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Overview

• Handling Missing Data
• Feature Scaling
• Outlier Detection
• Dimensionality Reduction
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Generating Sample Dataset

import numpy as np
import pandas as pd

np.random.seed(42)
data = np.random.randn(500, 4) * [10, 5, 1, 0.5] + [50, 30, 10, 5]
df = pd.DataFrame(data,

columns=['Feature1', 'Feature2', 'Feature3', 'Feature4'])
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df.head()

Feature1 Feature2 Feature3 Feature4
0 54.967142 29.308678 10.647689 5.761515
1 47.658466 28.829315 11.579213 5.383717
2 45.305256 32.712800 9.536582 4.767135
3 52.419623 20.433599 8.275082 4.718856
4 39.871689 31.571237 9.091976 4.293848
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HandlingMissing Data: Imputation

• Mean Imputation: For each feature (column), find the average of all
non-missing values and replace missing entries with that average.

𝑥imputed =
1
𝑁

𝑁
∑
𝑖=1
𝑥𝑖 (excluding missing values)

• Median Imputation: Replace missing values with the median of the
feature.

• Mode Imputation Most Frequent): Replace missing values with the
most common (categorical or discrete) value in the feature.
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HandlingMissing Data

from sklearn.impute import SimpleImputer

df.iloc[10:15, 2] = np.nan # Introduce missing values in 'Feature3'

# 2. Create an imputer instance (mean strategy)
imputer = SimpleImputer(strategy='mean')

# 3. Fit the imputer to Feature3 and transform
df[['Feature3']] = imputer.fit_transform(df[['Feature3']])
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How StandardScalerWorks

StandardScaler transforms each feature to have:
• Mean = 0
• Standard Deviation = 1

Formula: Each value 𝑥 is transformed using:

𝑧 = 𝑥 − 𝜇𝜎
where:
• 𝜇 is the mean of the feature
• 𝜎 is the standard deviation of the feature

Effect: - Features are centered around zero.
- Useful for models that assume normally distributed data (e.g., logistic
regression, SVM.
- Prevents dominance of large-scale features.
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StandardScaler Mean 0, Std 1

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaled_data = scaler.fit_transform(df)
df_scaled = pd.DataFrame(scaled_data, columns=df.columns)
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MinMaxScaler Range 0 to 1

from sklearn.preprocessing import MinMaxScaler

minmax_scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data_mm = minmax_scaler.fit_transform(df)
df_minmax = pd.DataFrame(scaled_data_mm, columns=df.columns)
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df_minmax.head()

Feature1 Feature2 Feature3 Feature4
0 0.507007 -0.201021 0.614230 1.446150
1 -0.284059 -0.295971 1.549968 0.704719
2 -0.538762 0.473250 -0.501903 -0.505330
3 0.231272 -1.958951 -1.769110 -0.600078
4 -1.126872 0.247135 -0.948521 -1.434160
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Adding Outlier into the data

outliers = np.array([[200, 300, 20, 10],
[180, 280, 25, 7],
[160, -100, -5, 2]])

outliers_df = pd.DataFrame(outliers, columns=df.columns)
df = pd.concat([df, outliers_df], ignore_index=True)
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Isolation Forest

• Anomaly detection, also known as outlier detection, is the process of
identifying data points that deviate significantly from the norm or
expected behavior within a dataset

• Isolation Forest is a powerful and efficient algorithm specifically
designed for anomaly detection.

• The Isolation Forest is based on the principle of recursively partitioning
data until each data point is isolated. This partitioning is done randomly.
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Steps1Random Partitioning

it builds multiple isolation trees (iTrees). For each iTree:
1. A random subsample of the data is selected (without replacement).
2. The tree is constructed by recursively selecting a random feature and a

random split value within the range of that feature.
3. This process continues until each data point in the subsample is isolated

in its own leaf node, or a predefined maximum tree depth is reached.
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Step2 Path Length

1. The key idea is that anomalies will require fewer random partitions to be
isolated compared to normal instances.

2. The path length of a data point in an iTree is the number of edges
traversed from the root node to the terminal (leaf) node where the point
is isolated.

3. Shorter path lengths indicate higher susceptibility to isolation,
suggesting a higher likelihood of being an anomaly.
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Step3 Averaging OverMultiple Trees

• Forest of iTrees: Because the partitioning is random, the algorithm
constructs a forest (often 100 iTrees).

• Robust IsolationMeasure: The average path length of a data point
across all trees provides a more stable indicator of how easily it can be
isolated.

• Why It Matters: Averaging over many trees reduces variance from any
single random partition, improving anomaly detection accuracy.
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Anomaly Score

• The anomaly score 𝑠(𝑥, 𝑛) quantifies how anomalous a data point 𝑥 is,
given a sample size 𝑛.

Formula:
𝑠(𝑥, 𝑛) = 2−

𝐸(ℎ(𝑥))
𝑐(𝑛)

Components:
• ℎ(𝑥) : Path length of 𝑥 in a single iTree.
• 𝐸(ℎ(𝑥)) : Average path length of 𝑥 across all iTrees.
• 𝑐(𝑛) : Normalization factor approximating the average path length of an
unsuccessful search in a BST
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Anomaly Score (contd...)

• 𝑐(𝑛) : Approximates the average path length of an unsuccessful search in
a BST.

𝑐(𝑛) = 2𝐻(𝑛 − 1) − 2(𝑛 − 1)𝑛
where the harmonic number 𝐻(𝑖) can be approximated as:

𝐻(𝑖) ≈ ln(𝑖) + 0.5772156649

Interpretation:
• 𝑠(𝑥, 𝑛) ≈ 1 : Strong anomaly.
• 𝑠(𝑥, 𝑛) ≪ 0.5 : Likely normal instance.
• 𝑠(𝑥, 𝑛) ≈ 0.5 : No clear anomaly within the dataset.
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Hyperparameter

The main hyperparameters of Isolation Forest are:
• Number of Trees (n_estimators): The number of iTrees to build in the
forest. More trees generally lead to more reliable results but increase
computational cost.

• Subsampling Size (max_samples): The number of data points to use
for building each iTree. Smaller subsamples can lead to faster training
and can sometimes improve performance by reducing the ”swamping”
and ”masking” effects (where normal instances obscure anomalies or
vice-versa).
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Example

Consider a simple 2D dataset with a cluster of normal points and a few
isolated outliers.
1. Data Generation: Imagine a dataset most of the coordinates 5, 5 and

some few outlier points far away, such as 15, 15 and 0, 0.
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Example

2. Tree Construction: The Isolation Forest algorithm would randomly
select features (either the x-coordinate or the y-coordinate) and split
values.

3. Isolation: The outlier points, being far from the main cluster, would likely
be isolated very quickly (with short path lengths). For example, a single
split on the x-coordinate at x=10 might immediately isolate the point 15,
15. The points within the cluster would require many more splits to be
isolated.

4. Anomaly Score Calculation: After building multiple trees and averaging
the path lengths, the outlier points would have significantly shorter
average path lengths, resulting in anomaly scores close to 1. The inlier
points would have longer average path lengths and scores closer to 0.5
or lower.
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Isolation Tree
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Parameter in IsolationForest

Parameter Description Effect
contamination Proportion of expected out-

liers
Controls the threshold for classi-
fying anomalies.

n_estimators Number of trees in the en-
semble

More trees improve stability but
increase computation time.

max_samples Number of samples per tree Affects tree depth and anomaly
detection sensitivity.

max_features Number of features consid-
ered per split

Limits feature selection for splits.

random_state Controls randomness of
splits

Ensures reproducibility.

Table: Parameters of IsolationForest
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Using IsolationForest

from sklearn.ensemble import IsolationForest

iso_forest = IsolationForest(
contamination=0.01, # Expect 1% anomalies
n_estimators=100, # Use 100 trees for better stability
max_samples=256, # Use 256 random samples per tree
max_features=2, # Consider only 2 features per split
random_state=42 # Ensure reproducibility

)

outlier_labels = iso_forest.fit_predict(df) # 1 for inlier, -1 for outlier

df['Outlier'] = outlier_labels
df['Outlier'].value_counts()
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Output

Outlier
1 497

-1 6
Name: count, dtype: int64
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Removing Outliers

df_no_outliers = df[df['Outlier'] == 1].drop(columns='Outlier')
df_no_outliers.shape
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Two cluster example

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest

# Generate data
rng = np.random.RandomState(42)

# Generate train data - normal data
X_train = 0.3 * rng.randn(100, 2)
X_train = np.r_[X_train + 2, X_train - 2] # Two clusters

# Generate some outliers
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
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Two cluster example

X = np.r_[X_train, X_outliers]

# Fit the model
clf = IsolationForest(n_estimators=100, max_samples='auto',

contamination='auto', random_state=42)↪

clf.fit(X_train) # Fit on the training data (normal data)

# Predict - 1 for inliers, -1 for outliers
y_pred = clf.predict(X)
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Code: Plot the above example

# Plot the data
plt.figure(figsize=(8, 6))

# Plot inliers (normal points)
plt.scatter(X[:200, 0], X[:200, 1], c='white', edgecolors='k', s=20,

label='Inliers')↪

# Plot outliers
plt.scatter(X[200:, 0], X[200:, 1], c='red', edgecolors='k', s=20,

label='Outliers')↪
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Plot
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code:Plot

for i, color in enumerate(['white', 'red']):
idx = (y_pred == (-1 if color == 'red' else 1))
plt.scatter(X[idx, 0], X[idx, 1], c=color, edgecolors='k', s=50,

label=('Outliers' if color == 'red' else 'Inliers'))↪
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Principal Component Analysis PCA

• Having too many features in data can cause problems like overfitting
(good on training data but poor on new data), slower computation, and
lower accuracy.

• Principal Component Analysis PCA is a widely used linear
dimensionality reduction technique. Its primary goal is to find a new set
of uncorrelated variables, called principal components, that capture the
maximum variance in the data.

• It prioritizes the directions where the data varies the most (because
more variation = more useful information.
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CovarianceMatrix

The covariance matrix describes the relationships between different
variables in a dataset. For a dataset with 𝑛 variables, the covariance matrix is
an 𝑛 × 𝑛 matrix where each element (𝑖, 𝑗) represents the covariance between
variable 𝑖 and variable 𝑗. The diagonal elements represent the variances of
the individual variables.
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Eigenvectors and Eigenvalues

Eigenvectors and eigenvalues are fundamental concepts in linear algebra.
For a square matrix (like the covariance matrix), an eigenvector is a non-zero
vector that, when multiplied by the matrix, results in a scaled version of itself.
The scaling factor is the corresponding eigenvalue. Mathematically:

𝐴𝑣 = 𝜆𝑣
where 𝐴 is the matrix, 𝑣 is the eigenvector, and 𝜆 is the eigenvalue.
In the context of PCA, the eigenvectors of the covariance matrix represent
the directions of the principal components, and the eigenvalues represent
the amount of variance explained by each principal component.
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Projection onto Principal Components

Once the principal components (eigenvectors) are found, the original data
can be projected onto these new axes. This projection transforms the data
from the original coordinate system to the coordinate system defined by the
principal components. The projected data points are the coordinates of the
data in the new space.
Mathematically, if 𝑋 is the standardized data matrix and 𝑉 is the matrix whose
columns are the selected eigenvectors (principal components), the
projection 𝑃 is calculated as:

𝑃 = 𝑋𝑉
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PCAAlgorithm

1. Data Standardization: Standardize the data to have zero mean and unit
variance for each feature. This is crucial because PCA is sensitive to the
scale of the variables.

2. CovarianceMatrix Calculation: Calculate the covariance matrix of the
standardized data.

3. Eigenvalue Decomposition: Perform eigenvalue decomposition on the
covariance matrix to obtain the eigenvectors (principal components) and
eigenvalues.
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PCAAlgorithm (contd.)

4. Selection of Principal Components: Sort the eigenvectors by their
corresponding eigenvalues in descending order. Select the top 𝑘
eigenvectors, where 𝑘 is the desired number of dimensions for the
reduced data.

5. Projection of Data: Project the original (standardized) data onto the
selected 𝑘 principal components. This is done by taking the dot product
of the standardized data matrix and the matrix formed by the selected
eigenvectors.
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Mathematical Example

Let’s consider a simple 2D dataset with two data points: 𝑥1 = [
2
4] and 𝑥2 = [

4
2].
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Step 1 Data Standardization
First, we calculate the mean of each feature:

𝜇1 =
2 + 4
2 = 3, 𝜇2 =

4 + 2
2 = 3

The mean vector is 𝜇 = [33]. Next, we subtract the mean from each data point:

𝑥′1 = 𝑥1 − 𝜇 = [
−1
1 ] , 𝑥′2 = 𝑥2 − 𝜇 = [

1
−1]

Then, we calculate the standard deviation of each feature (after mean subtraction):

𝜎1 = √
(−1)2 + 12
2 − 1 = √2, 𝜎2 = √

12 + (−1)2
2 − 1 = √2

Finally, we divide each centered data point by the corresponding standard deviation:

𝑥″1 = [
−1/√2
1/√2

] , 𝑥″2 = [
1/√2
−1/√2

]

Our standardized data matrix is:

𝑋 = [−1/√2 1/√2
1/√2 −1/√2

]
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Step 2 CovarianceMatrix Calculation

The covariance matrix is calculated as:

Σ = 1
𝑛 − 1𝑋

𝑇𝑋 = 1
2 − 1 [

−1/√2 1/√2
1/√2 −1/√2

] [−1/√2 1/√2
1/√2 −1/√2

] = [ 1 −1
−1 1 ]
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Step 3 Eigenvalue Decomposition
We need to find the eigenvalues and eigenvectors of the covariance matrix Σ. We solve the
characteristic equation:

det(Σ − 𝜆𝐼) = 0

det ([1 − 𝜆 −1
−1 1 − 𝜆]) = (1 − 𝜆)

2 − (−1)2 = 𝜆2 − 2𝜆 = 0

The eigenvalues are 𝜆1 = 2 and 𝜆2 = 0.
For 𝜆1 = 2:

(Σ − 2𝐼)𝑣1 = 0 ⇒ [−1 −1
−1 −1] [

𝑣11
𝑣12
] = [00]

A corresponding eigenvector is 𝑣1 = [
−1/√2
1/√2

] (normalized).

For 𝜆2 = 0:

(Σ − 0𝐼)𝑣2 = 0 ⇒ [ 1 −1
−1 1 ] [

𝑣21
𝑣22
] = [00] , 𝑣2 = [

1/√2
1/√2

]
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Step 4 Selection of Principal Components

Since 𝜆1 = 2 is the largest eigenvalue, the first principal component is

𝑣1 = [
−1/√2
1/√2

]. We choose to keep only this component for dimensionality

reduction.
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Step 5 Projection of Data

We project the standardized data onto the first principal component:

𝑋reduced = 𝑋𝑣1 = [
−1/√2 1/√2
1/√2 −1/√2

] [−1/√2
1/√2

] = [ 1−1]

The reduced data consists of the scalar values 1 and 1.
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Implementation using Sklearn

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import numpy as np

# Sample data (replace with your data)
X = np.array([[1, 2], [2, 4], [3, 6], [4, 8]])

# 1. Standardize the data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
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Implementation using Sklearn

# 2. Create a PCA object and specify the number of components
pca = PCA(n_components=1) # Reduce to 1 dimension

# 3. Fit the PCA model and transform the data
X_reduced = pca.fit_transform(X_scaled)

print(X_reduced)
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Encoding Categorical Variables

from sklearn.preprocessing import LabelEncoder, OneHotEncoder,
OrdinalEncoder↪

from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4,

random_state=42)↪

df = pd.DataFrame(X, columns=['num_feat1', 'num_feat2', 'num_feat3',
'num_feat4'])↪

# Add categorical features
df['cat_feat1'] = np.random.choice(['A', 'B', 'C'], size=1000)
df['cat_feat2'] = np.random.choice(['Low', 'Medium', 'High'],

size=1000)↪
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Encoding Categorical Variables

# One-Hot Encoding (for nominal categories)
onehot_encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
cat_feat1_encoded = pd.DataFrame(

onehot_encoder.fit_transform(df[['cat_feat1']]),
columns=onehot_encoder.get_feature_names_out(['cat_feat1'])

)
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Creating a Preprocessing Pipeline

from sklearn.pipeline import Pipeline
numeric_features = ['num_feat1', 'num_feat2', 'num_feat3', 'num_feat4']
categorical_features = ['cat_feat1', 'cat_feat2']

numeric_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='mean')),
('scaler', StandardScaler())

])

categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='most_frequent')),
('onehot', OneHotEncoder(drop='first', sparse=False))

])
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Scikit-Learn: Data Preprocessing
Thank You for Listening!
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