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Probability Theory

Probability Theory deals with random phenomena which under certain
random experiment yields outcome that have some pattern among
themselves.
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Radom Variable

[ )

A random variable is a fundamental concept in probability theory,
serving as a bridge between abstract random experiments and
numerical analysis.

« |tis defined as a function that maps each possible outcome of a random
experiment to a real number.

o This numerical representation allows for the application of mathematical
tools to study:

— Probabilities
— Expected values
— Distributions

* These concepts are essential in statistics and decision-making
processes.
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Example

For instance, consider a simple experiment of rolling a six-sided die.
The outcome could be any number from 1to 6, each with an equal
probability of £.

By defining a random variable X as the number shown on the die, we
transform the abstract outcome into a numerical value.

This transformation enables us to calculate:

— Probabilities
— Expected values
— Other statistical measures
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Sample Space and Event

°

Sample Space: Collection of all possible outcome of an Random Event
(RE) is called the Sample Space S or Q.

Event: Any subset of a Sample Space
Union of Events
— A U B represents the occurrence of at least one of A and B.
— Ingeneral, Ay UA; UA3 U ---UA, represents the occurrence of at least one
of these events.
Intersection of Events
— AN B represents the simultaneous occurrence of both A and B.
— In general, A; NAs N ---N A, represents the simultaneous occurrence of all
these events.
Complement of Events: The complement of an event A, denoted as A€,
represents the non-occurrence of A.
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Classical Definition of Probability

The classical definition of probability states that if an experiment has n
equally likely outcomes and an event A consists of m favorable outcomes,
then the probability of event A occurring is given by:

where:
e m is the number of favorable outcomes for event A.
e nis the total number of equally likely outcomes in the sample space.
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Empirical Definition of Probability

The empirical definition of probability, also known as the relative frequency
approach, states that if an experiment is repeated n times and an event A
occurs m times, then the probability of A is given by:

where n is the total number of trials and m is the number of times A occurs.
As n increases, P(A) approaches the true probability of the event.
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Statistical regularity Definition of Probability

The principle of statistical regularity states that if a large number of trials of a
random experiment are conducted under identical conditions, then the
relative frequency of occurrence of an event stabilizes around a fixed value,
which is considered the probability of that event as n — ~c.

Mathematically, this can be expressed as:

where m is the number of times event A occurs in n trials.
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Axiomatic Definition of Probability

It introduced by Kolmogorov, is based on three fundamental axioms:
* Non-negativity: For any event A, its probability satisfies:

P(A) >0
+ Normalization: The probability of the entire sample space Sis 1:
P(S) =1

o Additivity: For any two mutually exclusive events A and B, the probability of their union
is:
P(AuB) =P(A) + P(B)

More generally, for a countable sequence of mutually exclusive events A;, As, A, .. .:

P (G A,»> = i P(A)
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Conditional Probability

» Definition: The probability of an event occurring given that another event
has already occurred.

» Notation: P(A|B), read as "the probability of A given B”
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Formula for Conditional Probability

The formula for conditional probability is:

P(ANB)

PAIB) = ~ g

if P(B) > 0

This formula calculates the probability of both events A and B occurring,
divided by the probability of event B occurring.
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Example: Drawing Cards

Consider a standard deck of 52 playing cards. We draw two cards without
replacement. Let:

¢ Event B: The first card drawn is a heart.
¢ Event A: The second card drawn is a heart.

We want to find P(A|B), the probability that the second card is a heart given
that the first card was a heart. Since the first card was a heart, there are 12
hearts left in the remaining 51 cards. Therefore,

12
P(AIB) = <] ~ 0.235
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Alternate Method

Alternatively, using the formula: First, find P(A N B), the probability that both
cards are hearts.

L . L 1 12
P(A N B) = P(first is heart) x P(second is heart|first is heart) = 5—3 =

Then, P(B) = P(first is heart) = 12 So,

13, 12
P(A’B):P(AQB) _ 52><51 _12

P(B) B 51
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Law of Total Probability

« A fundamental rule in probability theory.

» Used to compute the total probability of an event by considering all
possible scenarios.
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Partition of Sample Space

» The sample space S is divided into mutually exclusive and exhaustive
events By,B,, ..., Bn.

o Mutually exclusive: B;NB; = () fori #j
e Exhaustive: BiuBsU---UB, =S
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Formula

For any event A, the Law of Total Probability states:
n

P(A) = P(AB) - P(B))
i=1

This formula sums the probabilities of A occurring given each B;, weighted by
the probability of each B;.
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Example: Machines and Defective Items

A factory has three machines producing items:
e Machine A: Produces 30% of items, 5% defective.
e Machine B: Produces 40% of items, 3% defective.
e Machine C: Produces 30% of items, 4% defective.

We want to find the probability that a randomly selected item is defective,
P(D).

Prof. Pranay Kumar Saha | Probability




Applying the Law

Let By, By, B3 be the events that an item is produced by Machine A, B, or C,
respectively. Then,

P(D) = P(D|By) - P(B1) + P(D|B2) - P(Bz) + P(D|Bs) - P(Bs)
Plugging in the values:

P(D) = (0.05)(0.30) + (0.03)(0.40) + (0.04)(0.30)
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Calculation

Calculate each term:
e Machine A: (0.05)(0.30) = 0.015
e Machine B: (0.03)(0.40) = 0.012
e Machine C: (0.04)(0.30) = 0.012
Sum them up:
P(D) = 0.015 4 0.012 + 0.012 = 0.039

Thus, the probability of selecting a defective item is 3.9%.
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Conclusion

The Law of Total Probability allows us to:
e Break down complex probability problems.
o Compute total probabilities by considering all possible scenarios.
» Apply to real-world situations like quality control.

It's a stepping stone to Bayes' Theorem and other advanced probability
concepts.

20
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Bayes' Theorem
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Bayes' Theorem

» A fundamental theorem in probability theory.
o Used to update the probability of an event based on new evidence.
» Essential for Bayesian inference and decision-making under uncertainty.
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Formula of Bayes' Theorem

For events A and B, Bayes' Theorem states:

P(BIA) - P(A)

PAIB) = =g

where:
» P(A|B) is the posterior probability: the probability of A given B.
* P(BJA) is the likelihood: the probability of B given A.
e P(A) is the prior probability of A.
e P(B) is the marginal probability of B.
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Example: Medical Test

Consider a medical test for a disease:

» Prevalence of the disease: 1% (P(D) = 0.01)
» Test sensitivity (true positive rate): 99% (P(T + |D) = 0.99)
» Test specificity (true negative rate): 95% (P(T — |D€) = 0.95)

We want to find the probability that a person has the disease given that they
tested positive, P(D|T+).
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Applying Bayes’' Theorem

To find P(D|T+), use Bayes' Theorem:

P(T+|D)-P(D)
P(T+)

First, we need to calculate P(T+), the total probability of testing positive.
Using the Law of Total Probability:

P(D|T+) =

P(T+) =P(T + |D) - P(D) + P(T + |D) - P(D°)

Note that P(T + |D¢) = 1 — P(T — |D°) = 1 — 0.95 = 0.05

25
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Calculation

Calculate P(T+):

P(T+) = (0.99)(0.01) + (0.05)(0.99) = 0.0099 + 0.0495 = 0.0594
Now, apply Bayes' Theorem:

(0.99)(0.01)  0.0099
P(D|T+) = = ~ 0.1
(BIT+) 0.0594 0.0502 ~ 01667

Thus, the probability that a person has the disease given a positive test result
is approximately 16.67 %.

26
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Independent Event
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Independent Events

* A key concept in probability theory.

» Events are independent if the occurrence of one does not affect the
probability of the other.
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Definition and Formula

» Definition: Two events A and B are independent if:
P(ANnB) =P(A)-P(B)

» This means the probability of both events occurring is the product of
their individual probabilities.

« |f events are not independent, they are dependent.
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Example: Coin and Die

Consider the following events:
e Event A: Flipping a head on a fair coin.

1
P(A) = 5
e Event B: Rolling a 3 on a fair six-sided die.
1
P(B) = 8
Since A and B are independent, the probability that both occur is:
1 1 1
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Conclusion

» Independent events do not influence each other’s probabilities.
e For independent events A and B, P(ANB) = P(A) - P(B).
o Understanding independence is essential in probability and statistics.
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Cumulative Distribution Function
(CDF)
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Definition of CDF

The Cumulative Distribution Function (CDF) of a random variable X is defined
as:

F(x) =P(X < x)

It gives the probability that X takes a value less than or equal to x.

33
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Properties of CDF

» Non-decreasing: If x; < Xy, then F(x1) < F(X2)
e Limits: limy_, o F(x) =0 and limy_,o F(X) =1
 Right-continuous: For any x, limy,_,o+ F(x + h) = F(x)
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Example: Discrete Random Variable

Consider a fair six-sided die. The random variable X can take values 1, 2, 3,
4, 5, 6, each with probability é The CDF F(x) is:

ifx<1

if1<x<2
if2<x<3
if3<x<4
if4<x<5
if5<x<6
ifx>6

m
—
>
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B35) Prof. Pranay Kumar Saha | Probability




Example: Continuous Random Variable

Consider a uniform random variable X on [0, 1]. The CDF F(x) is:

0 ifx<o0
Fx)y=<x ifo<x<1
1 ifx>1

Note that F(x) is continuous everywhere.
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| F(x) o

Graph of CDF (Uniform on [0,1])

—1

1 2

This is the CDF of a uniform random variable on [0, 1].

37
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Example: CDF

Consider the function:

0 ifx<0
G(x)=<x? ifo<x<1
0.5 ifx>1

This is not a valid CDF because:

e Itis not non-decreasing: G(17) = 1 (limit from left), but G(1) = 0.5, so it
decreases.

e limy_,» G(X) = 0.5 < 1, violating the property that a CDF must approach 1.
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Types of Random Variable
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Types of Random Variables

Random variables are classified into three main types:
» Discrete: Take countable values (e.g., integers).
o Continuous: Take values in a continuous range (e.g., real numbers).
» Mixed: Have both discrete and continuous components.

Each type has a probability distribution and a Cumulative Distribution
Function (CDF).
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Discrete Random Variable: Die Roll

Example: Let X be the outcome of rolling a fair six-sided die. Possible values
are 1, 2, 3, 4, 5, 6, each equally likely.

PMF:
L ifx=1,2314
PX=x)=d6 "X=12345.0
0 otherwise
CDF:
0 if x <1
Fx)=¢ X if1<x<6
1 if x>6

Observation: The CDF is a step function, jumping by % at each integer from 1
to 6.
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Continuous Random Variable: Bus Arrival Time

Example: Let X be the time (in minutes) until a bus arrives, equally likely
between 0 and 10 minutes.

PDF:
1 .
fox) =410 if 0 < x.g 10
0 otherwise
CDF:
0 ifx<oO
F(x) = % ifo<x<10
1 ifx>10

Observation: The CDF increases linearly from O to 1 over [0, 10], reflecting
equal likelihood.

42
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Mixed Random Variable: Daily Rainfall

Example: Let X be the rainfall amount (in inches) in a day:
e P(X=0) = 0.3 (no rain).
» With probability 0.7, X is equally likely between 0 and 5 inches (rain).

CDF:
0 ifx<0
Flx) = 0.3 ﬁx:o
03+0.7-% ifo<x<5
1 ifx>5

Observation: The CDF has a jump of 0.3 at x = 0 (discrete part) and
increases linearly for 0 < x < 5 (continuous part).
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Graph of Mixed Random Variable CDF (Rainfall)

X (i‘nches)

I 5

This shows the CDF with a jump at x = 0 and a linear increase from 0 to 5.
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Expected Value

The expected value (mean) of a random variable is the weighted average of
all possible values, where the weights are the probabilities.

Discrete Case

EIX] = le (X = X;)

Continuous Case
E[X] = /OO x - f(x) dx

Example: For a fair die, Where f(x) is the PDF of X

EX]=1(3)+2(3) + .. +6(%) 3.5
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Properties of Expected Value

1. Linearity: E[aX + bY] = aE[X] + bE[Y] for constants a and b
2. Constant: E[c| = c for any constant ¢
3. Independence: If X and Y are independent, E[X - Y] = E[X] - E[Y]

Applications

» Financial risk assessment
o Decision theory
 Statistical inference

e Machine learning
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Variance and Standard Deviation

Definition
The variance of a random variable measures the spread or dispersion around
its expected value.

Var(X) = E[(X — E[X])’] = E[X*] — (E[X])

L[]

Standard deviation: ox = \/Var(X)

Units: Variance has units squared; standard deviation has same units as
the original variable

Always non-negative: Var(X) >0

Var(X) = 0 if and only if X is a constant
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Properties of Variance and Standard Deviation

Key Properties
« Var(aX + b) = a?Var(X) for constants a and b
o If X and Y are independent: Var(X + Y) = Var(X) + Var(Y)
e In general: Var(X +Y) = Var(X) + Var(Y) 4+ 2Cov(X,Y)
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Discrete Probability Distribution

Prof. Pranay Kumar Saha | Probability



Bernoulli Distribution

Models a single trial with two possible outcomes: success (1) with probability
p or failure (0) with probability 1 — p.

PX=1)=p (1)
PX=0)=1-p (2)
e Mean: EX]=p
e Variance: Var(X) =p(1—p)
Example: Fair Coin Flip
p = 0.5, so E[X] = 0.5 and Var(X) = 0.25
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Binomial Distribution

Models the number of successes in n independent Bernoulli trials, each with
probability p.

P(X=k)= ()p*(1 —p)"k fork=0,1,2,....,n where (}) = —k!(:lk)! ]

e Mean: E[X] =np
e Variance: Var(X) = np(1 —p)

Example: 10 Coin Flips
n =10, p = 0.5, so E[X] =5 and Var(X) = 2.5
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Binomial Distribution: Properties and
Applications

Key Properties Applications

e Sum of Bernoulli RVs:

Ny  Quality control: Defective items
)R<_ Z(;—l){’ in batches
’ B;rzquo u)civ;irr:(rsper)t{ e Medicine: Success/failure of
Ny, P 2,P)= treatments
Bin(ny + na, p) ) ,
. . . e Finance: Up/down price
* Normal approximation when n is
movements

large: X ~ N(np,np(1 —p))
» Poisson approximation when n is
large and p is small

e Survey sampling: Properties in
finite populations
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Geometric Distribution

Models the number of Bernoulli trials needed to get the first success.

PX=k)=(1—-p)k'p fork=1,2.3,... ]

* Mean: E[X] = ;
« Variance: Var(X) = £

Example: Number of rolls until a 6 appears on a die
p = %, s0 E[X] = 6 and Var(X) = 30
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Poisson Distribution

Models the number of events occurring in a fixed interval when events
happen at a constant average rate A.

P(X=k)=2Xe fork=0,1,2,...

e Mean: E[X] = A
e Variance: Var(X) = A
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Poisson Distribution: Properties and
Applications

Key Properties

e Limit of Binomial: Appllcatlons
Bin(n,p) ~ POIs(np) When n |S ° Ca” center arnVaIS
large, p is small » Radioactive decay events

» For Poisson process: Number of » Network traffic modeling
events in time tis POIS()\t) e Insurance claims

 Normal approximation when X is « Rare events: Accidents, natural
large: X ~ N(A, A) disasters

» Independence of counts in » Mutations in DNA sequences

disjoint intervals
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Continuous Probability
Distributions
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Normal Distribution

Standard Normal Distribution

When = 0 and o = 1, we get the standard normal distribution Z ~ N(0, 1)
« Any normal RV can be standardized: Z = X
e CDF: ®(z) = P(Z < z) (no closed form, values tabulated)
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Normal Distribution: Properties and
Applications

Key Properties
e 68-95-99.7 rule:

— 68% of data within u+ o
— 95% of data within y + 20
— 99.7% of data within y + 30

« Reproductive property: If X; ~ N(u1,07) and Xy ~ N(u2,03) are
independent, then X; + Xo ~ N(u1 + 2, 0% + 03)

o Linear transformations: If X ~ N(u,0?), then aX +b ~ N(au + b, a?c?)
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Scientific Applications

o Measurement errors in physical
sciences

» Heights, weights in populations

» |Q scores and standardized tests

e Approximation for binomial
when nis large

o Foundation for parametric
statistical tests

59

Normal Distribution: Applications

Financial Applications

Stock price movements
(log-normal)

Black-Scholes option pricing
model

Value at Risk (VaR) calculations
Portfolio theory and optimization
Credit scoring models
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Central Limit Theorem

Central Limit Theorem Connection

The normal distribution’s importance is largely due to the CLT, which states

that sums of independent random variables tend toward a normal distribution
regardless of their original distributions.

60
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Exponential Distribution

Models the time between events in a Poisson process with rate parameter \.

f(x)=Xxe=™ forx>0

Mean: E[X] = 1
Variance: Var(X) = {;
Median: @

Mode: 0

CDF:F(x)=1—-e™forx>0

°
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Exponential Distribution: Properties and
Applications

Key Properties

e Memoryless property: P(X > s+ tX >s)=P(X > t)

» Relationship to Poisson process: If events occur according to a Poisson
process with rate A, then the time between consecutive events follows
Exp())

* Minimum of independent exponentials:
min(Xy, Xa, ..., Xn) ~ EXp(A1 + A2 + ...+ Ap)

» Relationship to other distributions:

— Special case of Gamma distribution with shape parameter o = 1
— X2/2 ~ Exp(7\/2) if X ~ x%(2)
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Uniform Distribution

Every value in interval [a, b] has equal probability.

fx) =45 fora<x<b

Applications

e Random number generation
 Mean: E[X] = {2 g

(b—a)? e Rounding errors in computing
12 « Prior distributions in Bayesian

* Median: &P analysis

 Variance: Var(X) =
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Thank You for Listening!
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