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What is aMultivariate RandomVariable?

• A random variable is a measurable function from a sample space to the
real numbers.

• A multivariate random variable (or random vector) consists of more
than one random variable considered together.

• Examples:
— Bivariate: (X,Y)
— Multivariate: (X1,X2, . . . ,Xn)

• Studying multiple random variables jointly allows us to capture their
dependence or independence.

2 Prof. Pranay Kumar Saha | Multivariate Random Variable & Estimation



Joint PMF/PDF

Discrete Case: Joint PMF

pX,Y(x,y) = Pr(X = x, Y = y).

Continuous Case: Joint PDF

fX,Y(x,y) =
∂2

∂x ∂y Pr(X ≤ x, Y ≤ y).
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Marginal Probability Distribution)

• For discrete random variables X and Y with a joint PMF pX,Y(x,y):

pX(x) =
∑
y
pX,Y(x,y), pY(y) =

∑
x
pX,Y(x,y).

• For continuous random variables X and Y with a joint PDF fX,Y(x,y):

fX(x) =

∫ ∞

−∞
fX,Y(x,y)dy, fY(y) =

∫ ∞

−∞
fX,Y(x,y)dx.

• Interpretation: The marginal distribution of one variable is obtained by
”summing out” or ”integrating out” the other variable(s).
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Conditional Probability Distribution)

Conditional Probability Discrete case):

pY|X(y | x) =
pX,Y(x,y)
pX(x)

.

• This is read as: “The probability that Y = y given X = x.”

Conditional Density Continuous case):

fY|X(y | x) =
fX,Y(x,y)
fX(x)

.

• The conditional PDF describes how Y is distributed once we know the
value of X.
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Interpretation and Usage

• Marginal distribution:
— Describes the distribution of a single variable independently of the others.
— Example: If you’re only interested in X (regardless of Y), you use pX(x) or

fX(x).
• Conditional distribution:

— Describes the distribution of one variable given information about another.
— Example: If you know X = x, it updates your understanding of how Y

behaves.
• These two ideas are linked by:

pX,Y(x,y) = pX(x)pY|X(y | x) or fX,Y(x,y) = fX(x) fY|X(y | x).
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Discrete Bivariate RandomVariable

Consider two discrete random variables X and Y, each taking values 0 or 1,
with the joint PMF

Y = 0 Y = 1

X = 0 0.2 0.3
X = 1 0.1 0.4

Marginal PMFs:
P(X = 0) = 0.2 + 0.3 = 0.5, P(X = 1) = 0.1 + 0.4 = 0.5

P(Y = 0) = 0.2 + 0.1 = 0.3, P(Y = 1) = 0.3 + 0.4 = 0.7

Conditional PMF

P(X = 1|Y = 1) =
P(X = 1,Y = 1)

P(Y = 1)
=

0.4

0.7
≈ 0.571
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Discrete Bivariate RandomVariable

Covariance:

E[XY] = 0 · 0 · 0.2 + 0 · 1 · 0.3 + 1 · 0 · 0.1 + 1 · 1 · 0.4 = 0.4

E[X] = 0 · 0.5 + 1 · 0.5 = 0.5, E[Y] = 0 · 0.3 + 1 · 0.7 = 0.7

Cov(X,Y) = E[XY]− E[X]E[Y] = 0.4− 0.5 · 0.7 = 0.05
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Continuous Bivariate RandomVariable

Let X and Y be continuous random variables with joint PDF

f(x,y) = x+ y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

and 0 otherwise. This is a valid PDF since:∫ 1

0

∫ 1

0
(x+ y)dxdy = 1

Marginal PDFs:

fX(x) =
∫ 1

0
(x+ y)dy = x+ 1

2
for 0 ≤ x ≤ 1

fY(y) =
∫ 1

0
(x+ y)dx = y+ 1

2
for 0 ≤ y ≤ 1
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Continuous Bivariate RandomVariable

Since f(x,y) ̸= fX(x)fY(y), e.g., f(0, 0) = 0 ̸=
(
1
2

) (
1
2

)
= 1

4 , the variables are
dependent. Example Probability:

P(X ≤ 0.5,Y ≤ 0.5) =

∫ 0.5

0

∫ 0.5

0
(x+ y)dxdy = 0.125

Compare: P(X ≤ 0.5) =
∫ 0.5
0

(
x+ 1

2

)
dx = 0.375, and similarly

P(Y ≤ 0.5) = 0.375, so:

P(X ≤ 0.5)P(Y ≤ 0.5) = 0.3752 = 0.140625 ̸= 0.125

This confirms dependence.
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Example: A Discrete Bivariate RandomVariable

Setup: Suppose we have two discrete random variables X and Y, each
taking values in {0, 1}. Their joint PMF is given by:

pX,Y(x,y) =


0.1, (x = 0, y = 0),

0.3, (x = 0, y = 1),

0.2, (x = 1, y = 0),

0.4, (x = 1, y = 1).

• Note that 0.1 + 0.3 + 0.2 + 0.4 = 1, so it is a valid probability distribution.
• We will use this table to illustrate how to compute marginal and
conditional probabilities.
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ComputeMarginals

Marginal of X:

pX(0) = pX,Y(0, 0) + pX,Y(0, 1) = 0.1 + 0.3 = 0.4,

pX(1) = pX,Y(1, 0) + pX,Y(1, 1) = 0.2 + 0.4 = 0.6.

So,

pX(x) =
{
0.4, x = 0,

0.6, x = 1.
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ComputeMarginals

Marginal of Y:

pY(0) = pX,Y(0, 0) + pX,Y(1, 0) = 0.1 + 0.2 = 0.3,

pY(1) = pX,Y(0, 1) + pX,Y(1, 1) = 0.3 + 0.4 = 0.7.

So,

pY(y) =
{
0.3, y = 0,

0.7, y = 1.
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Compute Conditional Probabilities

Conditionals of Y given X:

pY|X(y | x) =
pX,Y(x,y)
pX(x)

.

• For X = 0:
pY|X(0 | 0) =

pX,Y(0, 0)
pX(0)

=
0.1

0.4
= 0.25,

pY|X(1 | 0) =
pX,Y(0, 1)
pX(0)

=
0.3

0.4
= 0.75.
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Compute Conditional Probabilities

• For X = 1:
pY|X(0 | 1) =

pX,Y(1, 0)
pX(1)

=
0.2

0.6
≈ 0.33,

pY|X(1 | 1) =
pX,Y(1, 1)
pX(1)

=
0.4

0.6
≈ 0.67.
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Interpretation of the Conditional Distributions

• If you know X = 0, then the probability that Y = 0 is 0.25, and Y = 1 is 0.75.
• If you know X = 1, then the probability that Y = 0 is about 0.33, and Y = 1
is about 0.67.

• This shows how knowledge of X changes the distribution of Y.

Are X and Y independent?
• Independence requires pX,Y(x,y) = pX(x)pY(y) for all (x,y).
• For instance, pX,Y(0, 0) = 0.1, but pX(0)pY(0) = 0.4× 0.3 = 0.12 ̸= 0.1.
• Therefore, X and Y are not independent.
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AContinuous Example

Bivariate Uniform on [0, 1]2:

fX,Y(x,y) = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

and 0 otherwise.
• The marginal PDFs are:

fX(x) =
∫ 1

0
1dy = 1, (0 ≤ x ≤ 1),

fY(y) =
∫ 1

0
1dx = 1, (0 ≤ y ≤ 1).
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AContinuous Example

• The conditionals are:

fY|X(y | x) =
fX,Y(x,y)
fX(x)

=
1

1
= 1, 0 ≤ y ≤ 1.

• Here, X and Y are independent since fX,Y(x,y) = fX(x) fY(y).
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Independence

Two random variables X and Y are independent if:

Discrete: pX,Y(x,y) = pX(x)pY(y),

Continuous: fX,Y(x,y) = fX(x) fY(y).

• Interpretation: Knowing one does not change the distribution of the
other.

• For {X1,X2, . . . ,Xn} to be jointly independent, every subset must also be
independent.

• Independence =⇒ Zero Covariance, but zero covariance does not
necessarily imply independence.
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Expectation of a Function of Two RVs

Discrete Case:
E[g(X,Y)] =

∑
x

∑
y
g(x,y)pX,Y(x,y).

Continuous Case:

E[g(X,Y)] =
∫ ∞

−∞

∫ ∞

−∞
g(x,y) fX,Y(x,y)dxdy.

• Special cases:
— E[X], E[Y]
— Mixed moments like E[XY]
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Covariance and Correlation

Covariance
Cov(X,Y) = E[(X− E[X])(Y− E[Y])] = E[XY]− E[X]E[Y].

• Cov(X,Y) = 0 implies X and Y are uncorrelated.

Correlation Coefficient

ρX,Y =
Cov(X,Y)√
Var(X)Var(Y)

∈ [−1, 1].

• ρX,Y = 0 means no linear correlation, but not necessarily independence.
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Conditional Distribution

Discrete:
pY|X(y | x) =

pX,Y(x,y)
pX(x)

.

Continuous:
fY|X(y | x) =

fX,Y(x,y)
fX(x)

.

• Similar definitions hold for pX|Y(x | y) or fX|Y(x | y).
• The shape of one variable’s distribution can change once the other is
known.
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Conditional Expectation

E[Y | X = x] =


∑

y ypY|X(y | x), (discrete)∫∞
−∞ y fY|X(y | x)dy, (continuous)

• This is a function of x, often denoted g(x).
• The Law of Total Expectation:

E[Y] = E
[
E[Y | X]

]
.
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Multivariate Normal Distribution

• A random vector X ∈ Rn is multivariate normal if any linear combination
of its components is normally distributed.

• Specified by:
— Mean vector µ ∈ Rn

— Covariance matrix Σ (n× n and positive semi-definite)

fX(x) =
1√

(2π)n det(Σ)
exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
.
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Multinomial Distribution Discrete)

• Generalization of the Binomial distribution to k categories.
• Suppose you have n independent trials, each trial resulting in one of k
categories with probabilities p1, . . . ,pk.

• Let Xi be the count of trials that fall in category i, so
∑k

i=1 Xi = n.

p(x1, . . . , xk) =
n!

x1! · · · xk!
px11 · · · pxkk .
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Point Estimation
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What is Point Estimation?

Point estimation is a statistical method that uses sample data to calculate a
single value, called a point estimate, to approximate an unknown population
parameter.
• Population: The entire group of interest (e.g., all students in a school).
• Sample: A smaller subset of the population.
• Population Parameter: A numerical value describing the population
(e.g., mean µ, variance σ2, proportion p).

A point estimate is a single number calculated from the sample to estimate
the parameter.
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Why is Point Estimation Important?

Point estimation is the foundation for statistical inference, which involves
drawing conclusions about a population based on a sample. It is widely used
in:
• Decision-making (e.g., estimating average customer wait times).
• Modeling (e.g., providing initial values for regression coefficients).
• Understanding data (e.g., summarizing population traits).

However, a point estimate alone does not provide information about its
uncertainty. For that, we use interval estimation (e.g., confidence intervals).
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Properties of Good Point Estimators

Good point estimators should have certain properties:
1. Unbiasedness: On average, the estimator equals the true parameter.
2. Consistency: The estimator gets closer to the true parameter as the

sample size increases.
3. Efficiency: Among unbiased estimators, it has the smallest variance.
4. Robustness: It is less affected by outliers or violations of assumptions.
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Unbiasedness

An estimator T is unbiased if its expected value equals the true parameter θ:

E[T] = θ

Example: The sample mean X̄ = 1
n
∑
Xi is an unbiased estimator of the

population mean µ because E[X̄] = µ. Unbiasedness ensures the estimator
does not systematically over- or underestimate the parameter.
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Consistency

An estimator T is consistent if it converges to the true parameter θ as the
sample size n increases:

T p−→ θ as n→ ∞

Example: By the Law of Large Numbers, the sample mean X̄ is consistent for
µ. Consistency ensures the estimator becomes more accurate with larger
samples.
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Efficiency

Among unbiased estimators, the most efficient one has the smallest
variance. The Cramér-Rao Lower Bound provides the minimum possible
variance for an unbiased estimator. Example: For a normal distribution, the
sample mean X̄ is efficient because it achieves the Cramér-Rao bound.
Efficiency ensures the estimator is as precise as possible.
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Methods to Compute Point Estimates

Two common methods are:
1. Method of Moments: Match sample moments to population moments.
2. Maximum Likelihood Estimation MLE: Choose the parameter that

maximizes the likelihood of observing the sample data.
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Introduction toMoments in Statistics

Moments are statistical measures that capture key properties of a probability
distribution, helping us understand the behavior of a random variable.
SampleMoments:
• For a sample {X1,X2, . . . ,Xn}, the k-th sample moment is:

mk =
1

n

n∑
i=1

Xki

• This is computed directly from the sample data to estimate population
moments.

Moments provide insights into the shape, central tendency, and spread of a
distribution, making them essential tools in statistics.
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Method of Moments

The method of moments involves equating sample moments to population
moments and solving for the parameter. Example: For a normal distribution:
• Population mean: µ. Estimate with sample mean X̄.
• Population variance: σ2. Estimate with sample variance
S2 = 1

n−1

∑
(Xi − X̄)2.

This method is simple but may not always be the most efficient.

35 Prof. Pranay Kumar Saha | Multivariate Random Variable & Estimation



Problem Statement

Given
Let X1,X2, . . . ,Xn be a random sample from N(µ, σ2) where both µ and σ are
unknown.

Objective
Find Method of Moment MoM estimators for µ and σ.
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Method of Moments: Concept

Key Idea
The Method of Moments equates sample moments to the corresponding
population moments to derive parameter estimators.

• The kth population moment is defined as µ′
k = E[Xk]

• The kth sample moment is mk =
1
n
∑n

i=1 Xki
• For p unknown parameters, we need p equations by equating the first p
moments
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PopulationMoments for Normal Distribution

Normal Distribution Properties
For X ∼ N(µ, σ2):

• First moment (mean): µ′
1 = E[X] = µ

• Second moment: µ′
2 = E[X2] = µ2 + σ2

Note
Higher moments also exist, but for our problem with two parameters (µ and
σ), we only need the first two moments.
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Step 1 Calculate SampleMoments

SampleMoments
From our random sample X1,X2, . . . ,Xn, we calculate:

• First sample moment (sample mean):

m1 =
1

n

n∑
i=1

Xi = X̄

• Second sample moment:

m2 =
1

n

n∑
i=1

X2
i
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Step 2 Equate Sample and PopulationMoments

Moment Equations
Setting sample moments equal to population moments:

m1 = µ′
1

1

n

n∑
i=1

Xi = µ

m2 = µ′
2

1

n

n∑
i=1

X2
i = µ2 + σ2
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Step 3 Solve for Parameter Estimators

µ̂ = m1 =
1

n

n∑
i=1

Xi = X̄

µ2 + σ2 = m2

σ2 = m2 − µ2

= m2 − (m1)
2

=
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2
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Step 3 Solve for Parameter Estimators

Method of Moment Estimator for σ

σ̂ =

√√√√ 1

n

n∑
i=1

X2
i − X̄2
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Alternative Expression for σ̂2

σ̂
2

=
1

n

n∑
i=1

X2i − X̄2

=
1

n

n∑
i=1

X2i − 2X̄ ·
1

n

n∑
i=1

Xi + X̄2

=
1

n

n∑
i=1

X2i − 2X̄2 + X̄2

=
1

n

n∑
i=1

X2i − X̄2

=
1

n

n∑
i=1

(X2i − 2XiX̄ + X̄2)

=
1

n

n∑
i=1

(Xi − X̄)2
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Method of Moment Estimators: Final Result

MoMEstimators for Normal Distribution
For a random sample X1,X2, . . . ,Xn from N(µ, σ2):

µ̂MoM = X̄ =
1

n

n∑
i=1

Xi

σ̂2
MoM =

1

n

n∑
i=1

(Xi − X̄)2

σ̂MoM =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2
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Maximum Likelihood Estimation MLE

MLE chooses the parameter value that maximizes the likelihood function,
which is the probability of observing the sample data. Example: For Bernoulli
trials (e.g., coin flips), the sample proportion p̂ = number of successes

n is the MLE
for p. MLEs are often consistent and efficient, especially with large samples,
but can be biased in small samples.
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Example 1 Estimating a PopulationMean

Suppose you survey 5 people about their commute times (in minutes): 20,
25, 30, 15, 40. SampleMean: X̄ = 20+25+30+15+40

5 = 26 minutes. Point
Estimate: 26 minutes estimates the population mean µ. This estimator is
unbiased, consistent, and efficient (for normal data).
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Example 2 Estimating a Population Proportion

You inspect 100 light bulbs and find 5 defective. Sample Proportion:
p̂ = 5

100 = 0.05. Point Estimate: 0.05 estimates the population proportion p.
This estimator is unbiased, consistent, and approximately efficient for large n.
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Mathematical Representation: MLE

likelihood
Consider a random sample X1,X2, . . . ,Xn from a distribution with a probability
density function PDF or probability mass function PMF f(x; θ), where θ
represents the parameter(s) to estimate. The likelihood function is:

L(θ) =
n∏
i=1

f(xi; θ)

Here, f(x; θ) is the PDF for continuous distributions or the PMF for discrete
ones. The likelihood L(θ) measures how well the model with parameter θ fits
the observed data.
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Maximizing the Likelihood

The MLE, denoted θ̂, is the value of θ that maximizes the likelihood:

θ̂ = argmax
θ

L(θ)

Since products can be complex to optimize, we often maximize the
**log-likelihood** instead:

ℓ(θ) = lnL(θ) =
n∑
i=1

ln f(xi; θ)

Because the logarithm is a monotonic function, maximizing ℓ(θ) yields the
same result as maximizing L(θ).
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Mathematical Procedure to Find theMLE

1. Write the likelihood function L(θ) based on the sample and distribution.
2. Compute the log-likelihood ℓ(θ) = ln L(θ).
3. Differentiate ℓ(θ) with respect to θ:

dℓ(θ)
dθ

4. Set the derivative to zero to find critical points:
dℓ(θ)
dθ = 0

5. Solve for θ to get θ̂.
6. Confirm it’s a maximum by ensuring:

d2ℓ(θ)

dθ2 < 0

For multiple parameters, use partial derivatives to solve a system of equations.
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Key Takeaways

• Point estimation uses sample data to estimate population parameters
with a single value.

• Good estimators are unbiased, consistent, and efficient.
• Common methods include the method of moments and MLE.
• Practice calculating point estimates and understanding their properties.

Next steps: Explore interval estimation (e.g., confidence intervals) to quantify
uncertainty.
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What is Interval Estimation?

• Interval estimation is a range of plausible values for a parameter (e.g., a
mean or a probability) constructed from observed data.

• In contrast to a point estimate, which gives a single value, an interval
provides a measure of uncertainty or confidence.

• Often reported as confidence intervals (CIs).
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Confidence Interval: Basic Concept

• A confidence interval for a parameter θ is given by random interval
[L(X), U(X)], where X represents the sample data.

• In the case of a (1− α)× 100% confidence interval, we have:

Pr
(
L(X) ≤ θ ≤ U(X)

)
= 1− α,

for repeated sampling from the same population.
• Commonly, α = 0.05 for a 95% confidence interval.
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Types of Confidence Intervals

• ForMean (when population standard deviation is known):

x̄± z∗ · σ√
n

• ForMean (when population standard deviation is unknown):

x̄± t∗ · s√
n

where t∗ is the critical value from the t-distribution.
• For Proportion:

p̂± z∗ ·
√
p̂(1− p̂)

n
Where:
• p̂ is the sample proportion.
• z∗ is the critical value from the standard normal distribution.
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Example: Confidence Interval for aMean
Normal Case)

Assumptions:
• X = (X1,X2, . . . ,Xn) is a sample from a Normal distribution N(µ, σ2).
• σ2 is known, for simplicity Z-interval).
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Example: Confidence Interval for aMean
Normal Case)

Steps to build a (1− α)× 100%CI for µ:
1. Compute sample mean: X = 1

n
∑n

i=1 Xi.
2. Use standard error SE = σ√

n .

3. The (1− α)× 100% Z-interval is:[
X − zα/2

σ√
n
, X + zα/2

σ√
n

]
,

where zα/2 is the critical value from the standard normal distribution
(e.g., z0.025 ≈ 1.96 for a 95% CI.
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Example
Suppose you conduct a survey and find the average height of 100 individuals to be 170 cm
with a sample standard deviation of 10 cm. You want to estimate the average height of the
population with a 95% confidence level.

x̄ = 170, s = 10, n = 100, Confidence Level = 95%

Since the population standard deviation is unknown, use the t-distribution:

SE =
10√
100

= 1

With a 95% confidence level and 99 degrees of freedom (n− 1), the t-value is approximately
1.984.

CI = 170± 1.984 · 1 = 170± 1.984

CI = [168.016, 171.984]
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Interpretation of the Confidence Interval

• If we repeat the experiment many times:
— A certain percentage (e.g., 95% of the intervals computed will contain the

true mean µ.
• Important: The parameter µ is fixed; it’s the interval that varies from
sample to sample.

• Similar ideas extend to more complex scenarios (unknown σ2, or building
intervals for other parameters like proportions, difference of means,
regression coefficients, etc.).
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