily imply independence.
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Expectation of a Function of Two RVs

Discrete Case:

E[g(X,Y)] =Y g(xy)pxy(x.y).

Xy
Continuous Case:

Elgtx.v) = [ h / g y) For(x.y) dxdy.

e Special cases:

— E[X], E[Y]
— Mixed moments like E[XY]
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Covariance and Correlation

Cov(X,Y) = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y].
e Cov(X,Y)=0implies X and Y are uncorrelated.

Cov(X,Y)
Var(X) Var(Y)

PXy = e[-1,1].

e pxy = 0 means no linear correlation, but not necessarily independence.
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Conditional Distribution

Discrete:
pX,Y(Xa y)

pyix(y | X) = X (%)

Continuous:
~ fxy(x,y)

X) =
fY|X(y | ) fX(X)
« Similar definitions hold for pyy(x | y) or fxjy(x | y).

* The shape of one variable's distribution can change once the other is
known.
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Conditional Expectation

>y YpPyix(y | x), (discrete)

E[Y|X=x] =
[ ¥fyx(y | x)dy, (continuous)

» This is a function of x, often denoted g(x).
e The Law of Total Expectation:

E[Y] = E[E[Y | X]].
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Multivariate Normal Distribution

e Arandom vector X € R" is multivariate normal if any linear combination
of its components is normally distributed.
» Specified by:
— Mean vector p € R”
— Covariance matrix  (n x n and positive semi-definite)

fx(x) = A m) |

2r)7dety) exp< 2
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Multinomial Distribution (Discrete)

» Generalization of the Binomial distribution to k categories.

» Suppose you have n independent trials, each trial resulting in one of k
categories with probabilities p4, ..., pk.

« Let X; be the count of trials that fall in category i, so > | X; = n.

n!

: X1 Xk
X1,...,Xk) = )
p( 9 ) k) X1!"'Xk! pl pk
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26

Point Estimation
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What is Point Estimation?

Point estimation is a statistical method that uses sample data to calculate a

single value, called a point estimate, to approximate an unknown population
parameter.

» Population: The entire group of interest (e.g., all students in a school).
o Sample: A smaller subset of the population.

+ Population Parameter: A numerical value describing the population
(e.g., mean p, variance o2, proportion p).

A point estimate is a single number calculated from the sample to estimate
the parameter.

27 Prof. Pranay Kumar Saha | Multivariate Random Variable & Estimation



Why is Point Estimation Important?

Point estimation is the foundation for statistical inference, which involves

drawing conclusions about a population based on a sample. It is widely used
in:

o Decision-making (e.g., estimating average customer wait times).
» Modeling (e.qg., providing initial values for regression coefficients).
» Understanding data (e.g., summarizing population traits).

However, a point estimate alone does not provide information about its
uncertainty. For that, we use interval estimation (e.g., confidence intervals).
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Properties of Good Point Estimators

Good point estimators should have certain properties:
1. Unbiasedness: On average, the estimator equals the true parameter.

2. Consistency: The estimator gets closer to the true parameter as the
sample size increases.

3. Efficiency: Among unbiased estimators, it has the smallest variance.
4. Robustness: It is less affected by outliers or violations of assumptions.
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Unbiasedness

An estimator T is unbiased if its expected value equals the true parameter 6:

E[T] =6

Example: The sample mean X = %ZX; is an unbiased estimator of the

population mean p because E[X] = . Unbiasedness ensures the estimator
does not systematically over- or underestimate the parameter.

Prof. Pranay Kumar Saha | Multivariate Random Variable & Estimation



Consistency

An estimator T is consistent if it converges to the true parameter 6 as the
sample size n increases:

T29 as n— oo

Example: By the Law of Large Numbers, the sample mean X is consistent for

u. Consistency ensures the estimator becomes more accurate with larger
samples.
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Efficiency

Among unbiased estimators, the most efficient one has the smallest
variance. The Cramér-Rao Lower Bound provides the minimum possible
variance for an unbiased estimator. Example: For a normal distribution, the
sample mean X is efficient because it achieves the Cramér-Rao bound.
Efficiency ensures the estimator is as precise as possible.
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Methods to Compute Point Estimates

Two common methods are:
1. Method of Moments: Match sample moments to population moments.

2. Maximum Likelihood Estimation (MLE): Choose the parameter that
maximizes the likelihood of observing the sample data.
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Introduction to Moments in Statistics

Moments are statistical measures that capture key properties of a probability
distribution, helping us understand the behavior of a random variable.
Sample Moments:

e For a sample {X1,Xa,...,Xp}, the k-th sample moment is:
1 n
=1
o This is computed directly from the sample data to estimate population
moments.

Moments provide insights into the shape, central tendency, and spread of a
distribution, making them essential tools in statistics.
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Method of Moments

The method of moments involves equating sample moments to population
moments and solving for the parameter. Example: For a normal distribution:

« Population mean: n. Estimate with sample mean X.

* Population variance: o?. Estimate with sample variance
S?=_L (X —X)%

This method is simple but may not always be the most efficient.
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Problem Statement

Let X1, Xa, ..., X, be a random sample from N(u, 0?) where both p and o are
unknown.

Find Method of Moment (MoM) estimators for 4 and o.
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Method of Moments: Concept

Key Idea

The Method of Moments equates sample moments to the corresponding
population moments to derive parameter estimators.

« The k™ population moment is defined as uj = E[X¥]
+ The k" sample moment is my = £ 377 | Xk

» For p unknown parameters, we need p equations by equating the first p
moments
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Population Moments for Normal Distribution

Normal Distribution Properties

For X ~ N(u, o?):

e First moment (mean): p) = E[X]=p
» Second moment: pf), = E[X?] = u? + o2

Note

Higher moments also exist, but for our problem with two parameters (. and
o), we only need the first two moments.
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Step 1: Calculate Sample Moments

Sample Moments

From our random sample X1, Xs, ..., Xs, we calculate:

o First sample moment (sample mean):

1 .
ml_n;X,-_X
=

¢ Second sample moment:
1 n
2 : 2
=
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Step 2: Equate Sample and Population Moments

Moment Equations

Setting sample moments equal to population moments:

m1:M/1

1 n
EZX/' =K
i=1

Mo = pif

1 n
Do
i=1
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Step 3: Solve for Parameter Estimators

) 1y S
=

12+ 0% = my
o2 = my — 12

=my — (M)
2
Iy, [1<
= 52X - (n ZX">
i=1 I=1
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Step 3: Solve for Parameter Estimators

Method of Moment Estimator for o

1o .
&= n;xg—ﬂ
1=
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Alternative Expression for 52

o 1 X2 _ %2
g *;Zf—
i=1
1 " 2 kv, 1 " w2
=->"XP—2X- =3 TX+X
iz niz1

1 I
:EZX,-Z—ZXZJrXZ

i=1

1L,
=X X

i=1

12 -
== STOF - 2XX + XP)

i=1

1 -
= -2 X-%?
ni=
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Method of Moment Estimators: Final Result

MoM Estimators for Normal Distribution
For a random sample X1, Xz, ..., X from N(u, o?):

Sl

TMoM = Z(Xi - X)2
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Maximum Likelihood Estimation (MLE)

MLE chooses the parameter value that maximizes the likelihood function,
which is the probability of observing the sample data. Example: For Bernoulli
trials (e.g., coin flips), the sample proportion p = Humber Of,fuccesses is the MLE
for p. MLEs are often consistent and efficient, especially with large samples,

but can be biased in small samples.
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Example 1: Estimating a Population Mean

Suppose you survey 5 people about their commute times (in minutes): 20,
25, 30, 15, 40. Sample Mean: X = 2025830415040 — 96 minutes. Point
Estimate: 26 minutes estimates the population mean . This estimator is
unbiased, consistent, and efficient (for normal data).

Prof. Pranay Kumar Saha | Multivariate Random Variable & Estimation



Example 2: Estimating a Population Proportion

You inspect 100 light bulbs and find 5 defective. Sample Proportion:
p= % = 0.05. Point Estimate: 0.05 estimates the population proportion p.
This estimator is unbiased, consistent, and approximately efficient for large n.

47
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Mathematical Representation: MLE

likelihood

Consider a random sample X, X», ..., X, from a distribution with a probability
density function (PDF) or probability mass function (PMF) f(x; ), where 0
represents the parameter(s) to estimate. The likelihood function is:

n

L(6) = [ f(xi:6)

i=1

Here, f(x;0) is the PDF for continuous distributions or the PMF for discrete
ones. The likelihood L(8) measures how well the model with parameter 6 fits
the observed data.
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Maximizing the Likelihood

The MLE, denoted 6, is the value of # that maximizes the likelihood:

0 = arg maxL(0)

Since products can be complex to optimize, we often maximize the
**|log-likelihood** instead:

00) =InL(0 Zln]‘ (x;;0

Because the logarithm is a monotonic function, maximizing ¢(9) yields the
same result as maximizing L(0).

49 Prof. Pranay Kumar Saha | Multivariate Random Variable & Estimation




Mathematical Procedure to Find the MLE

1. Write the likelihood function L(#) based on the sample and distribution.
2. Compute the log-likelihood £(8) = InL(0).

3. Differentiate £(0) with respect to 6:
de(o)
do
4. Set the derivative to zero to find critical points:

de(6) _
o 0

5. Solve for 6 to get 6.

6. Confirm it's a maximum by ensuring:
d?e()
g0 <0

For multiple parameters, use partial derivatives to solve a system of equations.

50 Prof. Pranay Kumar Saha | Multivariate Random Variable & Estimation




Key Takeaways

» Point estimation uses sample data to estimate population parameters
with a single value.

e Good estimators are unbiased, consistent, and efficient.
o Common methods include the method of moments and MLE.
» Practice calculating point estimates and understanding their properties.

Next steps: Explore interval estimation (e.g., confidence intervals) to quantify
uncertainty.
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What is Interval Estimation?

« Interval estimation is a range of plausible values for a parameter (e.g., a
mean or a probability) constructed from observed data.

* In contrast to a point estimate, which gives a single value, an interval
provides a measure of uncertainty or confidence.

o Often reported as confidence intervals (Cls).
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Confidence Interval: Basic Concept

» A confidence interval for a parameter ¢ is given by random interval
[L(X), U(X)], where X represents the sample data.

 Inthe case of a (1 — a) x 100% confidence interval, we have:
Pr(L(X) <0 <U(X)) =1—a,

for repeated sampling from the same population.
e Commonly, a = 0.05 for a 95% confidence interval.
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Types of Confidence Intervals

o For Mean (when population standard deviation is known):
_ g
X+z" —
Vvn
o For Mean (when population standard deviation is unknown):
_ S
X+t —
vn

where t* is the critical value from the t-distribution.
e For Proportion:

Where:
e pis the sample proportion.
o z* is the critical value from the standard normal distribution.
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Example: Confidence Interval for a Mean
(Normal Case)

Assumptions:
o X = (X1,Xo,...,Xpn) is a sample from a Normal distribution N(u, o?).
e o2 is known, for simplicity (Z-interval).
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Example: Confidence Interval for a Mean
(Normal Case)

Steps to builda (1 — «) x 100% Cl for u:
1. Compute sample mean: X = 1 > | X;.
2. Use standard error SE = %
3. The (1 — ) x 100% Z-interval is:

~ g ~ g
|:X - Za/2%a X + Za/2\/ﬁ:|7

where z, , is the critical value from the standard normal distribution
(e.g., Zo.025 ~ 1.96 for a 95% Cl).
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Example

Suppose you conduct a survey and find the average height of 100 individuals to be 170 cm
with a sample standard deviation of 10 cm. You want to estimate the average height of the
population with a 95% confidence level.

X =170, s=10, n=100, Confidence Level=95%
Since the population standard deviation is unknown, use the t-distribution:

10

v/ 100
With a 95% confidence level and 99 degrees of freedom (n — 1), the t-value is approximately
1.984.

Cl=170+1.984-1 =170+ 1.984

Cl = [168.016, 171.984]
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Interpretation of the Confidence Interval

o |f we repeat the experiment many times:

— A certain percentage (e.g., 95%) of the intervals computed will contain the
true mean p.

o Important: The parameter p is fixed; it's the interval that varies from
sample to sample.

« Similar ideas extend to more complex scenarios (unknown o2, or building
intervals for other parameters like proportions, difference of means,
regression coefficients, etc.).
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