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Probability Theory

Probability Theory deals with random phenomena which under certain
random experiment yields outcome that have some pattern among
themselves.
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RadomVariable

• A random variable is a fundamental concept in probability theory,
serving as a bridge between abstract random experiments and
numerical analysis.

• It is defined as a function that maps each possible outcome of a random
experiment to a real number.

• This numerical representation allows for the application of mathematical
tools to study:
— Probabilities
— Expected values
— Distributions

• These concepts are essential in statistics and decision-making
processes.
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Example

• For instance, consider a simple experiment of rolling a six-sided die.
• The outcome could be any number from 1 to 6, each with an equal
probability of 1

6 .
• By defining a random variable X as the number shown on the die, we
transform the abstract outcome into a numerical value.

• This transformation enables us to calculate:
— Probabilities
— Expected values
— Other statistical measures
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Sample Space and Event

• Sample Space: Collection of all possible outcome of an Random Event
RE is called the Sample Space S or Ω.

• Event: Any subset of a Sample Space
• Union of Events

— A ∪ B represents the occurrence of at least one of A and B.
— In general, A1 ∪ A2 ∪ A3 ∪ · · · ∪ An represents the occurrence of at least one

of these events.
• Intersection of Events

— A ∩ B represents the simultaneous occurrence of both A and B.
— In general, A1 ∩ A2 ∩ · · · ∩ An represents the simultaneous occurrence of all

these events.
• Complement of Events: The complement of an event A, denoted as Ac,
represents the non-occurrence of A.
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Classical Definition of Probability

The classical definition of probability states that if an experiment has n
equally likely outcomes and an event A consists of m favorable outcomes,
then the probability of event A occurring is given by:

P(A) = m
n

where:
• m is the number of favorable outcomes for event A.
• n is the total number of equally likely outcomes in the sample space.
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Empirical Definition of Probability

The empirical definition of probability, also known as the relative frequency
approach, states that if an experiment is repeated n times and an event A
occurs m times, then the probability of A is given by:

P(A) = m
n

where n is the total number of trials and m is the number of times A occurs.
As n increases, P(A) approaches the true probability of the event.
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Statistical regularity Definition of Probability

The principle of statistical regularity states that if a large number of trials of a
random experiment are conducted under identical conditions, then the
relative frequency of occurrence of an event stabilizes around a fixed value,
which is considered the probability of that event as n→ ∞.
Mathematically, this can be expressed as:

P(A) = lim
n→∞

m
n

where m is the number of times event A occurs in n trials.
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Axiomatic Definition of Probability
It introduced by Kolmogorov, is based on three fundamental axioms:
• Non-negativity: For any event A, its probability satisfies:

P(A) ≥ 0

• Normalization: The probability of the entire sample space S is 1

P(S) = 1

• Additivity: For any two mutually exclusive events A and B, the probability of their union
is:

P(A ∪ B) = P(A) + P(B)
More generally, for a countable sequence of mutually exclusive events A1,A2,A3, . . . :

P
(

∞∪
i=1

Ai

)
=

∞∑
i=1

P(Ai)
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Conditional Probability

• Definition: The probability of an event occurring given that another event
has already occurred.

• Notation: P(A|B), read as ”the probability of A given B”
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Formula for Conditional Probability

The formula for conditional probability is:

P(A|B) = P(A ∩ B)
P(B) if P(B) > 0

This formula calculates the probability of both events A and B occurring,
divided by the probability of event B occurring.
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Example: Drawing Cards

Consider a standard deck of 52 playing cards. We draw two cards without
replacement. Let:
• Event B The first card drawn is a heart.
• Event A The second card drawn is a heart.

We want to find P(A|B), the probability that the second card is a heart given
that the first card was a heart. Since the first card was a heart, there are 12
hearts left in the remaining 51 cards. Therefore,

P(A|B) = 12

51
≈ 0.235
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AlternateMethod

Alternatively, using the formula: First, find P(A ∩ B), the probability that both
cards are hearts.

P(A ∩ B) = P(first is heart)× P(second is heart|first is heart) = 13

52
× 12

51

Then, P(B) = P(first is heart) = 13
52 So,

P(A|B) = P(A ∩ B)
P(B) =

13
52 × 12

51
13
52

=
12

51
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Law of Total Probability

• A fundamental rule in probability theory.
• Used to compute the total probability of an event by considering all
possible scenarios.
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Partition of Sample Space

• The sample space S is divided into mutually exclusive and exhaustive
events B1,B2, . . . ,Bn.

• Mutually exclusive: Bi ∩ Bj = ∅ for i ̸= j
• Exhaustive: B1 ∪ B2 ∪ · · · ∪ Bn = S
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Formula

For any event A, the Law of Total Probability states:

P(A) =
n∑
i=1

P(A|Bi) · P(Bi)

This formula sums the probabilities of A occurring given each Bi, weighted by
the probability of each Bi.
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Example: Machines and Defective Items

A factory has three machines producing items:
• Machine A Produces 30% of items, 5% defective.
• Machine B Produces 40% of items, 3% defective.
• Machine C Produces 30% of items, 4% defective.

We want to find the probability that a randomly selected item is defective,
P(D).
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Applying the Law

Let B1,B2,B3 be the events that an item is produced by Machine A, B, or C,
respectively. Then,

P(D) = P(D|B1) · P(B1) + P(D|B2) · P(B2) + P(D|B3) · P(B3)

Plugging in the values:

P(D) = (0.05)(0.30) + (0.03)(0.40) + (0.04)(0.30)
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Calculation

Calculate each term:
• Machine A (0.05)(0.30) = 0.015

• Machine B (0.03)(0.40) = 0.012

• Machine C (0.04)(0.30) = 0.012

Sum them up:
P(D) = 0.015 + 0.012 + 0.012 = 0.039

Thus, the probability of selecting a defective item is 3.9%.
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Conclusion

The Law of Total Probability allows us to:
• Break down complex probability problems.
• Compute total probabilities by considering all possible scenarios.
• Apply to real-world situations like quality control.

It’s a stepping stone to Bayes’ Theorem and other advanced probability
concepts.
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Bayes’ Theorem
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Bayes’ Theorem

• A fundamental theorem in probability theory.
• Used to update the probability of an event based on new evidence.
• Essential for Bayesian inference and decision-making under uncertainty.
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Formula of Bayes’ Theorem

For events A and B, Bayes’ Theorem states:

P(A|B) = P(B|A) · P(A)
P(B)

where:
• P(A|B) is the posterior probability: the probability of A given B.
• P(B|A) is the likelihood: the probability of B given A.
• P(A) is the prior probability of A.
• P(B) is the marginal probability of B.
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Example: Medical Test

Consider a medical test for a disease:
• Prevalence of the disease: 1% (P(D) = 0.01)
• Test sensitivity (true positive rate): 99% (P(T+ |D) = 0.99)
• Test specificity (true negative rate): 95% (P(T− |Dc) = 0.95)

We want to find the probability that a person has the disease given that they
tested positive, P(D|T+).
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Applying Bayes’ Theorem

To find P(D|T+), use Bayes’ Theorem:

P(D|T+) =
P(T+ |D) · P(D)

P(T+)

First, we need to calculate P(T+), the total probability of testing positive.
Using the Law of Total Probability:

P(T+) = P(T+ |D) · P(D) + P(T+ |Dc) · P(Dc)

Note that P(T+ |Dc) = 1− P(T− |Dc) = 1− 0.95 = 0.05
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Calculation

Calculate P(T+):

P(T+) = (0.99)(0.01) + (0.05)(0.99) = 0.0099 + 0.0495 = 0.0594

Now, apply Bayes’ Theorem:

P(D|T+) =
(0.99)(0.01)

0.0594
=

0.0099

0.0594
≈ 0.1667

Thus, the probability that a person has the disease given a positive test result
is approximately 16.67%.
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Independent Event
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Independent Events

• A key concept in probability theory.
• Events are independent if the occurrence of one does not affect the
probability of the other.
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Definition and Formula

• Definition: Two events A and B are independent if:

P(A ∩ B) = P(A) · P(B)

• This means the probability of both events occurring is the product of
their individual probabilities.

• If events are not independent, they are dependent.
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Example: Coin and Die

Consider the following events:
• Event A: Flipping a head on a fair coin.

P(A) = 1

2

• Event B: Rolling a 3 on a fair six-sided die.

P(B) = 1

6

Since A and B are independent, the probability that both occur is:

P(A ∩ B) = P(A) · P(B) = 1

2
· 1
6
=

1

12
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Conclusion

• Independent events do not influence each other’s probabilities.
• For independent events A and B, P(A ∩ B) = P(A) · P(B).
• Understanding independence is essential in probability and statistics.
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Cumulative Distribution Function
CDF
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Definition of CDF

The Cumulative Distribution Function CDF of a random variable X is defined
as:

F(x) = P(X ≤ x)

It gives the probability that X takes a value less than or equal to x.
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Properties of CDF

• Non-decreasing: If x1 < x2, then F(x1) ≤ F(x2)
• Limits: limx→−∞ F(x) = 0 and limx→∞ F(x) = 1

• Right-continuous: For any x, limh→0+ F(x+ h) = F(x)
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Example: Discrete RandomVariable

Consider a fair six-sided die. The random variable X can take values 1, 2, 3,
4, 5, 6, each with probability 1

6 . The CDF F(x) is:

F(x) =



0 if x < 1
1
6 if 1 ≤ x < 2
2
6 if 2 ≤ x < 3
3
6 if 3 ≤ x < 4
4
6 if 4 ≤ x < 5
5
6 if 5 ≤ x < 6

1 if x ≥ 6
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Example: Continuous RandomVariable

Consider a uniform random variable X on [0, 1]. The CDF F(x) is:

F(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

Note that F(x) is continuous everywhere.
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Graph of CDF Uniform on 0,1

−1 1 2

1

x

F(x)

This is the CDF of a uniform random variable on [0, 1].
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Example: CDF

Consider the function:

G(x) =


0 if x < 0

x2 if 0 ≤ x < 1

0.5 if x ≥ 1

This is not a valid CDF because:
• It is not non-decreasing: G(1−) = 1 (limit from left), but G(1) = 0.5, so it
decreases.

• limx→∞G(x) = 0.5 < 1, violating the property that a CDF must approach 1.
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Types of Random Variable
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Types of RandomVariables

Random variables are classified into three main types:
• Discrete: Take countable values (e.g., integers).
• Continuous: Take values in a continuous range (e.g., real numbers).
• Mixed: Have both discrete and continuous components.

Each type has a probability distribution and a Cumulative Distribution
Function CDF.
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Discrete RandomVariable: Die Roll

Example: Let X be the outcome of rolling a fair six-sided die. Possible values
are 1, 2, 3, 4, 5, 6, each equally likely.
PMF:

P(X = x) =
{

1
6 if x = 1, 2, 3, 4, 5, 6

0 otherwise

CDF:

F(x) =


0 if x < 1
⌊x⌋
6 if 1 ≤ x < 6

1 if x ≥ 6

Observation: The CDF is a step function, jumping by 1
6 at each integer from 1

to 6.
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Continuous RandomVariable: Bus Arrival Time

Example: Let X be the time (in minutes) until a bus arrives, equally likely
between 0 and 10 minutes.
PDF:

f(x) =
{

1
10 if 0 ≤ x ≤ 10

0 otherwise

CDF:

F(x) =


0 if x < 0
x
10 if 0 ≤ x ≤ 10

1 if x > 10

Observation: The CDF increases linearly from 0 to 1 over [0, 10], reflecting
equal likelihood.
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Mixed RandomVariable: Daily Rainfall

Example: Let X be the rainfall amount (in inches) in a day:
• P(X = 0) = 0.3 (no rain).
• With probability 0.7, X is equally likely between 0 and 5 inches (rain).

CDF:

F(x) =


0 if x < 0

0.3 if x = 0

0.3 + 0.7 · x5 if 0 < x < 5

1 if x ≥ 5

Observation: The CDF has a jump of 0.3 at x = 0 (discrete part) and
increases linearly for 0 < x < 5 (continuous part).
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Graph ofMixed RandomVariable CDF Rainfall)

5

0.3

1

x (inches)

F(x)

This shows the CDF with a jump at x = 0 and a linear increase from 0 to 5.
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Expected Value

Definition
The expected value (mean) of a random variable is the weighted average of
all possible values, where the weights are the probabilities.

Discrete Case
E[X] =

∑
i
xi · P(X = xi)

Example: For a fair die,
E[X] = 1(16) + 2(16) + ...+ 6(16) = 3.5

Continuous Case

E[X] =
∫ ∞

−∞
x · f(x)dx

Where f(x) is the PDF of X
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Properties of Expected Value

1. Linearity: E[aX+ bY] = aE[X] + bE[Y] for constants a and b
2. Constant: E[c] = c for any constant c
3. Independence: If X and Y are independent, E[X · Y] = E[X] · E[Y]

Applications

• Financial risk assessment
• Decision theory
• Statistical inference
• Machine learning
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Variance and Standard Deviation

Definition
The variance of a random variable measures the spread or dispersion around
its expected value.

Var(X) = E[(X− E[X])2] = E[X2]− (E[X])2

• Standard deviation: σX =
√
Var(X)

• Units: Variance has units squared; standard deviation has same units as
the original variable

• Always non-negative: Var(X) ≥ 0

• Var(X) = 0 if and only if X is a constant
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Properties of Variance and Standard Deviation

Key Properties
• Var(aX+ b) = a2Var(X) for constants a and b
• If X and Y are independent: Var(X+ Y) = Var(X) + Var(Y)
• In general: Var(X+ Y) = Var(X) + Var(Y) + 2Cov(X,Y)
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Discrete Probability Distribution
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Bernoulli Distribution

Definition
Models a single trial with two possible outcomes: success 1 with probability
p or failure 0 with probability 1− p.

P(X = 1) = p 1)
P(X = 0) = 1− p 2)

• Mean: E[X] = p
• Variance: Var(X) = p(1− p)

Example: Fair Coin Flip
p = 0.5, so E[X] = 0.5 and Var(X) = 0.25
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Binomial Distribution

Definition
Models the number of successes in n independent Bernoulli trials, each with
probability p.

P(X = k) =
(n
k
)
pk(1− p)n−k for k = 0, 1, 2, . . . ,n where

(n
k
)
= n!

k!(n−k)!

• Mean: E[X] = np
• Variance: Var(X) = np(1− p)

Example: 10 Coin Flips
n = 10, p = 0.5, so E[X] = 5 and Var(X) = 2.5
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Binomial Distribution: Properties and
Applications

Key Properties
• Sum of Bernoulli RVs:
X =

∑n
i=1 Xi

• Reproductive property:
Bin(n1,p) + Bin(n2,p) =
Bin(n1 + n2,p)

• Normal approximation when n is
large: X ≈ N(np,np(1− p))

• Poisson approximation when n is
large and p is small

Applications
• Quality control: Defective items
in batches

• Medicine: Success/failure of
treatments

• Finance: Up/down price
movements

• Survey sampling: Properties in
finite populations

Visualization

Binomial PMF for different values of n and p]
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Geometric Distribution

Definition
Models the number of Bernoulli trials needed to get the first success.

P(X = k) = (1− p)k−1p for k = 1, 2, 3, . . .

• Mean: E[X] = 1
p

• Variance: Var(X) = 1−p
p2

Example: Number of rolls until a 6 appears on a die
p = 1

6 , so E[X] = 6 and Var(X) = 30
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Poisson Distribution

Definition
Models the number of events occurring in a fixed interval when events
happen at a constant average rate λ.

P(X = k) = λke−λ

k! for k = 0, 1, 2, . . .

• Mean: E[X] = λ

• Variance: Var(X) = λ
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Poisson Distribution: Properties and
Applications

Key Properties
• Limit of Binomial:
Bin(n,p) ≈ Pois(np) when n is
large, p is small

• For Poisson process: Number of
events in time t is Pois(λt)

• Normal approximation when λ is
large: X ≈ N(λ, λ)

• Independence of counts in
disjoint intervals

Applications
• Call center arrivals
• Radioactive decay events
• Network traffic modeling
• Insurance claims
• Rare events: Accidents, natural
disasters

• Mutations in DNA sequences
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Continuous Probability
Distributions
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Normal Distribution

Standard Normal Distribution
When µ = 0 and σ = 1, we get the standard normal distribution Z ∼ N(0, 1)
• Any normal RV can be standardized: Z = X−µ

σ

• CDF Φ(z) = P(Z ≤ z) (no closed form, values tabulated)
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Normal Distribution: Properties and
Applications

Key Properties
• 689599.7 rule:

— 68% of data within µ± σ
— 95% of data within µ± 2σ
— 99.7% of data within µ± 3σ

• Reproductive property: If X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are

independent, then X1 + X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2)

• Linear transformations: If X ∼ N(µ, σ2), then aX+ b ∼ N(aµ+ b,a2σ2)
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Normal Distribution: Applications

Scientific Applications
• Measurement errors in physical
sciences

• Heights, weights in populations
• IQ scores and standardized tests
• Approximation for binomial
when n is large

• Foundation for parametric
statistical tests

Financial Applications
• Stock price movements
(log-normal)

• Black-Scholes option pricing
model

• Value at Risk VaR calculations
• Portfolio theory and optimization
• Credit scoring models
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Central Limit Theorem

Central Limit TheoremConnection
The normal distribution’s importance is largely due to the CLT, which states
that sums of independent random variables tend toward a normal distribution
regardless of their original distributions.
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Exponential Distribution

Definition
Models the time between events in a Poisson process with rate parameter λ.

f(x) = λe−λx for x ≥ 0

• Mean: E[X] = 1
λ

• Variance: Var(X) = 1
λ2

• Median: ln(2)
λ

• Mode: 0
• CDF F(x) = 1− e−λx for x ≥ 0
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Exponential Distribution: Properties and
Applications

Key Properties
• Memoryless property: P(X > s+ t|X > s) = P(X > t)
• Relationship to Poisson process: If events occur according to a Poisson
process with rate λ, then the time between consecutive events follows
Exp(λ)

• Minimum of independent exponentials:
min(X1,X2, . . . ,Xn) ∼ Exp(λ1 + λ2 + . . .+ λn)

• Relationship to other distributions:
— Special case of Gamma distribution with shape parameter α = 1
— X2/2 ∼ Exp(λ/2) if X ∼ χ2(2)

Applications
• Time between customer arrivals
• Time until equipment failure (if constant failure rate)
• Duration of phone calls
• Length of service times in queuing theory
• Radioactive decay modeling
• Survival analysis (with constant hazard rate)
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Uniform Distribution

Definition
Every value in interval [a,b] has equal probability.

f(x) = 1
b−a for a ≤ x ≤ b

• Mean: E[X] = a+b
2

• Variance: Var(X) = (b−a)2
12

• Median: a+b
2

• Mode: Any value in [a,b]
• CDF F(x) = x−a

b−a for a ≤ x ≤ b

Applications
• Random number generation
• Rounding errors in computing
• Prior distributions in Bayesian
analysis

• Model for arrival time when only
range is known

• Baseline model for
unpredictable phenomena
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Probability
Thank You for Listening!
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